413 lines
15 KiB
Python
413 lines
15 KiB
Python
import base64
|
|
import json
|
|
from collections.abc import AsyncGenerator
|
|
from mimetypes import guess_type
|
|
|
|
import anthropic
|
|
from anthropic import AsyncAnthropic
|
|
from anthropic.types import Message
|
|
|
|
from astrbot import logger
|
|
from astrbot.api.provider import Provider
|
|
from astrbot.core.provider.entities import LLMResponse
|
|
from astrbot.core.provider.func_tool_manager import ToolSet
|
|
from astrbot.core.utils.io import download_image_by_url
|
|
|
|
from ..register import register_provider_adapter
|
|
|
|
|
|
@register_provider_adapter(
|
|
"anthropic_chat_completion",
|
|
"Anthropic Claude API 提供商适配器",
|
|
)
|
|
class ProviderAnthropic(Provider):
|
|
def __init__(
|
|
self,
|
|
provider_config,
|
|
provider_settings,
|
|
) -> None:
|
|
super().__init__(
|
|
provider_config,
|
|
provider_settings,
|
|
)
|
|
|
|
self.chosen_api_key: str = ""
|
|
self.api_keys: list = super().get_keys()
|
|
self.chosen_api_key = self.api_keys[0] if len(self.api_keys) > 0 else ""
|
|
self.base_url = provider_config.get("api_base", "https://api.anthropic.com")
|
|
self.timeout = provider_config.get("timeout", 120)
|
|
if isinstance(self.timeout, str):
|
|
self.timeout = int(self.timeout)
|
|
|
|
self.client = AsyncAnthropic(
|
|
api_key=self.chosen_api_key,
|
|
timeout=self.timeout,
|
|
base_url=self.base_url,
|
|
)
|
|
|
|
self.set_model(provider_config["model_config"]["model"])
|
|
|
|
def _prepare_payload(self, messages: list[dict]):
|
|
"""准备 Anthropic API 的请求 payload
|
|
|
|
Args:
|
|
messages: OpenAI 格式的消息列表,包含用户输入和系统提示等信息
|
|
Returns:
|
|
system_prompt: 系统提示内容
|
|
new_messages: 处理后的消息列表,去除系统提示
|
|
|
|
"""
|
|
system_prompt = ""
|
|
new_messages = []
|
|
for message in messages:
|
|
if message["role"] == "system":
|
|
system_prompt = message["content"]
|
|
elif message["role"] == "assistant":
|
|
blocks = []
|
|
if isinstance(message["content"], str):
|
|
blocks.append({"type": "text", "text": message["content"]})
|
|
if "tool_calls" in message:
|
|
for tool_call in message["tool_calls"]:
|
|
blocks.append( # noqa: PERF401
|
|
{
|
|
"type": "tool_use",
|
|
"name": tool_call["function"]["name"],
|
|
"input": (
|
|
json.loads(tool_call["function"]["arguments"])
|
|
if isinstance(
|
|
tool_call["function"]["arguments"],
|
|
str,
|
|
)
|
|
else tool_call["function"]["arguments"]
|
|
),
|
|
"id": tool_call["id"],
|
|
},
|
|
)
|
|
new_messages.append(
|
|
{
|
|
"role": "assistant",
|
|
"content": blocks,
|
|
},
|
|
)
|
|
elif message["role"] == "tool":
|
|
new_messages.append(
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "tool_result",
|
|
"tool_use_id": message["tool_call_id"],
|
|
"content": message["content"],
|
|
},
|
|
],
|
|
},
|
|
)
|
|
else:
|
|
new_messages.append(message)
|
|
|
|
return system_prompt, new_messages
|
|
|
|
async def _query(self, payloads: dict, tools: ToolSet | None) -> LLMResponse:
|
|
if tools:
|
|
if tool_list := tools.get_func_desc_anthropic_style():
|
|
payloads["tools"] = tool_list
|
|
|
|
completion = await self.client.messages.create(**payloads, stream=False)
|
|
|
|
assert isinstance(completion, Message)
|
|
logger.debug(f"completion: {completion}")
|
|
|
|
if len(completion.content) == 0:
|
|
raise Exception("API 返回的 completion 为空。")
|
|
|
|
llm_response = LLMResponse(role="assistant")
|
|
|
|
for content_block in completion.content:
|
|
if content_block.type == "text":
|
|
completion_text = str(content_block.text).strip()
|
|
llm_response.completion_text = completion_text
|
|
|
|
if content_block.type == "tool_use":
|
|
llm_response.tools_call_args.append(content_block.input)
|
|
llm_response.tools_call_name.append(content_block.name)
|
|
llm_response.tools_call_ids.append(content_block.id)
|
|
# TODO(Soulter): 处理 end_turn 情况
|
|
if not llm_response.completion_text and not llm_response.tools_call_args:
|
|
raise Exception(f"Anthropic API 返回的 completion 无法解析:{completion}。")
|
|
|
|
return llm_response
|
|
|
|
async def _query_stream(
|
|
self,
|
|
payloads: dict,
|
|
tools: ToolSet | None,
|
|
) -> AsyncGenerator[LLMResponse, None]:
|
|
if tools:
|
|
if tool_list := tools.get_func_desc_anthropic_style():
|
|
payloads["tools"] = tool_list
|
|
|
|
# 用于累积工具调用信息
|
|
tool_use_buffer = {}
|
|
# 用于累积最终结果
|
|
final_text = ""
|
|
final_tool_calls = []
|
|
|
|
async with self.client.messages.stream(**payloads) as stream:
|
|
assert isinstance(stream, anthropic.AsyncMessageStream)
|
|
async for event in stream:
|
|
if event.type == "content_block_start":
|
|
if event.content_block.type == "text":
|
|
# 文本块开始
|
|
yield LLMResponse(
|
|
role="assistant",
|
|
completion_text="",
|
|
is_chunk=True,
|
|
)
|
|
elif event.content_block.type == "tool_use":
|
|
# 工具使用块开始,初始化缓冲区
|
|
tool_use_buffer[event.index] = {
|
|
"id": event.content_block.id,
|
|
"name": event.content_block.name,
|
|
"input": {},
|
|
}
|
|
|
|
elif event.type == "content_block_delta":
|
|
if event.delta.type == "text_delta":
|
|
# 文本增量
|
|
final_text += event.delta.text
|
|
yield LLMResponse(
|
|
role="assistant",
|
|
completion_text=event.delta.text,
|
|
is_chunk=True,
|
|
)
|
|
elif event.delta.type == "input_json_delta":
|
|
# 工具调用参数增量
|
|
if event.index in tool_use_buffer:
|
|
# 累积 JSON 输入
|
|
if "input_json" not in tool_use_buffer[event.index]:
|
|
tool_use_buffer[event.index]["input_json"] = ""
|
|
tool_use_buffer[event.index]["input_json"] += (
|
|
event.delta.partial_json
|
|
)
|
|
|
|
elif event.type == "content_block_stop":
|
|
# 内容块结束
|
|
if event.index in tool_use_buffer:
|
|
# 解析完整的工具调用
|
|
tool_info = tool_use_buffer[event.index]
|
|
try:
|
|
if "input_json" in tool_info:
|
|
tool_info["input"] = json.loads(tool_info["input_json"])
|
|
|
|
# 添加到最终结果
|
|
final_tool_calls.append(
|
|
{
|
|
"id": tool_info["id"],
|
|
"name": tool_info["name"],
|
|
"input": tool_info["input"],
|
|
},
|
|
)
|
|
|
|
yield LLMResponse(
|
|
role="tool",
|
|
completion_text="",
|
|
tools_call_args=[tool_info["input"]],
|
|
tools_call_name=[tool_info["name"]],
|
|
tools_call_ids=[tool_info["id"]],
|
|
is_chunk=True,
|
|
)
|
|
except json.JSONDecodeError:
|
|
# JSON 解析失败,跳过这个工具调用
|
|
logger.warning(f"工具调用参数 JSON 解析失败: {tool_info}")
|
|
|
|
# 清理缓冲区
|
|
del tool_use_buffer[event.index]
|
|
|
|
# 返回最终的完整结果
|
|
final_response = LLMResponse(
|
|
role="assistant",
|
|
completion_text=final_text,
|
|
is_chunk=False,
|
|
)
|
|
|
|
if final_tool_calls:
|
|
final_response.tools_call_args = [
|
|
call["input"] for call in final_tool_calls
|
|
]
|
|
final_response.tools_call_name = [call["name"] for call in final_tool_calls]
|
|
final_response.tools_call_ids = [call["id"] for call in final_tool_calls]
|
|
|
|
yield final_response
|
|
|
|
async def text_chat(
|
|
self,
|
|
prompt=None,
|
|
session_id=None,
|
|
image_urls=None,
|
|
func_tool=None,
|
|
contexts=None,
|
|
system_prompt=None,
|
|
tool_calls_result=None,
|
|
model=None,
|
|
**kwargs,
|
|
) -> LLMResponse:
|
|
if contexts is None:
|
|
contexts = []
|
|
new_record = None
|
|
if prompt is not None:
|
|
new_record = await self.assemble_context(prompt, image_urls)
|
|
context_query = self._ensure_message_to_dicts(contexts)
|
|
if new_record:
|
|
context_query.append(new_record)
|
|
|
|
if system_prompt:
|
|
context_query.insert(0, {"role": "system", "content": system_prompt})
|
|
|
|
for part in context_query:
|
|
if "_no_save" in part:
|
|
del part["_no_save"]
|
|
|
|
# tool calls result
|
|
if tool_calls_result:
|
|
if not isinstance(tool_calls_result, list):
|
|
context_query.extend(tool_calls_result.to_openai_messages())
|
|
else:
|
|
for tcr in tool_calls_result:
|
|
context_query.extend(tcr.to_openai_messages())
|
|
|
|
system_prompt, new_messages = self._prepare_payload(context_query)
|
|
|
|
model_config = self.provider_config.get("model_config", {})
|
|
model_config["model"] = model or self.get_model()
|
|
|
|
payloads = {"messages": new_messages, **model_config}
|
|
|
|
# Anthropic has a different way of handling system prompts
|
|
if system_prompt:
|
|
payloads["system"] = system_prompt
|
|
|
|
llm_response = None
|
|
try:
|
|
llm_response = await self._query(payloads, func_tool)
|
|
except Exception as e:
|
|
# logger.error(f"发生了错误。Provider 配置如下: {model_config}")
|
|
raise e
|
|
|
|
return llm_response
|
|
|
|
async def text_chat_stream(
|
|
self,
|
|
prompt,
|
|
session_id=None,
|
|
image_urls=...,
|
|
func_tool=None,
|
|
contexts=...,
|
|
system_prompt=None,
|
|
tool_calls_result=None,
|
|
model=None,
|
|
**kwargs,
|
|
):
|
|
if contexts is None:
|
|
contexts = []
|
|
new_record = None
|
|
if prompt is not None:
|
|
new_record = await self.assemble_context(prompt, image_urls)
|
|
context_query = self._ensure_message_to_dicts(contexts)
|
|
if new_record:
|
|
context_query.append(new_record)
|
|
if system_prompt:
|
|
context_query.insert(0, {"role": "system", "content": system_prompt})
|
|
|
|
for part in context_query:
|
|
if "_no_save" in part:
|
|
del part["_no_save"]
|
|
|
|
# tool calls result
|
|
if tool_calls_result:
|
|
if not isinstance(tool_calls_result, list):
|
|
context_query.extend(tool_calls_result.to_openai_messages())
|
|
else:
|
|
for tcr in tool_calls_result:
|
|
context_query.extend(tcr.to_openai_messages())
|
|
|
|
system_prompt, new_messages = self._prepare_payload(context_query)
|
|
|
|
model_config = self.provider_config.get("model_config", {})
|
|
model_config["model"] = model or self.get_model()
|
|
|
|
payloads = {"messages": new_messages, **model_config}
|
|
|
|
# Anthropic has a different way of handling system prompts
|
|
if system_prompt:
|
|
payloads["system"] = system_prompt
|
|
|
|
async for llm_response in self._query_stream(payloads, func_tool):
|
|
yield llm_response
|
|
|
|
async def assemble_context(self, text: str, image_urls: list[str] | None = None):
|
|
"""组装上下文,支持文本和图片"""
|
|
if not image_urls:
|
|
return {"role": "user", "content": text}
|
|
|
|
content = []
|
|
content.append({"type": "text", "text": text})
|
|
|
|
for image_url in image_urls:
|
|
if image_url.startswith("http"):
|
|
image_path = await download_image_by_url(image_url)
|
|
image_data = await self.encode_image_bs64(image_path)
|
|
elif image_url.startswith("file:///"):
|
|
image_path = image_url.replace("file:///", "")
|
|
image_data = await self.encode_image_bs64(image_path)
|
|
else:
|
|
image_data = await self.encode_image_bs64(image_url)
|
|
|
|
if not image_data:
|
|
logger.warning(f"图片 {image_url} 得到的结果为空,将忽略。")
|
|
continue
|
|
|
|
# Get mime type for the image
|
|
mime_type, _ = guess_type(image_url)
|
|
if not mime_type:
|
|
mime_type = "image/jpeg" # Default to JPEG if can't determine
|
|
|
|
content.append(
|
|
{
|
|
"type": "image",
|
|
"source": {
|
|
"type": "base64",
|
|
"media_type": mime_type,
|
|
"data": (
|
|
image_data.split("base64,")[1]
|
|
if "base64," in image_data
|
|
else image_data
|
|
),
|
|
},
|
|
},
|
|
)
|
|
|
|
return {"role": "user", "content": content}
|
|
|
|
async def encode_image_bs64(self, image_url: str) -> str:
|
|
"""将图片转换为 base64"""
|
|
if image_url.startswith("base64://"):
|
|
return image_url.replace("base64://", "data:image/jpeg;base64,")
|
|
with open(image_url, "rb") as f:
|
|
image_bs64 = base64.b64encode(f.read()).decode("utf-8")
|
|
return "data:image/jpeg;base64," + image_bs64
|
|
return ""
|
|
|
|
def get_current_key(self) -> str:
|
|
return self.chosen_api_key
|
|
|
|
async def get_models(self) -> list[str]:
|
|
models_str = []
|
|
models = await self.client.models.list()
|
|
models = sorted(models.data, key=lambda x: x.id)
|
|
for model in models:
|
|
models_str.append(model.id)
|
|
return models_str
|
|
|
|
def set_key(self, key: str):
|
|
self.chosen_api_key = key
|