Files
AstrBot/astrbot/core/pipeline/context_utils.py
Soulter 50144ddcae refactor: revise LLM message schema and fix the reload logic when using dataclass-based LLM Tool registration (#3234)
* refactor: llm message schema

* feat: implement MCPTool and local LLM tools with enhanced context handling

* refactor: reorganize imports and enhance docstrings for clarity

* refactor: enhance ContentPart validation and add message pair handling in ConversationManager

* chore: ruff format

* refactor: remove debug print statement from payloads in ProviderOpenAIOfficial

* Update astrbot/core/agent/tool.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/message.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/message.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/tool.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/pipeline/process_stage/method/llm_request.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/message.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* refactor: enhance documentation and import mcp in tool.py; update call method return type

* fix: 修复以数据类的方式注册 tool 时的插件重载机制问题

* refactor: change role attributes to use Literal types for message segments

* fix: add support for 'decorator_handler' method in call_local_llm_tool

* fix: handle None prompt in text_chat method and ensure context is properly formatted

---------

Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-11-02 18:12:20 +08:00

173 lines
5.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import inspect
import traceback
import typing as T
from astrbot import logger
from astrbot.core.agent.run_context import ContextWrapper
from astrbot.core.astr_agent_context import AstrAgentContext
from astrbot.core.message.message_event_result import CommandResult, MessageEventResult
from astrbot.core.platform.astr_message_event import AstrMessageEvent
from astrbot.core.star.star import star_map
from astrbot.core.star.star_handler import EventType, star_handlers_registry
async def call_handler(
event: AstrMessageEvent,
handler: T.Callable[..., T.Awaitable[T.Any]],
*args,
**kwargs,
) -> T.AsyncGenerator[T.Any, None]:
"""执行事件处理函数并处理其返回结果
该方法负责调用处理函数并处理不同类型的返回值。它支持两种类型的处理函数:
1. 异步生成器: 实现洋葱模型,每次 yield 都会将控制权交回上层
2. 协程: 执行一次并处理返回值
Args:
event (AstrMessageEvent): 事件对象
handler (Awaitable): 事件处理函数
Returns:
AsyncGenerator[None, None]: 异步生成器,用于在管道中传递控制流
"""
ready_to_call = None # 一个协程或者异步生成器
trace_ = None
try:
ready_to_call = handler(event, *args, **kwargs)
except TypeError:
logger.error("处理函数参数不匹配,请检查 handler 的定义。", exc_info=True)
if not ready_to_call:
return
if inspect.isasyncgen(ready_to_call):
_has_yielded = False
try:
async for ret in ready_to_call:
# 这里逐步执行异步生成器, 对于每个 yield 返回的 ret, 执行下面的代码
# 返回值只能是 MessageEventResult 或者 None无返回值
_has_yielded = True
if isinstance(ret, (MessageEventResult, CommandResult)):
# 如果返回值是 MessageEventResult, 设置结果并继续
event.set_result(ret)
yield
else:
# 如果返回值是 None, 则不设置结果并继续
# 继续执行后续阶段
yield ret
if not _has_yielded:
# 如果这个异步生成器没有执行到 yield 分支
yield
except Exception as e:
logger.error(f"Previous Error: {trace_}")
raise e
elif inspect.iscoroutine(ready_to_call):
# 如果只是一个协程, 直接执行
ret = await ready_to_call
if isinstance(ret, (MessageEventResult, CommandResult)):
event.set_result(ret)
yield
else:
yield ret
async def call_event_hook(
event: AstrMessageEvent,
hook_type: EventType,
*args,
**kwargs,
) -> bool:
"""调用事件钩子函数
Returns:
bool: 如果事件被终止,返回 True
#
"""
handlers = star_handlers_registry.get_handlers_by_event_type(
hook_type,
plugins_name=event.plugins_name,
)
for handler in handlers:
try:
logger.debug(
f"hook({hook_type.name}) -> {star_map[handler.handler_module_path].name} - {handler.handler_name}",
)
await handler.handler(event, *args, **kwargs)
except BaseException:
logger.error(traceback.format_exc())
if event.is_stopped():
logger.info(
f"{star_map[handler.handler_module_path].name} - {handler.handler_name} 终止了事件传播。",
)
return True
return event.is_stopped()
async def call_local_llm_tool(
context: ContextWrapper[AstrAgentContext],
handler: T.Callable[..., T.Awaitable[T.Any]],
method_name: str,
*args,
**kwargs,
) -> T.AsyncGenerator[T.Any, None]:
"""执行本地 LLM 工具的处理函数并处理其返回结果"""
ready_to_call = None # 一个协程或者异步生成器
trace_ = None
event = context.context.event
try:
if method_name == "run" or method_name == "decorator_handler":
ready_to_call = handler(event, *args, **kwargs)
elif method_name == "call":
ready_to_call = handler(context, *args, **kwargs)
else:
raise ValueError(f"未知的方法名: {method_name}")
except ValueError as e:
logger.error(f"调用本地 LLM 工具时出错: {e}", exc_info=True)
except TypeError:
logger.error("处理函数参数不匹配,请检查 handler 的定义。", exc_info=True)
except Exception as e:
trace_ = traceback.format_exc()
logger.error(f"调用本地 LLM 工具时出错: {e}\n{trace_}")
if not ready_to_call:
return
if inspect.isasyncgen(ready_to_call):
_has_yielded = False
try:
async for ret in ready_to_call:
# 这里逐步执行异步生成器, 对于每个 yield 返回的 ret, 执行下面的代码
# 返回值只能是 MessageEventResult 或者 None无返回值
_has_yielded = True
if isinstance(ret, (MessageEventResult, CommandResult)):
# 如果返回值是 MessageEventResult, 设置结果并继续
event.set_result(ret)
yield
else:
# 如果返回值是 None, 则不设置结果并继续
# 继续执行后续阶段
yield ret
if not _has_yielded:
# 如果这个异步生成器没有执行到 yield 分支
yield
except Exception as e:
logger.error(f"Previous Error: {trace_}")
raise e
elif inspect.iscoroutine(ready_to_call):
# 如果只是一个协程, 直接执行
ret = await ready_to_call
if isinstance(ret, (MessageEventResult, CommandResult)):
event.set_result(ret)
yield
else:
yield ret