Files
AstrBot/astrbot/core/provider/sources/coze_source.py
Soulter 6849af2bad refactor: LLM response handling with reasoning content (#3632)
* refactor: LLM response handling with reasoning content

- Added a `show_reasoning` parameter to `run_agent` to control the display of reasoning content.
- Updated `LLMResponse` to include a `reasoning_content` field for storing reasoning text.
- Modified `WebChatMessageEvent` to handle and send reasoning content in streaming responses.
- Implemented reasoning extraction in various provider sources (e.g., OpenAI, Gemini).
- Updated the chat interface to display reasoning content in a collapsible format.
- Removed the deprecated `thinking_filter` package and its associated logic.
- Updated localization files to include new reasoning-related strings.

* feat: add Groq chat completion provider and associated configurations

* Update astrbot/core/provider/sources/gemini_source.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-15 18:59:17 +08:00

651 lines
25 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import base64
import hashlib
import json
import os
from collections.abc import AsyncGenerator
import astrbot.core.message.components as Comp
from astrbot import logger
from astrbot.api.provider import Provider
from astrbot.core.message.message_event_result import MessageChain
from astrbot.core.provider.entities import LLMResponse
from ..register import register_provider_adapter
from .coze_api_client import CozeAPIClient
@register_provider_adapter("coze", "Coze (扣子) 智能体适配器")
class ProviderCoze(Provider):
def __init__(
self,
provider_config,
provider_settings,
) -> None:
super().__init__(
provider_config,
provider_settings,
)
self.api_key = provider_config.get("coze_api_key", "")
if not self.api_key:
raise Exception("Coze API Key 不能为空。")
self.bot_id = provider_config.get("bot_id", "")
if not self.bot_id:
raise Exception("Coze Bot ID 不能为空。")
self.api_base: str = provider_config.get("coze_api_base", "https://api.coze.cn")
if not isinstance(self.api_base, str) or not self.api_base.startswith(
("http://", "https://"),
):
raise Exception(
"Coze API Base URL 格式不正确,必须以 http:// 或 https:// 开头。",
)
self.timeout = provider_config.get("timeout", 120)
if isinstance(self.timeout, str):
self.timeout = int(self.timeout)
self.auto_save_history = provider_config.get("auto_save_history", True)
self.conversation_ids: dict[str, str] = {}
self.file_id_cache: dict[str, dict[str, str]] = {}
# 创建 API 客户端
self.api_client = CozeAPIClient(api_key=self.api_key, api_base=self.api_base)
def _generate_cache_key(self, data: str, is_base64: bool = False) -> str:
"""生成统一的缓存键
Args:
data: 图片数据或路径
is_base64: 是否是 base64 数据
Returns:
str: 缓存键
"""
try:
if is_base64 and data.startswith("data:image/"):
try:
header, encoded = data.split(",", 1)
image_bytes = base64.b64decode(encoded)
cache_key = hashlib.md5(image_bytes).hexdigest()
return cache_key
except Exception:
cache_key = hashlib.md5(encoded.encode("utf-8")).hexdigest()
return cache_key
elif data.startswith(("http://", "https://")):
# URL图片使用URL作为缓存键
cache_key = hashlib.md5(data.encode("utf-8")).hexdigest()
return cache_key
else:
clean_path = (
data.split("_")[0]
if "_" in data and len(data.split("_")) >= 3
else data
)
if os.path.exists(clean_path):
with open(clean_path, "rb") as f:
file_content = f.read()
cache_key = hashlib.md5(file_content).hexdigest()
return cache_key
cache_key = hashlib.md5(clean_path.encode("utf-8")).hexdigest()
return cache_key
except Exception as e:
cache_key = hashlib.md5(data.encode("utf-8")).hexdigest()
logger.debug(f"[Coze] 异常文件缓存键: {cache_key}, error={e}")
return cache_key
async def _upload_file(
self,
file_data: bytes,
session_id: str | None = None,
cache_key: str | None = None,
) -> str:
"""上传文件到 Coze 并返回 file_id"""
# 使用 API 客户端上传文件
file_id = await self.api_client.upload_file(file_data)
# 缓存 file_id
if session_id and cache_key:
if session_id not in self.file_id_cache:
self.file_id_cache[session_id] = {}
self.file_id_cache[session_id][cache_key] = file_id
logger.debug(f"[Coze] 图片上传成功并缓存file_id: {file_id}")
return file_id
async def _download_and_upload_image(
self,
image_url: str,
session_id: str | None = None,
) -> str:
"""下载图片并上传到 Coze返回 file_id"""
# 计算哈希实现缓存
cache_key = self._generate_cache_key(image_url) if session_id else None
if session_id and cache_key:
if session_id not in self.file_id_cache:
self.file_id_cache[session_id] = {}
if cache_key in self.file_id_cache[session_id]:
file_id = self.file_id_cache[session_id][cache_key]
return file_id
try:
image_data = await self.api_client.download_image(image_url)
file_id = await self._upload_file(image_data, session_id, cache_key)
if session_id and cache_key:
self.file_id_cache[session_id][cache_key] = file_id
return file_id
except Exception as e:
logger.error(f"处理图片失败 {image_url}: {e!s}")
raise Exception(f"处理图片失败: {e!s}")
async def _process_context_images(
self,
content: str | list,
session_id: str,
) -> str:
"""处理上下文中的图片内容,将 base64 图片上传并替换为 file_id"""
try:
if isinstance(content, str):
return content
processed_content = []
if session_id not in self.file_id_cache:
self.file_id_cache[session_id] = {}
for item in content:
if not isinstance(item, dict):
processed_content.append(item)
continue
if item.get("type") == "text":
processed_content.append(item)
elif item.get("type") == "image_url":
# 处理图片逻辑
if "file_id" in item:
# 已经有 file_id
logger.debug(f"[Coze] 图片已有file_id: {item['file_id']}")
processed_content.append(item)
else:
# 获取图片数据
image_data = ""
if "image_url" in item and isinstance(item["image_url"], dict):
image_data = item["image_url"].get("url", "")
elif "data" in item:
image_data = item.get("data", "")
elif "url" in item:
image_data = item.get("url", "")
if not image_data:
continue
# 计算哈希用于缓存
cache_key = self._generate_cache_key(
image_data,
is_base64=image_data.startswith("data:image/"),
)
# 检查缓存
if cache_key in self.file_id_cache[session_id]:
file_id = self.file_id_cache[session_id][cache_key]
processed_content.append(
{"type": "image", "file_id": file_id},
)
else:
# 上传图片并缓存
if image_data.startswith("data:image/"):
# base64 处理
_, encoded = image_data.split(",", 1)
image_bytes = base64.b64decode(encoded)
file_id = await self._upload_file(
image_bytes,
session_id,
cache_key,
)
elif image_data.startswith(("http://", "https://")):
# URL 图片
file_id = await self._download_and_upload_image(
image_data,
session_id,
)
# 为URL图片也添加缓存
self.file_id_cache[session_id][cache_key] = file_id
elif os.path.exists(image_data):
# 本地文件
with open(image_data, "rb") as f:
image_bytes = f.read()
file_id = await self._upload_file(
image_bytes,
session_id,
cache_key,
)
else:
logger.warning(
f"无法处理的图片格式: {image_data[:50]}...",
)
continue
processed_content.append(
{"type": "image", "file_id": file_id},
)
result = json.dumps(processed_content, ensure_ascii=False)
return result
except Exception as e:
logger.error(f"处理上下文图片失败: {e!s}")
if isinstance(content, str):
return content
return json.dumps(content, ensure_ascii=False)
async def text_chat(
self,
prompt: str,
session_id=None,
image_urls=None,
func_tool=None,
contexts=None,
system_prompt=None,
tool_calls_result=None,
model=None,
**kwargs,
) -> LLMResponse:
"""文本对话, 内部使用流式接口实现非流式
Args:
prompt (str): 用户提示词
session_id (str): 会话ID
image_urls (List[str]): 图片URL列表
func_tool (FuncCall): 函数调用工具(不支持)
contexts (List): 上下文列表
system_prompt (str): 系统提示语
tool_calls_result (ToolCallsResult | List[ToolCallsResult]): 工具调用结果(不支持)
model (str): 模型名称(不支持)
Returns:
LLMResponse: LLM响应对象
"""
accumulated_content = ""
final_response = None
async for llm_response in self.text_chat_stream(
prompt=prompt,
session_id=session_id,
image_urls=image_urls,
func_tool=func_tool,
contexts=contexts,
system_prompt=system_prompt,
tool_calls_result=tool_calls_result,
model=model,
**kwargs,
):
if llm_response.is_chunk:
if llm_response.completion_text:
accumulated_content += llm_response.completion_text
else:
final_response = llm_response
if final_response:
return final_response
if accumulated_content:
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
return LLMResponse(role="assistant", result_chain=chain)
return LLMResponse(role="assistant", completion_text="")
async def text_chat_stream(
self,
prompt: str,
session_id=None,
image_urls=None,
func_tool=None,
contexts=None,
system_prompt=None,
tool_calls_result=None,
model=None,
**kwargs,
) -> AsyncGenerator[LLMResponse, None]:
"""流式对话接口"""
# 用户ID参数(参考文档, 可以自定义)
user_id = session_id or kwargs.get("user", "default_user")
# 获取或创建会话ID
conversation_id = self.conversation_ids.get(user_id)
# 构建消息
additional_messages = []
if system_prompt:
if not self.auto_save_history or not conversation_id:
additional_messages.append(
{
"role": "system",
"content": system_prompt,
"content_type": "text",
},
)
contexts = self._ensure_message_to_dicts(contexts)
if not self.auto_save_history and contexts:
# 如果关闭了自动保存历史,传入上下文
for ctx in contexts:
if isinstance(ctx, dict) and "role" in ctx and "content" in ctx:
content = ctx["content"]
content_type = ctx.get("content_type", "text")
# 处理可能包含图片的上下文
if (
content_type == "object_string"
or (isinstance(content, str) and content.startswith("["))
or (
isinstance(content, list)
and any(
isinstance(item, dict)
and item.get("type") == "image_url"
for item in content
)
)
):
processed_content = await self._process_context_images(
content,
user_id,
)
additional_messages.append(
{
"role": ctx["role"],
"content": processed_content,
"content_type": "object_string",
},
)
else:
# 纯文本
additional_messages.append(
{
"role": ctx["role"],
"content": (
content
if isinstance(content, str)
else json.dumps(content, ensure_ascii=False)
),
"content_type": "text",
},
)
else:
logger.info(f"[Coze] 跳过格式不正确的上下文: {ctx}")
if prompt or image_urls:
if image_urls:
# 多模态
object_string_content = []
if prompt:
object_string_content.append({"type": "text", "text": prompt})
for url in image_urls:
try:
if url.startswith(("http://", "https://")):
# 网络图片
file_id = await self._download_and_upload_image(
url,
user_id,
)
else:
# 本地文件或 base64
if url.startswith("data:image/"):
# base64
_, encoded = url.split(",", 1)
image_data = base64.b64decode(encoded)
cache_key = self._generate_cache_key(
url,
is_base64=True,
)
file_id = await self._upload_file(
image_data,
user_id,
cache_key,
)
# 本地文件
elif os.path.exists(url):
with open(url, "rb") as f:
image_data = f.read()
# 用文件路径和修改时间来缓存
file_stat = os.stat(url)
cache_key = self._generate_cache_key(
f"{url}_{file_stat.st_mtime}_{file_stat.st_size}",
is_base64=False,
)
file_id = await self._upload_file(
image_data,
user_id,
cache_key,
)
else:
logger.warning(f"图片文件不存在: {url}")
continue
object_string_content.append(
{
"type": "image",
"file_id": file_id,
},
)
except Exception as e:
logger.error(f"处理图片失败 {url}: {e!s}")
continue
if object_string_content:
content = json.dumps(object_string_content, ensure_ascii=False)
additional_messages.append(
{
"role": "user",
"content": content,
"content_type": "object_string",
},
)
# 纯文本
elif prompt:
additional_messages.append(
{
"role": "user",
"content": prompt,
"content_type": "text",
},
)
try:
accumulated_content = ""
message_started = False
async for chunk in self.api_client.chat_messages(
bot_id=self.bot_id,
user_id=user_id,
additional_messages=additional_messages,
conversation_id=conversation_id,
auto_save_history=self.auto_save_history,
stream=True,
timeout=self.timeout,
):
event_type = chunk.get("event")
data = chunk.get("data", {})
if event_type == "conversation.chat.created":
if isinstance(data, dict) and "conversation_id" in data:
self.conversation_ids[user_id] = data["conversation_id"]
elif event_type == "conversation.message.delta":
if isinstance(data, dict):
content = data.get("content", "")
if not content and "delta" in data:
content = data["delta"].get("content", "")
if not content and "text" in data:
content = data.get("text", "")
if content:
message_started = True
accumulated_content += content
yield LLMResponse(
role="assistant",
completion_text=content,
is_chunk=True,
)
elif event_type == "conversation.message.completed":
if isinstance(data, dict):
msg_type = data.get("type")
if msg_type == "answer" and data.get("role") == "assistant":
final_content = data.get("content", "")
if not accumulated_content and final_content:
chain = MessageChain(chain=[Comp.Plain(final_content)])
yield LLMResponse(
role="assistant",
result_chain=chain,
is_chunk=False,
)
elif event_type == "conversation.chat.completed":
if accumulated_content:
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
yield LLMResponse(
role="assistant",
result_chain=chain,
is_chunk=False,
)
break
elif event_type == "done":
break
elif event_type == "error":
error_msg = (
data.get("message", "未知错误")
if isinstance(data, dict)
else str(data)
)
logger.error(f"Coze 流式响应错误: {error_msg}")
yield LLMResponse(
role="err",
completion_text=f"Coze 错误: {error_msg}",
is_chunk=False,
)
break
if not message_started and not accumulated_content:
yield LLMResponse(
role="assistant",
completion_text="LLM 未响应任何内容。",
is_chunk=False,
)
elif message_started and accumulated_content:
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
yield LLMResponse(
role="assistant",
result_chain=chain,
is_chunk=False,
)
except Exception as e:
logger.error(f"Coze 流式请求失败: {e!s}")
yield LLMResponse(
role="err",
completion_text=f"Coze 流式请求失败: {e!s}",
is_chunk=False,
)
async def forget(self, session_id: str):
"""清空指定会话的上下文"""
user_id = session_id
conversation_id = self.conversation_ids.get(user_id)
if user_id in self.file_id_cache:
self.file_id_cache.pop(user_id, None)
if not conversation_id:
return True
try:
response = await self.api_client.clear_context(conversation_id)
if "code" in response and response["code"] == 0:
self.conversation_ids.pop(user_id, None)
return True
logger.warning(f"清空 Coze 会话上下文失败: {response}")
return False
except Exception as e:
logger.error(f"清空 Coze 会话失败: {e!s}")
return False
async def get_current_key(self):
"""获取当前API Key"""
return self.api_key
async def set_key(self, key: str):
"""设置新的API Key"""
raise NotImplementedError("Coze 适配器不支持设置 API Key。")
async def get_models(self):
"""获取可用模型列表"""
return [f"bot_{self.bot_id}"]
def get_model(self):
"""获取当前模型"""
return f"bot_{self.bot_id}"
def set_model(self, model: str):
"""设置模型在Coze中是Bot ID"""
if model.startswith("bot_"):
self.bot_id = model[4:]
else:
self.bot_id = model
async def get_human_readable_context(
self,
session_id: str,
page: int = 1,
page_size: int = 10,
):
"""获取人类可读的上下文历史"""
user_id = session_id
conversation_id = self.conversation_ids.get(user_id)
if not conversation_id:
return []
try:
data = await self.api_client.get_message_list(
conversation_id=conversation_id,
order="desc",
limit=page_size,
offset=(page - 1) * page_size,
)
if data.get("code") != 0:
logger.warning(f"获取 Coze 消息历史失败: {data}")
return []
messages = data.get("data", {}).get("messages", [])
readable_history = []
for msg in messages:
role = msg.get("role", "unknown")
content = msg.get("content", "")
msg_type = msg.get("type", "")
if role == "user":
readable_history.append(f"用户: {content}")
elif role == "assistant" and msg_type == "answer":
readable_history.append(f"助手: {content}")
return readable_history
except Exception as e:
logger.error(f"获取 Coze 消息历史失败: {e!s}")
return []
async def terminate(self):
"""清理资源"""
await self.api_client.close()