Files
AstrBot/astrbot/core/provider/sources/anthropic_source.py
Soulter 6849af2bad refactor: LLM response handling with reasoning content (#3632)
* refactor: LLM response handling with reasoning content

- Added a `show_reasoning` parameter to `run_agent` to control the display of reasoning content.
- Updated `LLMResponse` to include a `reasoning_content` field for storing reasoning text.
- Modified `WebChatMessageEvent` to handle and send reasoning content in streaming responses.
- Implemented reasoning extraction in various provider sources (e.g., OpenAI, Gemini).
- Updated the chat interface to display reasoning content in a collapsible format.
- Removed the deprecated `thinking_filter` package and its associated logic.
- Updated localization files to include new reasoning-related strings.

* feat: add Groq chat completion provider and associated configurations

* Update astrbot/core/provider/sources/gemini_source.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-15 18:59:17 +08:00

413 lines
15 KiB
Python

import base64
import json
from collections.abc import AsyncGenerator
from mimetypes import guess_type
import anthropic
from anthropic import AsyncAnthropic
from anthropic.types import Message
from astrbot import logger
from astrbot.api.provider import Provider
from astrbot.core.provider.entities import LLMResponse
from astrbot.core.provider.func_tool_manager import ToolSet
from astrbot.core.utils.io import download_image_by_url
from ..register import register_provider_adapter
@register_provider_adapter(
"anthropic_chat_completion",
"Anthropic Claude API 提供商适配器",
)
class ProviderAnthropic(Provider):
def __init__(
self,
provider_config,
provider_settings,
) -> None:
super().__init__(
provider_config,
provider_settings,
)
self.chosen_api_key: str = ""
self.api_keys: list = super().get_keys()
self.chosen_api_key = self.api_keys[0] if len(self.api_keys) > 0 else ""
self.base_url = provider_config.get("api_base", "https://api.anthropic.com")
self.timeout = provider_config.get("timeout", 120)
if isinstance(self.timeout, str):
self.timeout = int(self.timeout)
self.client = AsyncAnthropic(
api_key=self.chosen_api_key,
timeout=self.timeout,
base_url=self.base_url,
)
self.set_model(provider_config["model_config"]["model"])
def _prepare_payload(self, messages: list[dict]):
"""准备 Anthropic API 的请求 payload
Args:
messages: OpenAI 格式的消息列表,包含用户输入和系统提示等信息
Returns:
system_prompt: 系统提示内容
new_messages: 处理后的消息列表,去除系统提示
"""
system_prompt = ""
new_messages = []
for message in messages:
if message["role"] == "system":
system_prompt = message["content"]
elif message["role"] == "assistant":
blocks = []
if isinstance(message["content"], str):
blocks.append({"type": "text", "text": message["content"]})
if "tool_calls" in message:
for tool_call in message["tool_calls"]:
blocks.append( # noqa: PERF401
{
"type": "tool_use",
"name": tool_call["function"]["name"],
"input": (
json.loads(tool_call["function"]["arguments"])
if isinstance(
tool_call["function"]["arguments"],
str,
)
else tool_call["function"]["arguments"]
),
"id": tool_call["id"],
},
)
new_messages.append(
{
"role": "assistant",
"content": blocks,
},
)
elif message["role"] == "tool":
new_messages.append(
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": message["tool_call_id"],
"content": message["content"],
},
],
},
)
else:
new_messages.append(message)
return system_prompt, new_messages
async def _query(self, payloads: dict, tools: ToolSet | None) -> LLMResponse:
if tools:
if tool_list := tools.get_func_desc_anthropic_style():
payloads["tools"] = tool_list
completion = await self.client.messages.create(**payloads, stream=False)
assert isinstance(completion, Message)
logger.debug(f"completion: {completion}")
if len(completion.content) == 0:
raise Exception("API 返回的 completion 为空。")
llm_response = LLMResponse(role="assistant")
for content_block in completion.content:
if content_block.type == "text":
completion_text = str(content_block.text).strip()
llm_response.completion_text = completion_text
if content_block.type == "tool_use":
llm_response.tools_call_args.append(content_block.input)
llm_response.tools_call_name.append(content_block.name)
llm_response.tools_call_ids.append(content_block.id)
# TODO(Soulter): 处理 end_turn 情况
if not llm_response.completion_text and not llm_response.tools_call_args:
raise Exception(f"Anthropic API 返回的 completion 无法解析:{completion}")
return llm_response
async def _query_stream(
self,
payloads: dict,
tools: ToolSet | None,
) -> AsyncGenerator[LLMResponse, None]:
if tools:
if tool_list := tools.get_func_desc_anthropic_style():
payloads["tools"] = tool_list
# 用于累积工具调用信息
tool_use_buffer = {}
# 用于累积最终结果
final_text = ""
final_tool_calls = []
async with self.client.messages.stream(**payloads) as stream:
assert isinstance(stream, anthropic.AsyncMessageStream)
async for event in stream:
if event.type == "content_block_start":
if event.content_block.type == "text":
# 文本块开始
yield LLMResponse(
role="assistant",
completion_text="",
is_chunk=True,
)
elif event.content_block.type == "tool_use":
# 工具使用块开始,初始化缓冲区
tool_use_buffer[event.index] = {
"id": event.content_block.id,
"name": event.content_block.name,
"input": {},
}
elif event.type == "content_block_delta":
if event.delta.type == "text_delta":
# 文本增量
final_text += event.delta.text
yield LLMResponse(
role="assistant",
completion_text=event.delta.text,
is_chunk=True,
)
elif event.delta.type == "input_json_delta":
# 工具调用参数增量
if event.index in tool_use_buffer:
# 累积 JSON 输入
if "input_json" not in tool_use_buffer[event.index]:
tool_use_buffer[event.index]["input_json"] = ""
tool_use_buffer[event.index]["input_json"] += (
event.delta.partial_json
)
elif event.type == "content_block_stop":
# 内容块结束
if event.index in tool_use_buffer:
# 解析完整的工具调用
tool_info = tool_use_buffer[event.index]
try:
if "input_json" in tool_info:
tool_info["input"] = json.loads(tool_info["input_json"])
# 添加到最终结果
final_tool_calls.append(
{
"id": tool_info["id"],
"name": tool_info["name"],
"input": tool_info["input"],
},
)
yield LLMResponse(
role="tool",
completion_text="",
tools_call_args=[tool_info["input"]],
tools_call_name=[tool_info["name"]],
tools_call_ids=[tool_info["id"]],
is_chunk=True,
)
except json.JSONDecodeError:
# JSON 解析失败,跳过这个工具调用
logger.warning(f"工具调用参数 JSON 解析失败: {tool_info}")
# 清理缓冲区
del tool_use_buffer[event.index]
# 返回最终的完整结果
final_response = LLMResponse(
role="assistant",
completion_text=final_text,
is_chunk=False,
)
if final_tool_calls:
final_response.tools_call_args = [
call["input"] for call in final_tool_calls
]
final_response.tools_call_name = [call["name"] for call in final_tool_calls]
final_response.tools_call_ids = [call["id"] for call in final_tool_calls]
yield final_response
async def text_chat(
self,
prompt=None,
session_id=None,
image_urls=None,
func_tool=None,
contexts=None,
system_prompt=None,
tool_calls_result=None,
model=None,
**kwargs,
) -> LLMResponse:
if contexts is None:
contexts = []
new_record = None
if prompt is not None:
new_record = await self.assemble_context(prompt, image_urls)
context_query = self._ensure_message_to_dicts(contexts)
if new_record:
context_query.append(new_record)
if system_prompt:
context_query.insert(0, {"role": "system", "content": system_prompt})
for part in context_query:
if "_no_save" in part:
del part["_no_save"]
# tool calls result
if tool_calls_result:
if not isinstance(tool_calls_result, list):
context_query.extend(tool_calls_result.to_openai_messages())
else:
for tcr in tool_calls_result:
context_query.extend(tcr.to_openai_messages())
system_prompt, new_messages = self._prepare_payload(context_query)
model_config = self.provider_config.get("model_config", {})
model_config["model"] = model or self.get_model()
payloads = {"messages": new_messages, **model_config}
# Anthropic has a different way of handling system prompts
if system_prompt:
payloads["system"] = system_prompt
llm_response = None
try:
llm_response = await self._query(payloads, func_tool)
except Exception as e:
logger.error(f"发生了错误。Provider 配置如下: {model_config}")
raise e
return llm_response
async def text_chat_stream(
self,
prompt,
session_id=None,
image_urls=...,
func_tool=None,
contexts=...,
system_prompt=None,
tool_calls_result=None,
model=None,
**kwargs,
):
if contexts is None:
contexts = []
new_record = None
if prompt is not None:
new_record = await self.assemble_context(prompt, image_urls)
context_query = self._ensure_message_to_dicts(contexts)
if new_record:
context_query.append(new_record)
if system_prompt:
context_query.insert(0, {"role": "system", "content": system_prompt})
for part in context_query:
if "_no_save" in part:
del part["_no_save"]
# tool calls result
if tool_calls_result:
if not isinstance(tool_calls_result, list):
context_query.extend(tool_calls_result.to_openai_messages())
else:
for tcr in tool_calls_result:
context_query.extend(tcr.to_openai_messages())
system_prompt, new_messages = self._prepare_payload(context_query)
model_config = self.provider_config.get("model_config", {})
model_config["model"] = model or self.get_model()
payloads = {"messages": new_messages, **model_config}
# Anthropic has a different way of handling system prompts
if system_prompt:
payloads["system"] = system_prompt
async for llm_response in self._query_stream(payloads, func_tool):
yield llm_response
async def assemble_context(self, text: str, image_urls: list[str] | None = None):
"""组装上下文,支持文本和图片"""
if not image_urls:
return {"role": "user", "content": text}
content = []
content.append({"type": "text", "text": text})
for image_url in image_urls:
if image_url.startswith("http"):
image_path = await download_image_by_url(image_url)
image_data = await self.encode_image_bs64(image_path)
elif image_url.startswith("file:///"):
image_path = image_url.replace("file:///", "")
image_data = await self.encode_image_bs64(image_path)
else:
image_data = await self.encode_image_bs64(image_url)
if not image_data:
logger.warning(f"图片 {image_url} 得到的结果为空,将忽略。")
continue
# Get mime type for the image
mime_type, _ = guess_type(image_url)
if not mime_type:
mime_type = "image/jpeg" # Default to JPEG if can't determine
content.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": mime_type,
"data": (
image_data.split("base64,")[1]
if "base64," in image_data
else image_data
),
},
},
)
return {"role": "user", "content": content}
async def encode_image_bs64(self, image_url: str) -> str:
"""将图片转换为 base64"""
if image_url.startswith("base64://"):
return image_url.replace("base64://", "data:image/jpeg;base64,")
with open(image_url, "rb") as f:
image_bs64 = base64.b64encode(f.read()).decode("utf-8")
return "data:image/jpeg;base64," + image_bs64
return ""
def get_current_key(self) -> str:
return self.chosen_api_key
async def get_models(self) -> list[str]:
models_str = []
models = await self.client.models.list()
models = sorted(models.data, key=lambda x: x.id)
for model in models:
models_str.append(model.id)
return models_str
def set_key(self, key: str):
self.chosen_api_key = key