Files
AstrBot/astrbot/core/provider/sources/llmtuner_source.py
2025-02-05 15:39:59 +08:00

102 lines
3.2 KiB
Python

import json
import os
from llmtuner.chat import ChatModel
from typing import List
from .. import Provider, Personality
from ..entites import LLMResponse
from ..func_tool_manager import FuncCall
from astrbot.core.db import BaseDatabase
from ..register import register_provider_adapter
@register_provider_adapter(
"llm_tuner", "LLMTuner 适配器, 用于装载使用 LlamaFactory 微调后的模型"
)
class LLMTunerModelLoader(Provider):
def __init__(
self,
provider_config: dict,
provider_settings: dict,
db_helper: BaseDatabase,
persistant_history=True,
default_persona=None,
) -> None:
super().__init__(
provider_config, provider_settings, persistant_history, db_helper, default_persona
)
if not os.path.exists(provider_config["base_model_path"]) or not os.path.exists(
provider_config["adapter_model_path"]
):
raise FileNotFoundError("模型文件路径不存在。")
self.base_model_path = provider_config["base_model_path"]
self.adapter_model_path = provider_config["adapter_model_path"]
self.model = ChatModel(
{
"model_name_or_path": self.base_model_path,
"adapter_name_or_path": self.adapter_model_path,
"template": provider_config["llmtuner_template"],
"finetuning_type": provider_config["finetuning_type"],
"quantization_bit": provider_config["quantization_bit"],
}
)
self.set_model(
os.path.basename(self.base_model_path)
+ "_"
+ os.path.basename(self.adapter_model_path)
)
async def assemble_context(self, text: str, image_urls: List[str] = None):
"""
组装上下文。
"""
return {"role": "user", "content": text}
async def text_chat(
self,
prompt: str,
session_id: str = None,
image_urls: List[str] = None,
func_tool: FuncCall = None,
contexts: List = [],
system_prompt: str = None,
**kwargs,
) -> LLMResponse:
system_prompt = ""
new_record = {"role": "user", "content": prompt}
query_context = [*contexts, new_record]
# 提取出系统提示
system_idxs = []
for idx, context in enumerate(query_context):
if context["role"] == "system":
system_idxs.append(idx)
if '_no_save' in context:
del context['_no_save']
for idx in reversed(system_idxs):
system_prompt += " " + query_context.pop(idx)["content"]
conf = {
"messages": query_context,
"system": system_prompt,
}
if func_tool:
tool_list = func_tool.get_func_desc_openai_style()
if tool_list:
conf['tools'] = tool_list
responses = await self.model.achat(**conf)
llm_response = LLMResponse("assistant", responses[-1].response_text)
return llm_response
async def get_current_key(self):
return "none"
async def set_key(self, key):
pass
async def get_models(self):
return [self.get_model()]