643 lines
24 KiB
Python
643 lines
24 KiB
Python
import asyncio
|
||
import base64
|
||
import inspect
|
||
import json
|
||
import os
|
||
import random
|
||
import re
|
||
from collections.abc import AsyncGenerator
|
||
|
||
from openai import AsyncAzureOpenAI, AsyncOpenAI
|
||
from openai._exceptions import NotFoundError
|
||
from openai.lib.streaming.chat._completions import ChatCompletionStreamState
|
||
from openai.types.chat.chat_completion import ChatCompletion
|
||
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
|
||
|
||
import astrbot.core.message.components as Comp
|
||
from astrbot import logger
|
||
from astrbot.api.provider import Provider
|
||
from astrbot.core.agent.message import Message
|
||
from astrbot.core.agent.tool import ToolSet
|
||
from astrbot.core.message.message_event_result import MessageChain
|
||
from astrbot.core.provider.entities import LLMResponse, ToolCallsResult
|
||
from astrbot.core.utils.io import download_image_by_url
|
||
|
||
from ..register import register_provider_adapter
|
||
|
||
|
||
@register_provider_adapter(
|
||
"openai_chat_completion",
|
||
"OpenAI API Chat Completion 提供商适配器",
|
||
)
|
||
class ProviderOpenAIOfficial(Provider):
|
||
def __init__(self, provider_config, provider_settings) -> None:
|
||
super().__init__(provider_config, provider_settings)
|
||
self.chosen_api_key = None
|
||
self.api_keys: list = super().get_keys()
|
||
self.chosen_api_key = self.api_keys[0] if len(self.api_keys) > 0 else None
|
||
self.timeout = provider_config.get("timeout", 120)
|
||
self.custom_headers = provider_config.get("custom_headers", {})
|
||
if isinstance(self.timeout, str):
|
||
self.timeout = int(self.timeout)
|
||
|
||
if not isinstance(self.custom_headers, dict) or not self.custom_headers:
|
||
self.custom_headers = None
|
||
else:
|
||
for key in self.custom_headers:
|
||
self.custom_headers[key] = str(self.custom_headers[key])
|
||
|
||
if "api_version" in provider_config:
|
||
# Using Azure OpenAI API
|
||
self.client = AsyncAzureOpenAI(
|
||
api_key=self.chosen_api_key,
|
||
api_version=provider_config.get("api_version", None),
|
||
default_headers=self.custom_headers,
|
||
base_url=provider_config.get("api_base", ""),
|
||
timeout=self.timeout,
|
||
)
|
||
else:
|
||
# Using OpenAI Official API
|
||
self.client = AsyncOpenAI(
|
||
api_key=self.chosen_api_key,
|
||
base_url=provider_config.get("api_base", None),
|
||
default_headers=self.custom_headers,
|
||
timeout=self.timeout,
|
||
)
|
||
|
||
self.default_params = inspect.signature(
|
||
self.client.chat.completions.create,
|
||
).parameters.keys()
|
||
|
||
model_config = provider_config.get("model_config", {})
|
||
model = model_config.get("model", "unknown")
|
||
self.set_model(model)
|
||
|
||
self.reasoning_key = "reasoning_content"
|
||
|
||
def _maybe_inject_xai_search(self, payloads: dict, **kwargs):
|
||
"""当开启 xAI 原生搜索时,向请求体注入 Live Search 参数。
|
||
|
||
- 仅在 provider_config.xai_native_search 为 True 时生效
|
||
- 默认注入 {"mode": "auto"}
|
||
- 允许通过 kwargs 使用 xai_search_mode 覆盖(on/auto/off)
|
||
"""
|
||
if not bool(self.provider_config.get("xai_native_search", False)):
|
||
return
|
||
|
||
mode = kwargs.get("xai_search_mode", "auto")
|
||
mode = str(mode).lower()
|
||
if mode not in ("auto", "on", "off"):
|
||
mode = "auto"
|
||
|
||
# off 时不注入,保持与未开启一致
|
||
if mode == "off":
|
||
return
|
||
|
||
# OpenAI SDK 不识别的字段会在 _query/_query_stream 中放入 extra_body
|
||
payloads["search_parameters"] = {"mode": mode}
|
||
|
||
async def get_models(self):
|
||
try:
|
||
models_str = []
|
||
models = await self.client.models.list()
|
||
models = sorted(models.data, key=lambda x: x.id)
|
||
for model in models:
|
||
models_str.append(model.id)
|
||
return models_str
|
||
except NotFoundError as e:
|
||
raise Exception(f"获取模型列表失败:{e}")
|
||
|
||
async def _query(self, payloads: dict, tools: ToolSet | None) -> LLMResponse:
|
||
if tools:
|
||
model = payloads.get("model", "").lower()
|
||
omit_empty_param_field = "gemini" in model
|
||
tool_list = tools.get_func_desc_openai_style(
|
||
omit_empty_parameter_field=omit_empty_param_field,
|
||
)
|
||
if tool_list:
|
||
payloads["tools"] = tool_list
|
||
|
||
# 不在默认参数中的参数放在 extra_body 中
|
||
extra_body = {}
|
||
to_del = []
|
||
for key in payloads:
|
||
if key not in self.default_params:
|
||
extra_body[key] = payloads[key]
|
||
to_del.append(key)
|
||
for key in to_del:
|
||
del payloads[key]
|
||
|
||
# 读取并合并 custom_extra_body 配置
|
||
custom_extra_body = self.provider_config.get("custom_extra_body", {})
|
||
if isinstance(custom_extra_body, dict):
|
||
extra_body.update(custom_extra_body)
|
||
|
||
model = payloads.get("model", "").lower()
|
||
|
||
# 针对 deepseek 模型的特殊处理:deepseek-reasoner调用必须移除 tools ,否则将被切换至 deepseek-chat
|
||
if model == "deepseek-reasoner" and "tools" in payloads:
|
||
del payloads["tools"]
|
||
|
||
completion = await self.client.chat.completions.create(
|
||
**payloads,
|
||
stream=False,
|
||
extra_body=extra_body,
|
||
)
|
||
|
||
if not isinstance(completion, ChatCompletion):
|
||
raise Exception(
|
||
f"API 返回的 completion 类型错误:{type(completion)}: {completion}。",
|
||
)
|
||
|
||
logger.debug(f"completion: {completion}")
|
||
|
||
llm_response = await self._parse_openai_completion(completion, tools)
|
||
|
||
return llm_response
|
||
|
||
async def _query_stream(
|
||
self,
|
||
payloads: dict,
|
||
tools: ToolSet | None,
|
||
) -> AsyncGenerator[LLMResponse, None]:
|
||
"""流式查询API,逐步返回结果"""
|
||
if tools:
|
||
model = payloads.get("model", "").lower()
|
||
omit_empty_param_field = "gemini" in model
|
||
tool_list = tools.get_func_desc_openai_style(
|
||
omit_empty_parameter_field=omit_empty_param_field,
|
||
)
|
||
if tool_list:
|
||
payloads["tools"] = tool_list
|
||
|
||
# 不在默认参数中的参数放在 extra_body 中
|
||
extra_body = {}
|
||
|
||
# 读取并合并 custom_extra_body 配置
|
||
custom_extra_body = self.provider_config.get("custom_extra_body", {})
|
||
if isinstance(custom_extra_body, dict):
|
||
extra_body.update(custom_extra_body)
|
||
|
||
to_del = []
|
||
for key in payloads:
|
||
if key not in self.default_params:
|
||
extra_body[key] = payloads[key]
|
||
to_del.append(key)
|
||
for key in to_del:
|
||
del payloads[key]
|
||
|
||
stream = await self.client.chat.completions.create(
|
||
**payloads,
|
||
stream=True,
|
||
extra_body=extra_body,
|
||
)
|
||
|
||
llm_response = LLMResponse("assistant", is_chunk=True)
|
||
|
||
state = ChatCompletionStreamState()
|
||
|
||
async for chunk in stream:
|
||
try:
|
||
state.handle_chunk(chunk)
|
||
except Exception as e:
|
||
logger.warning("Saving chunk state error: " + str(e))
|
||
if len(chunk.choices) == 0:
|
||
continue
|
||
delta = chunk.choices[0].delta
|
||
# logger.debug(f"chunk delta: {delta}")
|
||
# handle the content delta
|
||
reasoning = self._extract_reasoning_content(chunk)
|
||
_y = False
|
||
if reasoning:
|
||
llm_response.reasoning_content = reasoning
|
||
_y = True
|
||
if delta.content:
|
||
completion_text = delta.content
|
||
llm_response.result_chain = MessageChain(
|
||
chain=[Comp.Plain(completion_text)],
|
||
)
|
||
_y = True
|
||
if _y:
|
||
yield llm_response
|
||
|
||
final_completion = state.get_final_completion()
|
||
llm_response = await self._parse_openai_completion(final_completion, tools)
|
||
|
||
yield llm_response
|
||
|
||
def _extract_reasoning_content(
|
||
self,
|
||
completion: ChatCompletion | ChatCompletionChunk,
|
||
) -> str:
|
||
"""Extract reasoning content from OpenAI ChatCompletion if available."""
|
||
reasoning_text = ""
|
||
if len(completion.choices) == 0:
|
||
return reasoning_text
|
||
if isinstance(completion, ChatCompletion):
|
||
choice = completion.choices[0]
|
||
reasoning_attr = getattr(choice.message, self.reasoning_key, None)
|
||
if reasoning_attr:
|
||
reasoning_text = str(reasoning_attr)
|
||
elif isinstance(completion, ChatCompletionChunk):
|
||
delta = completion.choices[0].delta
|
||
reasoning_attr = getattr(delta, self.reasoning_key, None)
|
||
if reasoning_attr:
|
||
reasoning_text = str(reasoning_attr)
|
||
return reasoning_text
|
||
|
||
async def _parse_openai_completion(
|
||
self, completion: ChatCompletion, tools: ToolSet | None
|
||
) -> LLMResponse:
|
||
"""Parse OpenAI ChatCompletion into LLMResponse"""
|
||
llm_response = LLMResponse("assistant")
|
||
|
||
if len(completion.choices) == 0:
|
||
raise Exception("API 返回的 completion 为空。")
|
||
choice = completion.choices[0]
|
||
|
||
# parse the text completion
|
||
if choice.message.content is not None:
|
||
# text completion
|
||
completion_text = str(choice.message.content).strip()
|
||
# specially, some providers may set <think> tags around reasoning content in the completion text,
|
||
# we use regex to remove them, and store then in reasoning_content field
|
||
reasoning_pattern = re.compile(r"<think>(.*?)</think>", re.DOTALL)
|
||
matches = reasoning_pattern.findall(completion_text)
|
||
if matches:
|
||
llm_response.reasoning_content = "\n".join(
|
||
[match.strip() for match in matches],
|
||
)
|
||
completion_text = reasoning_pattern.sub("", completion_text).strip()
|
||
llm_response.result_chain = MessageChain().message(completion_text)
|
||
|
||
# parse the reasoning content if any
|
||
# the priority is higher than the <think> tag extraction
|
||
llm_response.reasoning_content = self._extract_reasoning_content(completion)
|
||
|
||
# parse tool calls if any
|
||
if choice.message.tool_calls and tools is not None:
|
||
args_ls = []
|
||
func_name_ls = []
|
||
tool_call_ids = []
|
||
tool_call_extra_content_dict = {}
|
||
for tool_call in choice.message.tool_calls:
|
||
if isinstance(tool_call, str):
|
||
# workaround for #1359
|
||
tool_call = json.loads(tool_call)
|
||
for tool in tools.func_list:
|
||
if (
|
||
tool_call.type == "function"
|
||
and tool.name == tool_call.function.name
|
||
):
|
||
# workaround for #1454
|
||
if isinstance(tool_call.function.arguments, str):
|
||
args = json.loads(tool_call.function.arguments)
|
||
else:
|
||
args = tool_call.function.arguments
|
||
args_ls.append(args)
|
||
func_name_ls.append(tool_call.function.name)
|
||
tool_call_ids.append(tool_call.id)
|
||
|
||
# gemini-2.5 / gemini-3 series extra_content handling
|
||
extra_content = getattr(tool_call, "extra_content", None)
|
||
if extra_content is not None:
|
||
tool_call_extra_content_dict[tool_call.id] = extra_content
|
||
llm_response.role = "tool"
|
||
llm_response.tools_call_args = args_ls
|
||
llm_response.tools_call_name = func_name_ls
|
||
llm_response.tools_call_ids = tool_call_ids
|
||
llm_response.tools_call_extra_content = tool_call_extra_content_dict
|
||
# specially handle finish reason
|
||
if choice.finish_reason == "content_filter":
|
||
raise Exception(
|
||
"API 返回的 completion 由于内容安全过滤被拒绝(非 AstrBot)。",
|
||
)
|
||
if llm_response.completion_text is None and not llm_response.tools_call_args:
|
||
logger.error(f"API 返回的 completion 无法解析:{completion}。")
|
||
raise Exception(f"API 返回的 completion 无法解析:{completion}。")
|
||
|
||
llm_response.raw_completion = completion
|
||
|
||
return llm_response
|
||
|
||
async def _prepare_chat_payload(
|
||
self,
|
||
prompt: str | None,
|
||
image_urls: list[str] | None = None,
|
||
contexts: list[dict] | list[Message] | None = None,
|
||
system_prompt: str | None = None,
|
||
tool_calls_result: ToolCallsResult | list[ToolCallsResult] | None = None,
|
||
model: str | None = None,
|
||
**kwargs,
|
||
) -> tuple:
|
||
"""准备聊天所需的有效载荷和上下文"""
|
||
if contexts is None:
|
||
contexts = []
|
||
new_record = None
|
||
if prompt is not None:
|
||
new_record = await self.assemble_context(prompt, image_urls)
|
||
context_query = self._ensure_message_to_dicts(contexts)
|
||
if new_record:
|
||
context_query.append(new_record)
|
||
if system_prompt:
|
||
context_query.insert(0, {"role": "system", "content": system_prompt})
|
||
|
||
for part in context_query:
|
||
if "_no_save" in part:
|
||
del part["_no_save"]
|
||
|
||
# tool calls result
|
||
if tool_calls_result:
|
||
if isinstance(tool_calls_result, ToolCallsResult):
|
||
context_query.extend(tool_calls_result.to_openai_messages())
|
||
else:
|
||
for tcr in tool_calls_result:
|
||
context_query.extend(tcr.to_openai_messages())
|
||
|
||
model_config = self.provider_config.get("model_config", {})
|
||
model_config["model"] = model or self.get_model()
|
||
|
||
payloads = {"messages": context_query, **model_config}
|
||
|
||
# xAI origin search tool inject
|
||
self._maybe_inject_xai_search(payloads, **kwargs)
|
||
|
||
return payloads, context_query
|
||
|
||
async def _handle_api_error(
|
||
self,
|
||
e: Exception,
|
||
payloads: dict,
|
||
context_query: list,
|
||
func_tool: ToolSet | None,
|
||
chosen_key: str,
|
||
available_api_keys: list[str],
|
||
retry_cnt: int,
|
||
max_retries: int,
|
||
) -> tuple:
|
||
"""处理API错误并尝试恢复"""
|
||
if "429" in str(e):
|
||
logger.warning(
|
||
f"API 调用过于频繁,尝试使用其他 Key 重试。当前 Key: {chosen_key[:12]}",
|
||
)
|
||
# 最后一次不等待
|
||
if retry_cnt < max_retries - 1:
|
||
await asyncio.sleep(1)
|
||
available_api_keys.remove(chosen_key)
|
||
if len(available_api_keys) > 0:
|
||
chosen_key = random.choice(available_api_keys)
|
||
return (
|
||
False,
|
||
chosen_key,
|
||
available_api_keys,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
)
|
||
raise e
|
||
if "maximum context length" in str(e):
|
||
logger.warning(
|
||
f"上下文长度超过限制。尝试弹出最早的记录然后重试。当前记录条数: {len(context_query)}",
|
||
)
|
||
await self.pop_record(context_query)
|
||
payloads["messages"] = context_query
|
||
return (
|
||
False,
|
||
chosen_key,
|
||
available_api_keys,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
)
|
||
if "The model is not a VLM" in str(e): # siliconcloud
|
||
# 尝试删除所有 image
|
||
new_contexts = await self._remove_image_from_context(context_query)
|
||
payloads["messages"] = new_contexts
|
||
context_query = new_contexts
|
||
return (
|
||
False,
|
||
chosen_key,
|
||
available_api_keys,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
)
|
||
if (
|
||
"Function calling is not enabled" in str(e)
|
||
or ("tool" in str(e).lower() and "support" in str(e).lower())
|
||
or ("function" in str(e).lower() and "support" in str(e).lower())
|
||
):
|
||
# openai, ollama, gemini openai, siliconcloud 的错误提示与 code 不统一,只能通过字符串匹配
|
||
logger.info(
|
||
f"{self.get_model()} 不支持函数工具调用,已自动去除,不影响使用。",
|
||
)
|
||
payloads.pop("tools", None)
|
||
return False, chosen_key, available_api_keys, payloads, context_query, None
|
||
# logger.error(f"发生了错误。Provider 配置如下: {self.provider_config}")
|
||
|
||
if "tool" in str(e).lower() and "support" in str(e).lower():
|
||
logger.error("疑似该模型不支持函数调用工具调用。请输入 /tool off_all")
|
||
|
||
if "Connection error." in str(e):
|
||
proxy = os.environ.get("http_proxy", None)
|
||
if proxy:
|
||
logger.error(
|
||
f"可能为代理原因,请检查代理是否正常。当前代理: {proxy}",
|
||
)
|
||
|
||
raise e
|
||
|
||
async def text_chat(
|
||
self,
|
||
prompt=None,
|
||
session_id=None,
|
||
image_urls=None,
|
||
func_tool=None,
|
||
contexts=None,
|
||
system_prompt=None,
|
||
tool_calls_result=None,
|
||
model=None,
|
||
**kwargs,
|
||
) -> LLMResponse:
|
||
payloads, context_query = await self._prepare_chat_payload(
|
||
prompt,
|
||
image_urls,
|
||
contexts,
|
||
system_prompt,
|
||
tool_calls_result,
|
||
model=model,
|
||
**kwargs,
|
||
)
|
||
|
||
llm_response = None
|
||
max_retries = 10
|
||
available_api_keys = self.api_keys.copy()
|
||
chosen_key = random.choice(available_api_keys)
|
||
|
||
last_exception = None
|
||
retry_cnt = 0
|
||
for retry_cnt in range(max_retries):
|
||
try:
|
||
self.client.api_key = chosen_key
|
||
llm_response = await self._query(payloads, func_tool)
|
||
break
|
||
except Exception as e:
|
||
last_exception = e
|
||
(
|
||
success,
|
||
chosen_key,
|
||
available_api_keys,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
) = await self._handle_api_error(
|
||
e,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
chosen_key,
|
||
available_api_keys,
|
||
retry_cnt,
|
||
max_retries,
|
||
)
|
||
if success:
|
||
break
|
||
|
||
if retry_cnt == max_retries - 1 or llm_response is None:
|
||
logger.error(f"API 调用失败,重试 {max_retries} 次仍然失败。")
|
||
if last_exception is None:
|
||
raise Exception("未知错误")
|
||
raise last_exception
|
||
return llm_response
|
||
|
||
async def text_chat_stream(
|
||
self,
|
||
prompt=None,
|
||
session_id=None,
|
||
image_urls=None,
|
||
func_tool=None,
|
||
contexts=None,
|
||
system_prompt=None,
|
||
tool_calls_result=None,
|
||
model=None,
|
||
**kwargs,
|
||
) -> AsyncGenerator[LLMResponse, None]:
|
||
"""流式对话,与服务商交互并逐步返回结果"""
|
||
payloads, context_query = await self._prepare_chat_payload(
|
||
prompt,
|
||
image_urls,
|
||
contexts,
|
||
system_prompt,
|
||
tool_calls_result,
|
||
model=model,
|
||
**kwargs,
|
||
)
|
||
|
||
max_retries = 10
|
||
available_api_keys = self.api_keys.copy()
|
||
chosen_key = random.choice(available_api_keys)
|
||
|
||
last_exception = None
|
||
retry_cnt = 0
|
||
for retry_cnt in range(max_retries):
|
||
try:
|
||
self.client.api_key = chosen_key
|
||
async for response in self._query_stream(payloads, func_tool):
|
||
yield response
|
||
break
|
||
except Exception as e:
|
||
last_exception = e
|
||
(
|
||
success,
|
||
chosen_key,
|
||
available_api_keys,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
) = await self._handle_api_error(
|
||
e,
|
||
payloads,
|
||
context_query,
|
||
func_tool,
|
||
chosen_key,
|
||
available_api_keys,
|
||
retry_cnt,
|
||
max_retries,
|
||
)
|
||
if success:
|
||
break
|
||
|
||
if retry_cnt == max_retries - 1:
|
||
logger.error(f"API 调用失败,重试 {max_retries} 次仍然失败。")
|
||
if last_exception is None:
|
||
raise Exception("未知错误")
|
||
raise last_exception
|
||
|
||
async def _remove_image_from_context(self, contexts: list):
|
||
"""从上下文中删除所有带有 image 的记录"""
|
||
new_contexts = []
|
||
|
||
for context in contexts:
|
||
if "content" in context and isinstance(context["content"], list):
|
||
# continue
|
||
new_content = []
|
||
for item in context["content"]:
|
||
if isinstance(item, dict) and "image_url" in item:
|
||
continue
|
||
new_content.append(item)
|
||
if not new_content:
|
||
# 用户只发了图片
|
||
new_content = [{"type": "text", "text": "[图片]"}]
|
||
context["content"] = new_content
|
||
new_contexts.append(context)
|
||
return new_contexts
|
||
|
||
def get_current_key(self) -> str:
|
||
return self.client.api_key
|
||
|
||
def get_keys(self) -> list[str]:
|
||
return self.api_keys
|
||
|
||
def set_key(self, key):
|
||
self.client.api_key = key
|
||
|
||
async def assemble_context(
|
||
self,
|
||
text: str,
|
||
image_urls: list[str] | None = None,
|
||
) -> dict:
|
||
"""组装成符合 OpenAI 格式的 role 为 user 的消息段"""
|
||
if image_urls:
|
||
user_content = {
|
||
"role": "user",
|
||
"content": [{"type": "text", "text": text if text else "[图片]"}],
|
||
}
|
||
for image_url in image_urls:
|
||
if image_url.startswith("http"):
|
||
image_path = await download_image_by_url(image_url)
|
||
image_data = await self.encode_image_bs64(image_path)
|
||
elif image_url.startswith("file:///"):
|
||
image_path = image_url.replace("file:///", "")
|
||
image_data = await self.encode_image_bs64(image_path)
|
||
else:
|
||
image_data = await self.encode_image_bs64(image_url)
|
||
if not image_data:
|
||
logger.warning(f"图片 {image_url} 得到的结果为空,将忽略。")
|
||
continue
|
||
user_content["content"].append(
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": image_data},
|
||
},
|
||
)
|
||
return user_content
|
||
return {"role": "user", "content": text}
|
||
|
||
async def encode_image_bs64(self, image_url: str) -> str:
|
||
"""将图片转换为 base64"""
|
||
if image_url.startswith("base64://"):
|
||
return image_url.replace("base64://", "data:image/jpeg;base64,")
|
||
with open(image_url, "rb") as f:
|
||
image_bs64 = base64.b64encode(f.read()).decode("utf-8")
|
||
return "data:image/jpeg;base64," + image_bs64
|