Files
AstrBot/astrbot/core/knowledge_base/retrieval/manager.py
2025-11-01 13:26:19 +08:00

277 lines
8.2 KiB
Python

"""检索管理器
协调稠密检索、稀疏检索和 Rerank,提供统一的检索接口
"""
import time
from dataclasses import dataclass
from astrbot import logger
from astrbot.core.db.vec_db.base import Result
from astrbot.core.db.vec_db.faiss_impl import FaissVecDB
from astrbot.core.knowledge_base.kb_db_sqlite import KBSQLiteDatabase
from astrbot.core.knowledge_base.retrieval.rank_fusion import RankFusion
from astrbot.core.knowledge_base.retrieval.sparse_retriever import SparseRetriever
from astrbot.core.provider.provider import RerankProvider
from ..kb_helper import KBHelper
@dataclass
class RetrievalResult:
"""检索结果"""
chunk_id: str
doc_id: str
doc_name: str
kb_id: str
kb_name: str
content: str
score: float
metadata: dict
class RetrievalManager:
"""检索管理器
职责:
- 协调稠密检索、稀疏检索和 Rerank
- 结果融合和排序
"""
def __init__(
self,
sparse_retriever: SparseRetriever,
rank_fusion: RankFusion,
kb_db: KBSQLiteDatabase,
):
"""初始化检索管理器
Args:
vec_db_factory: 向量数据库工厂
sparse_retriever: 稀疏检索器
rank_fusion: 结果融合器
kb_db: 知识库数据库实例
"""
self.sparse_retriever = sparse_retriever
self.rank_fusion = rank_fusion
self.kb_db = kb_db
async def retrieve(
self,
query: str,
kb_ids: list[str],
kb_id_helper_map: dict[str, KBHelper],
top_k_fusion: int = 20,
top_m_final: int = 5,
) -> list[RetrievalResult]:
"""混合检索
流程:
1. 稠密检索 (向量相似度)
2. 稀疏检索 (BM25)
3. 结果融合 (RRF)
4. Rerank 重排序
Args:
query: 查询文本
kb_ids: 知识库 ID 列表
top_m_final: 最终返回数量
enable_rerank: 是否启用 Rerank
Returns:
List[RetrievalResult]: 检索结果列表
"""
if not kb_ids:
return []
kb_options: dict = {}
new_kb_ids = []
for kb_id in kb_ids:
kb_helper = kb_id_helper_map.get(kb_id)
if kb_helper:
kb = kb_helper.kb
kb_options[kb_id] = {
"top_k_dense": kb.top_k_dense or 50,
"top_k_sparse": kb.top_k_sparse or 50,
"top_m_final": kb.top_m_final or 5,
"vec_db": kb_helper.vec_db,
"rerank_provider_id": kb.rerank_provider_id,
}
new_kb_ids.append(kb_id)
else:
logger.warning(f"知识库 ID {kb_id} 实例未找到, 已跳过该知识库的检索")
kb_ids = new_kb_ids
# 1. 稠密检索
time_start = time.time()
dense_results = await self._dense_retrieve(
query=query,
kb_ids=kb_ids,
kb_options=kb_options,
)
time_end = time.time()
logger.debug(
f"Dense retrieval across {len(kb_ids)} bases took {time_end - time_start:.2f}s and returned {len(dense_results)} results.",
)
# 2. 稀疏检索
time_start = time.time()
sparse_results = await self.sparse_retriever.retrieve(
query=query,
kb_ids=kb_ids,
kb_options=kb_options,
)
time_end = time.time()
logger.debug(
f"Sparse retrieval across {len(kb_ids)} bases took {time_end - time_start:.2f}s and returned {len(sparse_results)} results.",
)
# 3. 结果融合
time_start = time.time()
fused_results = await self.rank_fusion.fuse(
dense_results=dense_results,
sparse_results=sparse_results,
top_k=top_k_fusion,
)
time_end = time.time()
logger.debug(
f"Rank fusion took {time_end - time_start:.2f}s and returned {len(fused_results)} results.",
)
# 4. 转换为 RetrievalResult (获取元数据)
retrieval_results = []
for fr in fused_results:
metadata_dict = await self.kb_db.get_document_with_metadata(fr.doc_id)
if metadata_dict:
retrieval_results.append(
RetrievalResult(
chunk_id=fr.chunk_id,
doc_id=fr.doc_id,
doc_name=metadata_dict["document"].doc_name,
kb_id=fr.kb_id,
kb_name=metadata_dict["knowledge_base"].kb_name,
content=fr.content,
score=fr.score,
metadata={
"chunk_index": fr.chunk_index,
"char_count": len(fr.content),
},
),
)
# 5. Rerank
first_rerank = None
for kb_id in kb_ids:
vec_db: FaissVecDB = kb_options[kb_id]["vec_db"]
rerank_pi = kb_options[kb_id]["rerank_provider_id"]
if (
vec_db
and vec_db.rerank_provider
and rerank_pi
and rerank_pi == vec_db.rerank_provider.meta().id
):
first_rerank = vec_db.rerank_provider
break
if first_rerank and retrieval_results:
retrieval_results = await self._rerank(
query=query,
results=retrieval_results,
top_k=top_m_final,
rerank_provider=first_rerank,
)
return retrieval_results[:top_m_final]
async def _dense_retrieve(
self,
query: str,
kb_ids: list[str],
kb_options: dict,
):
"""稠密检索 (向量相似度)
为每个知识库使用独立的向量数据库进行检索,然后合并结果。
Args:
query: 查询文本
kb_ids: 知识库 ID 列表
top_k: 返回结果数量
Returns:
List[Result]: 检索结果列表
"""
all_results: list[Result] = []
for kb_id in kb_ids:
if kb_id not in kb_options:
continue
try:
vec_db: FaissVecDB = kb_options[kb_id]["vec_db"]
dense_k = int(kb_options[kb_id]["top_k_dense"])
vec_results = await vec_db.retrieve(
query=query,
k=dense_k,
fetch_k=dense_k * 2,
rerank=False, # 稠密检索阶段不进行 rerank
metadata_filters={"kb_id": kb_id},
)
all_results.extend(vec_results)
except Exception as e:
from astrbot.core import logger
logger.warning(f"知识库 {kb_id} 稠密检索失败: {e}")
continue
# 按相似度排序并返回 top_k
all_results.sort(key=lambda x: x.similarity, reverse=True)
# return all_results[: len(all_results) // len(kb_ids)]
return all_results
async def _rerank(
self,
query: str,
results: list[RetrievalResult],
top_k: int,
rerank_provider: RerankProvider,
) -> list[RetrievalResult]:
"""Rerank 重排序
Args:
query: 查询文本
results: 检索结果列表
top_k: 返回结果数量
Returns:
List[RetrievalResult]: 重排序后的结果列表
"""
if not results:
return []
# 准备文档列表
docs = [r.content for r in results]
# 调用 Rerank Provider
rerank_results = await rerank_provider.rerank(
query=query,
documents=docs,
)
# 更新分数并重新排序
reranked_list = []
for rerank_result in rerank_results:
idx = rerank_result.index
if idx < len(results):
result = results[idx]
result.score = rerank_result.relevance_score
reranked_list.append(result)
reranked_list.sort(key=lambda x: x.score, reverse=True)
return reranked_list[:top_k]