Files
AstrBot/astrbot/core/provider/sources/dify_source.py
Soulter 6849af2bad refactor: LLM response handling with reasoning content (#3632)
* refactor: LLM response handling with reasoning content

- Added a `show_reasoning` parameter to `run_agent` to control the display of reasoning content.
- Updated `LLMResponse` to include a `reasoning_content` field for storing reasoning text.
- Modified `WebChatMessageEvent` to handle and send reasoning content in streaming responses.
- Implemented reasoning extraction in various provider sources (e.g., OpenAI, Gemini).
- Updated the chat interface to display reasoning content in a collapsible format.
- Removed the deprecated `thinking_filter` package and its associated logic.
- Updated localization files to include new reasoning-related strings.

* feat: add Groq chat completion provider and associated configurations

* Update astrbot/core/provider/sources/gemini_source.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-15 18:59:17 +08:00

286 lines
11 KiB
Python

import os
import astrbot.core.message.components as Comp
from astrbot.core import logger, sp
from astrbot.core.message.message_event_result import MessageChain
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
from astrbot.core.utils.dify_api_client import DifyAPIClient
from astrbot.core.utils.io import download_file, download_image_by_url
from .. import Provider
from ..entities import LLMResponse
from ..register import register_provider_adapter
@register_provider_adapter("dify", "Dify APP 适配器。")
class ProviderDify(Provider):
def __init__(
self,
provider_config,
provider_settings,
) -> None:
super().__init__(
provider_config,
provider_settings,
)
self.api_key = provider_config.get("dify_api_key", "")
if not self.api_key:
raise Exception("Dify API Key 不能为空。")
api_base = provider_config.get("dify_api_base", "https://api.dify.ai/v1")
self.api_type = provider_config.get("dify_api_type", "")
if not self.api_type:
raise Exception("Dify API 类型不能为空。")
self.model_name = "dify"
self.workflow_output_key = provider_config.get(
"dify_workflow_output_key",
"astrbot_wf_output",
)
self.dify_query_input_key = provider_config.get(
"dify_query_input_key",
"astrbot_text_query",
)
if not self.dify_query_input_key:
self.dify_query_input_key = "astrbot_text_query"
if not self.workflow_output_key:
self.workflow_output_key = "astrbot_wf_output"
self.variables: dict = provider_config.get("variables", {})
self.timeout = provider_config.get("timeout", 120)
if isinstance(self.timeout, str):
self.timeout = int(self.timeout)
self.conversation_ids = {}
"""记录当前 session id 的对话 ID"""
self.api_client = DifyAPIClient(self.api_key, api_base)
async def text_chat(
self,
prompt: str,
session_id=None,
image_urls=None,
func_tool=None,
contexts=None,
system_prompt=None,
tool_calls_result=None,
model=None,
**kwargs,
) -> LLMResponse:
if image_urls is None:
image_urls = []
result = ""
session_id = session_id or kwargs.get("user") or "unknown" # 1734
conversation_id = self.conversation_ids.get(session_id, "")
files_payload = []
for image_url in image_urls:
image_path = (
await download_image_by_url(image_url)
if image_url.startswith("http")
else image_url
)
file_response = await self.api_client.file_upload(
image_path,
user=session_id,
)
logger.debug(f"Dify 上传图片响应:{file_response}")
if "id" not in file_response:
logger.warning(
f"上传图片后得到未知的 Dify 响应:{file_response},图片将忽略。",
)
continue
files_payload.append(
{
"type": "image",
"transfer_method": "local_file",
"upload_file_id": file_response["id"],
},
)
# 获得会话变量
payload_vars = self.variables.copy()
# 动态变量
session_var = await sp.session_get(session_id, "session_variables", default={})
payload_vars.update(session_var)
payload_vars["system_prompt"] = system_prompt
try:
match self.api_type:
case "chat" | "agent" | "chatflow":
if not prompt:
prompt = "请描述这张图片。"
async for chunk in self.api_client.chat_messages(
inputs={
**payload_vars,
},
query=prompt,
user=session_id,
conversation_id=conversation_id,
files=files_payload,
timeout=self.timeout,
):
logger.debug(f"dify resp chunk: {chunk}")
if (
chunk["event"] == "message"
or chunk["event"] == "agent_message"
):
result += chunk["answer"]
if not conversation_id:
self.conversation_ids[session_id] = chunk[
"conversation_id"
]
conversation_id = chunk["conversation_id"]
elif chunk["event"] == "message_end":
logger.debug("Dify message end")
break
elif chunk["event"] == "error":
logger.error(f"Dify 出现错误:{chunk}")
raise Exception(
f"Dify 出现错误 status: {chunk['status']} message: {chunk['message']}",
)
case "workflow":
async for chunk in self.api_client.workflow_run(
inputs={
self.dify_query_input_key: prompt,
"astrbot_session_id": session_id,
**payload_vars,
},
user=session_id,
files=files_payload,
timeout=self.timeout,
):
match chunk["event"]:
case "workflow_started":
logger.info(
f"Dify 工作流(ID: {chunk['workflow_run_id']})开始运行。",
)
case "node_finished":
logger.debug(
f"Dify 工作流节点(ID: {chunk['data']['node_id']} Title: {chunk['data'].get('title', '')})运行结束。",
)
case "workflow_finished":
logger.info(
f"Dify 工作流(ID: {chunk['workflow_run_id']})运行结束",
)
logger.debug(f"Dify 工作流结果:{chunk}")
if chunk["data"]["error"]:
logger.error(
f"Dify 工作流出现错误:{chunk['data']['error']}",
)
raise Exception(
f"Dify 工作流出现错误:{chunk['data']['error']}",
)
if (
self.workflow_output_key
not in chunk["data"]["outputs"]
):
raise Exception(
f"Dify 工作流的输出不包含指定的键名:{self.workflow_output_key}",
)
result = chunk
case _:
raise Exception(f"未知的 Dify API 类型:{self.api_type}")
except Exception as e:
logger.error(f"Dify 请求失败:{e!s}")
return LLMResponse(role="err", completion_text=f"Dify 请求失败:{e!s}")
if not result:
logger.warning("Dify 请求结果为空,请查看 Debug 日志。")
chain = await self.parse_dify_result(result)
return LLMResponse(role="assistant", result_chain=chain)
async def text_chat_stream(
self,
prompt,
session_id=None,
image_urls=...,
func_tool=None,
contexts=...,
system_prompt=None,
tool_calls_result=None,
model=None,
**kwargs,
):
# raise NotImplementedError("This method is not implemented yet.")
# 调用 text_chat 模拟流式
llm_response = await self.text_chat(
prompt=prompt,
session_id=session_id,
image_urls=image_urls,
func_tool=func_tool,
contexts=contexts,
system_prompt=system_prompt,
tool_calls_result=tool_calls_result,
)
llm_response.is_chunk = True
yield llm_response
llm_response.is_chunk = False
yield llm_response
async def parse_dify_result(self, chunk: dict | str) -> MessageChain:
if isinstance(chunk, str):
# Chat
return MessageChain(chain=[Comp.Plain(chunk)])
async def parse_file(item: dict):
match item["type"]:
case "image":
return Comp.Image(file=item["url"], url=item["url"])
case "audio":
# 仅支持 wav
temp_dir = os.path.join(get_astrbot_data_path(), "temp")
path = os.path.join(temp_dir, f"{item['filename']}.wav")
await download_file(item["url"], path)
return Comp.Image(file=item["url"], url=item["url"])
case "video":
return Comp.Video(file=item["url"])
case _:
return Comp.File(name=item["filename"], file=item["url"])
output = chunk["data"]["outputs"][self.workflow_output_key]
chains = []
if isinstance(output, str):
# 纯文本输出
chains.append(Comp.Plain(output))
elif isinstance(output, list):
# 主要适配 Dify 的 HTTP 请求结点的多模态输出
for item in output:
# handle Array[File]
if (
not isinstance(item, dict)
or item.get("dify_model_identity", "") != "__dify__file__"
):
chains.append(Comp.Plain(str(output)))
break
else:
chains.append(Comp.Plain(str(output)))
# scan file
files = chunk["data"].get("files", [])
for item in files:
comp = await parse_file(item)
chains.append(comp)
return MessageChain(chain=chains)
async def forget(self, session_id):
self.conversation_ids[session_id] = ""
return True
async def get_current_key(self):
return self.api_key
async def set_key(self, key):
raise Exception("Dify 适配器不支持设置 API Key。")
async def get_models(self):
return [self.get_model()]
async def get_human_readable_context(self, session_id, page, page_size):
raise Exception("暂不支持获得 Dify 的历史消息记录。")
async def terminate(self):
await self.api_client.close()