217 lines
7.9 KiB
Python
217 lines
7.9 KiB
Python
from typing import List
|
||
from mimetypes import guess_type
|
||
|
||
from anthropic import AsyncAnthropic
|
||
from anthropic.types import Message
|
||
|
||
from astrbot.core.utils.io import download_image_by_url
|
||
from astrbot.core.db import BaseDatabase
|
||
from astrbot.api.provider import Provider, Personality
|
||
from astrbot import logger
|
||
from astrbot.core.provider.func_tool_manager import FuncCall
|
||
from ..register import register_provider_adapter
|
||
from astrbot.core.provider.entites import LLMResponse, ToolCallsResult
|
||
from .openai_source import ProviderOpenAIOfficial
|
||
|
||
|
||
@register_provider_adapter(
|
||
"anthropic_chat_completion", "Anthropic Claude API 提供商适配器"
|
||
)
|
||
class ProviderAnthropic(ProviderOpenAIOfficial):
|
||
def __init__(
|
||
self,
|
||
provider_config: dict,
|
||
provider_settings: dict,
|
||
db_helper: BaseDatabase,
|
||
persistant_history=True,
|
||
default_persona: Personality = None,
|
||
) -> None:
|
||
# Skip OpenAI's __init__ and call Provider's __init__ directly
|
||
Provider.__init__(
|
||
self,
|
||
provider_config,
|
||
provider_settings,
|
||
persistant_history,
|
||
db_helper,
|
||
default_persona,
|
||
)
|
||
|
||
self.chosen_api_key = None
|
||
self.api_keys: List = provider_config.get("key", [])
|
||
self.chosen_api_key = self.api_keys[0] if len(self.api_keys) > 0 else None
|
||
self.base_url = provider_config.get("api_base", "https://api.anthropic.com")
|
||
self.timeout = provider_config.get("timeout", 120)
|
||
if isinstance(self.timeout, str):
|
||
self.timeout = int(self.timeout)
|
||
|
||
self.client = AsyncAnthropic(
|
||
api_key=self.chosen_api_key, timeout=self.timeout, base_url=self.base_url
|
||
)
|
||
|
||
self.set_model(provider_config["model_config"]["model"])
|
||
|
||
async def _query(self, payloads: dict, tools: FuncCall) -> LLMResponse:
|
||
if tools:
|
||
tool_list = tools.get_func_desc_anthropic_style()
|
||
if tool_list:
|
||
payloads["tools"] = tool_list
|
||
|
||
completion = await self.client.messages.create(**payloads, stream=False)
|
||
|
||
assert isinstance(completion, Message)
|
||
logger.debug(f"completion: {completion}")
|
||
|
||
if len(completion.content) == 0:
|
||
raise Exception("API 返回的 completion 为空。")
|
||
# TODO: 如果进行函数调用,思维链被截断,用户可能需要思维链的内容
|
||
# 选最后一条消息,如果要进行函数调用,anthropic会先返回文本消息的思维链,然后再返回函数调用请求
|
||
content = completion.content[-1]
|
||
|
||
llm_response = LLMResponse("assistant")
|
||
|
||
if content.type == "text":
|
||
# text completion
|
||
completion_text = str(content.text).strip()
|
||
llm_response.completion_text = completion_text
|
||
|
||
# Anthropic每次只返回一个函数调用
|
||
if completion.stop_reason == "tool_use":
|
||
# tools call (function calling)
|
||
args_ls = []
|
||
func_name_ls = []
|
||
tool_use_ids = []
|
||
func_name_ls.append(content.name)
|
||
args_ls.append(content.input)
|
||
tool_use_ids.append(content.id)
|
||
llm_response.role = "tool"
|
||
llm_response.tools_call_args = args_ls
|
||
llm_response.tools_call_name = func_name_ls
|
||
llm_response.tools_call_ids = tool_use_ids
|
||
|
||
if not llm_response.completion_text and not llm_response.tools_call_args:
|
||
logger.error(f"API 返回的 completion 无法解析:{completion}。")
|
||
raise Exception(f"API 返回的 completion 无法解析:{completion}。")
|
||
|
||
llm_response.raw_completion = completion
|
||
|
||
return llm_response
|
||
|
||
async def text_chat(
|
||
self,
|
||
prompt: str,
|
||
session_id: str = None,
|
||
image_urls: List[str] = [],
|
||
func_tool: FuncCall = None,
|
||
contexts=[],
|
||
system_prompt=None,
|
||
tool_calls_result: ToolCallsResult = None,
|
||
**kwargs,
|
||
) -> LLMResponse:
|
||
if not prompt:
|
||
prompt = "<image>"
|
||
|
||
new_record = await self.assemble_context(prompt, image_urls)
|
||
context_query = [*contexts, new_record]
|
||
|
||
for part in context_query:
|
||
if "_no_save" in part:
|
||
del part["_no_save"]
|
||
|
||
if tool_calls_result:
|
||
# 暂时这样写。
|
||
prompt += f"Here are the related results via using tools: {str(tool_calls_result.tool_calls_result)}"
|
||
|
||
model_config = self.provider_config.get("model_config", {})
|
||
|
||
payloads = {"messages": context_query, **model_config}
|
||
# Anthropic has a different way of handling system prompts
|
||
if system_prompt:
|
||
payloads["system"] = system_prompt
|
||
|
||
llm_response = None
|
||
try:
|
||
llm_response = await self._query(payloads, func_tool)
|
||
|
||
except Exception as e:
|
||
if "maximum context length" in str(e):
|
||
retry_cnt = 20
|
||
while retry_cnt > 0:
|
||
logger.warning(
|
||
f"上下文长度超过限制。尝试弹出最早的记录然后重试。当前记录条数: {len(context_query)}"
|
||
)
|
||
try:
|
||
await self.pop_record(context_query)
|
||
response = await self.client.messages.create(
|
||
messages=context_query, **model_config
|
||
)
|
||
llm_response = LLMResponse("assistant")
|
||
llm_response.completion_text = response.content[0].text
|
||
llm_response.raw_completion = response
|
||
return llm_response
|
||
except Exception as e:
|
||
if "maximum context length" in str(e):
|
||
retry_cnt -= 1
|
||
else:
|
||
raise e
|
||
return LLMResponse("err", "err: 请尝试 /reset 清除会话记录。")
|
||
else:
|
||
logger.error(f"发生了错误。Provider 配置如下: {model_config}")
|
||
raise e
|
||
|
||
return llm_response
|
||
|
||
async def text_chat_stream(
|
||
self,
|
||
prompt,
|
||
session_id=None,
|
||
image_urls=...,
|
||
func_tool=None,
|
||
contexts=...,
|
||
system_prompt=None,
|
||
tool_calls_result=None,
|
||
**kwargs,
|
||
):
|
||
raise NotImplementedError("This method is not implemented yet.")
|
||
|
||
async def assemble_context(self, text: str, image_urls: List[str] = None):
|
||
"""组装上下文,支持文本和图片"""
|
||
if not image_urls:
|
||
return {"role": "user", "content": text}
|
||
|
||
content = []
|
||
content.append({"type": "text", "text": text})
|
||
|
||
for image_url in image_urls:
|
||
if image_url.startswith("http"):
|
||
image_path = await download_image_by_url(image_url)
|
||
image_data = await self.encode_image_bs64(image_path)
|
||
elif image_url.startswith("file:///"):
|
||
image_path = image_url.replace("file:///", "")
|
||
image_data = await self.encode_image_bs64(image_path)
|
||
else:
|
||
image_data = await self.encode_image_bs64(image_url)
|
||
|
||
if not image_data:
|
||
logger.warning(f"图片 {image_url} 得到的结果为空,将忽略。")
|
||
continue
|
||
|
||
# Get mime type for the image
|
||
mime_type, _ = guess_type(image_url)
|
||
if not mime_type:
|
||
mime_type = "image/jpeg" # Default to JPEG if can't determine
|
||
|
||
content.append(
|
||
{
|
||
"type": "image",
|
||
"source": {
|
||
"type": "base64",
|
||
"media_type": mime_type,
|
||
"data": image_data.split("base64,")[1]
|
||
if "base64," in image_data
|
||
else image_data,
|
||
},
|
||
}
|
||
)
|
||
|
||
return {"role": "user", "content": content}
|