Merge branch 'main' into fix/next-release-bugs

This commit is contained in:
suyao
2025-05-09 21:48:13 +08:00
34 changed files with 1283 additions and 694 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -0,0 +1 @@
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>n8n</title><path clip-rule="evenodd" d="M24 8.4c0 1.325-1.102 2.4-2.462 2.4-1.146 0-2.11-.765-2.384-1.8h-3.436c-.602 0-1.115.424-1.214 1.003l-.101.592a2.38 2.38 0 01-.8 1.405c.412.354.704.844.8 1.405l.1.592A1.222 1.222 0 0015.719 15h.975c.273-1.035 1.237-1.8 2.384-1.8 1.36 0 2.461 1.075 2.461 2.4S20.436 18 19.078 18c-1.147 0-2.11-.765-2.384-1.8h-.975c-1.204 0-2.23-.848-2.428-2.005l-.101-.592a1.222 1.222 0 00-1.214-1.003H10.97c-.308.984-1.246 1.7-2.356 1.7-1.11 0-2.048-.716-2.355-1.7H4.817c-.308.984-1.246 1.7-2.355 1.7C1.102 14.3 0 13.225 0 11.9s1.102-2.4 2.462-2.4c1.183 0 2.172.815 2.408 1.9h1.337c.236-1.085 1.225-1.9 2.408-1.9 1.184 0 2.172.815 2.408 1.9h.952c.601 0 1.115-.424 1.213-1.003l.102-.592c.198-1.157 1.225-2.005 2.428-2.005h3.436c.274-1.035 1.238-1.8 2.384-1.8C22.898 6 24 7.075 24 8.4zm-1.23 0c0 .663-.552 1.2-1.232 1.2-.68 0-1.23-.537-1.23-1.2 0-.663.55-1.2 1.23-1.2.68 0 1.231.537 1.231 1.2zM2.461 13.1c.68 0 1.23-.537 1.23-1.2 0-.663-.55-1.2-1.23-1.2-.68 0-1.231.537-1.231 1.2 0 .663.55 1.2 1.23 1.2zm6.153 0c.68 0 1.231-.537 1.231-1.2 0-.663-.55-1.2-1.23-1.2-.68 0-1.231.537-1.231 1.2 0 .663.55 1.2 1.23 1.2zm10.462 3.7c.68 0 1.23-.537 1.23-1.2 0-.663-.55-1.2-1.23-1.2-.68 0-1.23.537-1.23 1.2 0 .663.55 1.2 1.23 1.2z" fill="#EA4B71" fill-rule="evenodd"></path></svg>

After

Width:  |  Height:  |  Size: 1.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 KiB

View File

@@ -59,9 +59,11 @@ const PopupContainer: React.FC<PopupContainerProps> = ({ model, resolve }) => {
const [pinnedModels, setPinnedModels] = useState<string[]>([])
const [_focusedItemKey, setFocusedItemKey] = useState<string>('')
const focusedItemKey = useDeferredValue(_focusedItemKey)
const [currentStickyGroup, setCurrentStickyGroup] = useState<FlatListItem | null>(null)
const [_stickyGroup, setStickyGroup] = useState<FlatListItem | null>(null)
const stickyGroup = useDeferredValue(_stickyGroup)
const firstGroupRef = useRef<FlatListItem | null>(null)
const scrollTriggerRef = useRef<ScrollTrigger>('initial')
const lastScrollOffsetRef = useRef(0)
// 当前选中的模型ID
const currentModelId = model ? getModelUniqId(model) : ''
@@ -220,6 +222,45 @@ const PopupContainer: React.FC<PopupContainerProps> = ({ model, resolve }) => {
return items
}, [providers, getFilteredModels, pinnedModels, searchText, t, createModelItem])
// 基于滚动位置更新sticky分组标题
const updateStickyGroup = useCallback(
(scrollOffset?: number) => {
if (listItems.length === 0) {
setStickyGroup(null)
return
}
// 基于滚动位置计算当前可见的第一个项的索引
const estimatedIndex = Math.floor((scrollOffset ?? lastScrollOffsetRef.current) / ITEM_HEIGHT)
// 从该索引向前查找最近的分组标题
for (let i = estimatedIndex - 1; i >= 0; i--) {
if (i < listItems.length && listItems[i]?.type === 'group') {
setStickyGroup(listItems[i])
return
}
}
// 找不到则使用第一个分组标题
setStickyGroup(firstGroupRef.current ?? null)
},
[listItems]
)
// 在listItems变化时更新sticky group
useEffect(() => {
updateStickyGroup()
}, [listItems, updateStickyGroup])
// 处理列表滚动事件更新lastScrollOffset并更新sticky分组
const handleScroll = useCallback(
({ scrollOffset }) => {
lastScrollOffsetRef.current = scrollOffset
updateStickyGroup(scrollOffset)
},
[updateStickyGroup]
)
// 获取可选择的模型项(过滤掉分组标题)
const modelItems = useMemo(() => {
return listItems.filter((item) => item.type === 'model')
@@ -257,9 +298,6 @@ const PopupContainer: React.FC<PopupContainerProps> = ({ model, resolve }) => {
const alignment = scrollTriggerRef.current === 'keyboard' ? 'auto' : 'center'
listRef.current?.scrollToItem(index, alignment)
console.log('focusedItemKey', focusedItemKey)
console.log('scrollToFocusedItem', index, alignment)
// 滚动后重置触发器
scrollTriggerRef.current = 'none'
}, [focusedItemKey, listItems])
@@ -365,41 +403,19 @@ const PopupContainer: React.FC<PopupContainerProps> = ({ model, resolve }) => {
if (!open) return
setTimeout(() => inputRef.current?.focus(), 0)
scrollTriggerRef.current = 'initial'
lastScrollOffsetRef.current = 0
}, [open])
// 初始化sticky分组标题
useEffect(() => {
if (firstGroupRef.current) {
setCurrentStickyGroup(firstGroupRef.current)
}
}, [listItems])
const handleItemsRendered = useCallback(
({ visibleStartIndex }: { visibleStartIndex: number; visibleStopIndex: number }) => {
// 从可见区域的起始位置向前查找最近的分组标题
for (let i = visibleStartIndex - 1; i >= 0; i--) {
if (listItems[i]?.type === 'group') {
setCurrentStickyGroup(listItems[i])
return
}
}
// 找不到则使用第一个分组标题
setCurrentStickyGroup(firstGroupRef.current ?? null)
},
[listItems]
)
const RowData = useMemo(
(): VirtualizedRowData => ({
listItems,
focusedItemKey,
setFocusedItemKey,
currentStickyGroup,
stickyGroup,
handleItemClick,
togglePin
}),
[currentStickyGroup, focusedItemKey, handleItemClick, listItems, togglePin]
[stickyGroup, focusedItemKey, handleItemClick, listItems, togglePin]
)
const listHeight = useMemo(() => {
@@ -456,7 +472,7 @@ const PopupContainer: React.FC<PopupContainerProps> = ({ model, resolve }) => {
{listItems.length > 0 ? (
<ListContainer onMouseMove={() => setIsMouseOver(true)}>
{/* Sticky Group Banner它会替换第一个分组名称 */}
<StickyGroupBanner>{currentStickyGroup?.name}</StickyGroupBanner>
<StickyGroupBanner>{stickyGroup?.name}</StickyGroupBanner>
<FixedSizeList
ref={listRef}
height={listHeight}
@@ -466,7 +482,7 @@ const PopupContainer: React.FC<PopupContainerProps> = ({ model, resolve }) => {
itemData={RowData}
itemKey={(index, data) => data.listItems[index].key}
overscanCount={4}
onItemsRendered={handleItemsRendered}
onScroll={handleScroll}
style={{ pointerEvents: isMouseOver ? 'auto' : 'none' }}>
{VirtualizedRow}
</FixedSizeList>
@@ -484,7 +500,7 @@ interface VirtualizedRowData {
listItems: FlatListItem[]
focusedItemKey: string
setFocusedItemKey: (key: string) => void
currentStickyGroup: FlatListItem | null
stickyGroup: FlatListItem | null
handleItemClick: (item: FlatListItem) => void
togglePin: (modelId: string) => void
}
@@ -494,7 +510,7 @@ interface VirtualizedRowData {
*/
const VirtualizedRow = React.memo(
({ data, index, style }: { data: VirtualizedRowData; index: number; style: React.CSSProperties }) => {
const { listItems, focusedItemKey, setFocusedItemKey, handleItemClick, togglePin, currentStickyGroup } = data
const { listItems, focusedItemKey, setFocusedItemKey, handleItemClick, togglePin, stickyGroup } = data
const item = listItems[index]
@@ -505,7 +521,7 @@ const VirtualizedRow = React.memo(
return (
<div style={style}>
{item.type === 'group' ? (
<GroupItem $isSticky={item.key === currentStickyGroup?.key}>{item.name}</GroupItem>
<GroupItem $isSticky={item.key === stickyGroup?.key}>{item.name}</GroupItem>
) : (
<ModelItem
className={classNames({

View File

@@ -1,9 +1,7 @@
import n8nLogo from '@renderer/assets/images/apps/n8n.ico?url'
import ParateraLogo from '@renderer/assets/images/apps/paratera.ico?url'
import ApplicationLogo from '@renderer/assets/images/apps/application.png?url'
import ThreeMinTopAppLogo from '@renderer/assets/images/apps/3mintop.png?url'
import AbacusLogo from '@renderer/assets/images/apps/abacus.webp?url'
import AIStudioLogo from '@renderer/assets/images/apps/aistudio.svg?url'
import ApplicationLogo from '@renderer/assets/images/apps/application.png?url'
import BaiduAiAppLogo from '@renderer/assets/images/apps/baidu-ai.png?url'
import BaiduAiSearchLogo from '@renderer/assets/images/apps/baidu-ai-search.webp?url'
import BaicuanAppLogo from '@renderer/assets/images/apps/baixiaoying.webp?url'
@@ -29,6 +27,7 @@ import LambdaChatLogo from '@renderer/assets/images/apps/lambdachat.webp?url'
import LeChatLogo from '@renderer/assets/images/apps/lechat.png?url'
import MetasoAppLogo from '@renderer/assets/images/apps/metaso.webp?url'
import MonicaLogo from '@renderer/assets/images/apps/monica.webp?url'
import n8nLogo from '@renderer/assets/images/apps/n8n.svg?url'
import NamiAiLogo from '@renderer/assets/images/apps/nm.png?url'
import NamiAiSearchLogo from '@renderer/assets/images/apps/nm-search.webp?url'
import NotebookLMAppLogo from '@renderer/assets/images/apps/notebooklm.svg?url'
@@ -62,11 +61,11 @@ const loadCustomMiniApp = async (): Promise<MinAppType[]> => {
try {
let content: string
try {
content = await window.api.file.read('customMiniAPP')
content = await window.api.file.read('custom-minapps.json')
} catch (error) {
// 如果文件不存在,创建一个空的 JSON 数组
content = '[]'
await window.api.file.writeWithId('customMiniAPP', content)
await window.api.file.writeWithId('custom-minapps.json', content)
}
const customApps = JSON.parse(content)
@@ -451,18 +450,15 @@ const ORIGIN_DEFAULT_MIN_APPS: MinAppType[] = [
padding: 10
}
},
{
id: 'paratera',
name: 'ParateraAI',
logo: ParateraLogo,
url: 'https://ai.paratera.com/'
},
{
id: 'n8n',
name: 'n8n',
logo: n8nLogo,
url: 'https://app.n8n.cloud/',
bodered: true
bodered: true,
style: {
padding: 5
}
}
]

View File

@@ -2074,62 +2074,6 @@ export const SYSTEM_MODELS: Record<string, Model[]> = {
name: 'Qwen2.5 72B Instruct',
group: 'Qwen'
}
],
paratera: [
{
id: 'GLM-Z1-Flash-P002',
provider: 'paratera',
name: 'GLM-Z1-Flash-P002',
group: 'GLM'
},
{
id: 'GLM-Z1-AirX-P002',
provider: 'paratera',
name: 'GLM-Z1-AirX-P002',
group: 'GLM'
},
{
id: 'DeepSeek-V3-250324-P001',
provider: 'paratera',
name: 'DeepSeek-V3-250324-P001',
group: 'DeepSeek'
},
{
id: 'DeepSeek-R1',
provider: 'paratera',
name: 'DeepSeek-R1',
group: 'DeepSeek'
},
{
id: 'QwQ-N011-32B',
provider: 'paratera',
name: 'QwQ-N011-32B',
group: 'Qwen'
},
{
id: 'GLM-Embedding-2-P002',
provider: 'paratera',
name: 'GLM-Embedding-2-P002',
group: 'GLM'
},
{
id: 'GLM-Embedding-3-P002',
provider: 'paratera',
name: 'GLM-Embedding-3-P002',
group: 'GLM'
},
{
id: 'Doubao-Embedding-Text-P001',
provider: 'paratera',
name: 'Doubao-Embedding-Text-P001',
group: 'Doubao'
},
{
id: 'Doubao-Embedding-Large-Text-P001',
provider: 'paratera',
name: 'Doubao-Embedding-Large-Text-P001',
group: 'Doubao'
}
]
}

View File

@@ -42,7 +42,6 @@ import VoyageAIProviderLogo from '@renderer/assets/images/providers/voyageai.png
import XirangProviderLogo from '@renderer/assets/images/providers/xirang.png'
import ZeroOneProviderLogo from '@renderer/assets/images/providers/zero-one.png'
import ZhipuProviderLogo from '@renderer/assets/images/providers/zhipu.png'
import ParateraLogo from '@renderer/assets/images/apps/paratera.ico'
const PROVIDER_LOGO_MAP = {
openai: OpenAiProviderLogo,
@@ -89,8 +88,7 @@ const PROVIDER_LOGO_MAP = {
gpustack: GPUStackProviderLogo,
alayanew: AlayaNewProviderLogo,
voyageai: VoyageAIProviderLogo,
qiniu: QiniuProviderLogo,
paratera: ParateraLogo
qiniu: QiniuProviderLogo
} as const
export function getProviderLogo(providerId: string) {
@@ -585,16 +583,5 @@ export const PROVIDER_CONFIG = {
docs: 'https://developer.qiniu.com/aitokenapi',
models: 'https://developer.qiniu.com/aitokenapi/12883/model-list'
}
},
paratera: {
api: {
url: 'https://llmapi.paratera.com'
},
websites: {
official: 'https://ai.paratera.com/',
apiKey: 'https://ai.paratera.com/#/lms/api',
docs: 'https://ai.paratera.com/document/llm/quickStart/useApi',
models: 'https://ai.paratera.com/#/lms/model'
}
}
}

View File

@@ -705,6 +705,7 @@
"rerank_model_tooltip": "Click the Manage button in Settings -> Model Services to add.",
"search": "Search models...",
"stream_output": "Stream output",
"enable_tool_use": "Enable Tool Use",
"type": {
"embedding": "Embedding",
"free": "Free",

View File

@@ -705,6 +705,7 @@
"rerank_model_tooltip": "設定->モデルサービスに移動し、管理ボタンをクリックして追加します。",
"search": "モデルを検索...",
"stream_output": "ストリーム出力",
"enable_tool_use": "ツール呼び出し",
"type": {
"embedding": "埋め込み",
"free": "無料",

View File

@@ -705,6 +705,7 @@
"rerank_model_tooltip": "В настройках -> Служба модели нажмите кнопку \"Управление\", чтобы добавить.",
"search": "Поиск моделей...",
"stream_output": "Потоковый вывод",
"enable_tool_use": "Вызов инструмента",
"type": {
"embedding": "Встраиваемые",
"free": "Бесплатные",

View File

@@ -705,6 +705,7 @@
"rerank_model_tooltip": "在设置->模型服务中点击管理按钮添加",
"search": "搜索模型...",
"stream_output": "流式输出",
"enable_tool_use": "工具调用",
"type": {
"embedding": "嵌入",
"free": "免费",

View File

@@ -705,6 +705,7 @@
"rerank_model_tooltip": "在設定->模型服務中點擊管理按鈕添加",
"search": "搜尋模型...",
"stream_output": "串流輸出",
"enable_tool_use": "工具調用",
"type": {
"embedding": "嵌入",
"free": "免費",

View File

@@ -40,7 +40,7 @@ const App: FC<Props> = ({ app, onClick, size = 60, isLast }) => {
const handleAddCustomApp = async (values: any) => {
try {
const content = await window.api.file.read('customMiniAPP')
const content = await window.api.file.read('custom-minapps.json')
const customApps = JSON.parse(content)
// Check for duplicate ID
@@ -62,7 +62,7 @@ const App: FC<Props> = ({ app, onClick, size = 60, isLast }) => {
addTime: new Date().toISOString()
}
customApps.push(newApp)
await window.api.file.writeWithId('customMiniAPP', JSON.stringify(customApps, null, 2))
await window.api.file.writeWithId('custom-minapps.json', JSON.stringify(customApps, null, 2))
message.success(t('settings.miniapps.custom.save_success'))
setIsModalVisible(false)
form.resetFields()
@@ -138,10 +138,10 @@ const App: FC<Props> = ({ app, onClick, size = 60, isLast }) => {
danger: true,
onClick: async () => {
try {
const content = await window.api.file.read('customMiniAPP')
const content = await window.api.file.read('custom-minapps.json')
const customApps = JSON.parse(content)
const updatedApps = customApps.filter((customApp: MinAppType) => customApp.id !== app.id)
await window.api.file.writeWithId('customMiniAPP', JSON.stringify(updatedApps, null, 2))
await window.api.file.writeWithId('custom-minapps.json', JSON.stringify(updatedApps, null, 2))
message.success(t('settings.miniapps.custom.remove_success'))
const reloadedApps = [...ORIGIN_DEFAULT_MIN_APPS, ...(await loadCustomMiniApp())]
updateDefaultMinApps(reloadedApps)

View File

@@ -91,7 +91,7 @@ const CitationsList: React.FC<CitationsListProps> = ({ citations }) => {
onClose={() => setOpen(false)}
open={open}
width={680}
styles={{ header: { border: 'none' }, body: { paddingTop: 0, backgroundColor: 'var(--color-background)' } }}
styles={{ header: { border: 'none' }, body: { paddingTop: 0 } }}
destroyOnClose={false}>
{open &&
citations.map((citation) => (
@@ -127,12 +127,12 @@ const WebSearchCitation: React.FC<{ citation: Citation }> = ({ citation }) => {
})
return (
<WebSearchCard onClick={() => handleLinkClick(citation.url)}>
<WebSearchCard>
<WebSearchCardHeader>
{citation.showFavicon && citation.url && (
<Favicon hostname={new URL(citation.url).hostname} alt={citation.title || citation.hostname || ''} />
)}
<CitationLink className="text-nowrap">
<CitationLink className="text-nowrap" href={citation.url} onClick={(e) => handleLinkClick(citation.url, e)}>
{citation.title || <span className="hostname">{citation.hostname}</span>}
</CitationLink>
</WebSearchCardHeader>
@@ -146,10 +146,12 @@ const WebSearchCitation: React.FC<{ citation: Citation }> = ({ citation }) => {
}
const KnowledgeCitation: React.FC<{ citation: Citation }> = ({ citation }) => (
<WebSearchCard onClick={() => handleLinkClick(citation.url)}>
<WebSearchCard>
<WebSearchCardHeader>
{citation.showFavicon && <FileSearch width={16} />}
<CitationLink className="text-nowrap">{citation.title}</CitationLink>
<CitationLink className="text-nowrap" href={citation.url} onClick={(e) => handleLinkClick(citation.url, e)}>
{citation.title}
</CitationLink>
</WebSearchCardHeader>
<WebSearchCardContent>{citation.content && truncateText(citation.content, 100)}</WebSearchCardContent>
</WebSearchCard>
@@ -189,11 +191,15 @@ const PreviewIcon = styled.div`
}
`
const CitationLink = styled.div`
const CitationLink = styled.a`
font-size: 14px;
line-height: 1.6;
color: var(--color-text-1);
text-decoration: none;
.hostname {
color: var(--color-link);
}
`
const WebSearchCard = styled.div`
@@ -204,11 +210,6 @@ const WebSearchCard = styled.div`
border-radius: var(--list-item-border-radius);
background-color: var(--color-background);
transition: all 0.3s ease;
cursor: pointer;
&:hover {
background-color: var(--color-background-soft);
}
`
const WebSearchCardHeader = styled.div`
@@ -217,7 +218,6 @@ const WebSearchCardHeader = styled.div`
align-items: center;
gap: 8px;
margin-bottom: 6px;
font-weight: 500;
`
const WebSearchCardContent = styled.div`

View File

@@ -67,7 +67,7 @@ const MessageTools: FC<Props> = ({ blocks }) => {
const isDone = status === 'done'
const hasError = isDone && response?.isError === true
const result = {
params: tool.inputSchema,
params: toolResponse.arguments,
response: toolResponse.response
}

View File

@@ -70,6 +70,7 @@ const SettingsTab: FC<Props> = (props) => {
const [maxTokens, setMaxTokens] = useState(assistant?.settings?.maxTokens ?? 0)
const [fontSizeValue, setFontSizeValue] = useState(fontSize)
const [streamOutput, setStreamOutput] = useState(assistant?.settings?.streamOutput ?? true)
const [enableToolUse, setEnableToolUse] = useState(assistant?.settings?.enableToolUse ?? false)
const { t } = useTranslation()
const dispatch = useAppDispatch()
@@ -222,6 +223,18 @@ const SettingsTab: FC<Props> = (props) => {
/>
</SettingRow>
<SettingDivider />
<SettingRow>
<SettingRowTitleSmall>{t('models.enable_tool_use')}</SettingRowTitleSmall>
<Switch
size="small"
checked={enableToolUse}
onChange={(checked) => {
setEnableToolUse(checked)
updateAssistantSettings({ enableToolUse: checked })
}}
/>
</SettingRow>
<SettingDivider />
<Row align="middle" justify="space-between" style={{ marginBottom: 10 }}>
<HStack alignItems="center">
<Label>{t('chat.settings.max_tokens')}</Label>

View File

@@ -1,4 +1,4 @@
import { InfoCircleFilled, PlusOutlined, RedoOutlined } from '@ant-design/icons'
import { PlusOutlined, RedoOutlined } from '@ant-design/icons'
import IcImageUp from '@renderer/assets/images/paintings/ic_ImageUp.svg'
import { Navbar, NavbarCenter, NavbarRight } from '@renderer/components/app/Navbar'
import { HStack } from '@renderer/components/Layout'
@@ -20,6 +20,7 @@ import type { PaintingAction, PaintingsState } from '@renderer/types'
import { getErrorMessage, uuid } from '@renderer/utils'
import { Avatar, Button, Input, InputNumber, Radio, Segmented, Select, Slider, Switch, Tooltip, Upload } from 'antd'
import TextArea from 'antd/es/input/TextArea'
import { Info } from 'lucide-react'
import type { FC } from 'react'
import { useEffect, useMemo, useRef, useState } from 'react'
import { useTranslation } from 'react-i18next'
@@ -72,6 +73,7 @@ const AihubmixPage: FC<{ Options: string[] }> = ({ Options }) => {
{ label: t('paintings.mode.remix'), value: 'remix' },
{ label: t('paintings.mode.upscale'), value: 'upscale' }
]
const getNewPainting = () => {
return {
...DEFAULT_PAINTING,
@@ -278,14 +280,6 @@ const AihubmixPage: FC<{ Options: string[] }> = ({ Options }) => {
}
removePainting(mode, paintingToDelete)
if (filteredPaintings.length === 1) {
const defaultPainting = {
...DEFAULT_PAINTING,
id: uuid()
}
setPainting(defaultPainting)
}
}
const translate = async () => {
@@ -334,6 +328,7 @@ const AihubmixPage: FC<{ Options: string[] }> = ({ Options }) => {
navigate('../' + providerId, { replace: true })
}
}
// 处理模式切换
const handleModeChange = (value: string) => {
setMode(value as keyof PaintingsState)
@@ -494,8 +489,9 @@ const AihubmixPage: FC<{ Options: string[] }> = ({ Options }) => {
useEffect(() => {
if (filteredPaintings.length === 0) {
addPainting(mode, getNewPainting())
setPainting(DEFAULT_PAINTING)
const newPainting = getNewPainting()
addPainting(mode, newPainting)
setPainting(newPainting)
}
}, [filteredPaintings, mode, addPainting, painting])
@@ -674,11 +670,17 @@ const ToolbarMenu = styled.div`
gap: 6px;
`
const InfoIcon = styled(InfoCircleFilled)`
const InfoIcon = styled(Info)`
margin-left: 5px;
cursor: help;
color: #8d94a6;
font-size: 12px;
color: var(--color-text-2);
opacity: 0.6;
width: 14px;
height: 16px;
&:hover {
opacity: 1;
}
`
const SliderContainer = styled.div`

View File

@@ -1,4 +1,4 @@
import { PlusOutlined, QuestionCircleOutlined, RedoOutlined } from '@ant-design/icons'
import { PlusOutlined, RedoOutlined } from '@ant-design/icons'
import ImageSize1_1 from '@renderer/assets/images/paintings/image-size-1-1.svg'
import ImageSize1_2 from '@renderer/assets/images/paintings/image-size-1-2.svg'
import ImageSize3_2 from '@renderer/assets/images/paintings/image-size-3-2.svg'
@@ -26,6 +26,7 @@ import type { FileType, Painting } from '@renderer/types'
import { getErrorMessage, uuid } from '@renderer/utils'
import { Button, Input, InputNumber, Radio, Select, Slider, Switch, Tooltip } from 'antd'
import TextArea from 'antd/es/input/TextArea'
import { Info } from 'lucide-react'
import type { FC } from 'react'
import { useEffect, useRef, useState } from 'react'
import { useTranslation } from 'react-i18next'
@@ -90,7 +91,7 @@ const DEFAULT_PAINTING: Painting = {
const PaintingsPage: FC<{ Options: string[] }> = ({ Options }) => {
const { t } = useTranslation()
const { paintings, addPainting, removePainting, updatePainting } = usePaintings()
const [painting, setPainting] = useState<Painting>(DEFAULT_PAINTING)
const [painting, setPainting] = useState<Painting>(paintings[0] || DEFAULT_PAINTING)
const { theme } = useTheme()
const providers = useAllProviders()
const providerOptions = Options.map((option) => {
@@ -260,10 +261,6 @@ const PaintingsPage: FC<{ Options: string[] }> = ({ Options }) => {
}
removePainting('paintings', paintingToDelete)
if (paintings.length === 1) {
setPainting(getNewPainting())
}
}
const onSelectPainting = (newPainting: Painting) => {
@@ -326,8 +323,11 @@ const PaintingsPage: FC<{ Options: string[] }> = ({ Options }) => {
useEffect(() => {
if (paintings.length === 0) {
addPainting('paintings', getNewPainting())
const newPainting = getNewPainting()
addPainting('paintings', newPainting)
setPainting(newPainting)
}
return () => {
if (spaceClickTimer.current) {
clearTimeout(spaceClickTimer.current)
@@ -602,11 +602,13 @@ const RadioButton = styled(Radio.Button)`
align-items: center;
`
const InfoIcon = styled(QuestionCircleOutlined)`
const InfoIcon = styled(Info)`
margin-left: 5px;
cursor: help;
color: var(--color-text-2);
opacity: 0.6;
width: 16px;
height: 16px;
&:hover {
opacity: 1;

View File

@@ -24,6 +24,7 @@ const AssistantModelSettings: FC<Props> = ({ assistant, updateAssistant, updateA
const [enableMaxTokens, setEnableMaxTokens] = useState(assistant?.settings?.enableMaxTokens ?? false)
const [maxTokens, setMaxTokens] = useState(assistant?.settings?.maxTokens ?? 0)
const [streamOutput, setStreamOutput] = useState(assistant?.settings?.streamOutput ?? true)
const [enableToolUse, setEnableToolUse] = useState(assistant?.settings?.enableToolUse ?? false)
const [defaultModel, setDefaultModel] = useState(assistant?.defaultModel)
const [topP, setTopP] = useState(assistant?.settings?.topP ?? 1)
const [customParameters, setCustomParameters] = useState<AssistantSettingCustomParameters[]>(
@@ -377,6 +378,18 @@ const AssistantModelSettings: FC<Props> = ({ assistant, updateAssistant, updateA
/>
</SettingRow>
<Divider style={{ margin: '10px 0' }} />
<SettingRow style={{ minHeight: 30 }}>
<Label>{t('models.enable_tool_use')}</Label>
<Switch
size="small"
checked={enableToolUse}
onChange={(checked) => {
setEnableToolUse(checked)
updateAssistantSettings({ enableToolUse: checked })
}}
/>
</SettingRow>
<Divider style={{ margin: '10px 0' }} />
<SettingRow style={{ minHeight: 30 }}>
<Label>{t('models.custom_parameters')}</Label>
<Button icon={<PlusOutlined />} onClick={onAddCustomParameter}>

View File

@@ -1,10 +1,5 @@
import { UndoOutlined } from '@ant-design/icons' // 导入重置图标
import {
DEFAULT_MIN_APPS,
loadCustomMiniApp,
ORIGIN_DEFAULT_MIN_APPS,
updateDefaultMinApps
} from '@renderer/config/minapps'
import { DEFAULT_MIN_APPS } from '@renderer/config/minapps'
import { useTheme } from '@renderer/context/ThemeProvider'
import { useMinapps } from '@renderer/hooks/useMinapps'
import { useSettings } from '@renderer/hooks/useSettings'
@@ -14,7 +9,7 @@ import {
setMinappsOpenLinkExternal,
setShowOpenedMinappsInSidebar
} from '@renderer/store/settings'
import { Button, Input, message, Slider, Switch, Tooltip } from 'antd'
import { Button, message, Slider, Switch, Tooltip } from 'antd'
import { FC, useCallback, useEffect, useRef, useState } from 'react'
import { useTranslation } from 'react-i18next'
import styled from 'styled-components'
@@ -36,92 +31,6 @@ const MiniAppSettings: FC = () => {
const [disabledMiniApps, setDisabledMiniApps] = useState(disabled || [])
const [messageApi, contextHolder] = message.useMessage()
const debounceTimerRef = useRef<NodeJS.Timeout | null>(null)
const [customMiniAppContent, setCustomMiniAppContent] = useState('[]')
// 加载自定义小应用配置
useEffect(() => {
const loadCustomMiniApp = async () => {
try {
const content = await window.api.file.read('customMiniAPP')
let validContent = '[]'
try {
const parsed = JSON.parse(content)
validContent = JSON.stringify(parsed)
} catch (e) {
console.error('Invalid JSON format in custom mini app config:', e)
}
setCustomMiniAppContent(validContent)
} catch (error) {
console.error('Failed to load custom mini app config:', error)
setCustomMiniAppContent('[]')
}
}
loadCustomMiniApp()
}, [])
// 保存自定义小应用配置
const handleSaveCustomMiniApp = useCallback(async () => {
try {
// 验证 JSON 格式
if (customMiniAppContent === '') {
setCustomMiniAppContent('[]')
}
const parsedContent = JSON.parse(customMiniAppContent)
// 确保是数组
if (!Array.isArray(parsedContent)) {
throw new Error('Content must be an array')
}
// 检查自定义应用中的重复ID
const customIds = new Set<string>()
const duplicateIds = new Set<string>()
parsedContent.forEach((app: any) => {
if (app.id) {
if (customIds.has(app.id)) {
duplicateIds.add(app.id)
}
customIds.add(app.id)
}
})
// 检查与默认应用的ID重复
const defaultIds = new Set(ORIGIN_DEFAULT_MIN_APPS.map((app) => app.id))
const conflictingIds = new Set<string>()
customIds.forEach((id) => {
if (defaultIds.has(id)) {
conflictingIds.add(id)
}
})
// 如果有重复ID显示错误信息
if (duplicateIds.size > 0 || conflictingIds.size > 0) {
let errorMessage = ''
if (duplicateIds.size > 0) {
errorMessage += t('settings.miniapps.custom.duplicate_ids', { ids: Array.from(duplicateIds).join(', ') })
}
if (conflictingIds.size > 0) {
console.log('conflictingIds', Array.from(conflictingIds))
if (errorMessage) errorMessage += '\n'
errorMessage += t('settings.miniapps.custom.conflicting_ids', { ids: Array.from(conflictingIds).join(', ') })
}
messageApi.error(errorMessage)
return
}
// 保存文件
await window.api.file.writeWithId('customMiniAPP', customMiniAppContent)
messageApi.success(t('settings.miniapps.custom.save_success'))
// 重新加载应用列表
console.log('Reloading mini app list...')
const reloadedApps = [...ORIGIN_DEFAULT_MIN_APPS, ...(await loadCustomMiniApp())]
updateDefaultMinApps(reloadedApps)
console.log('Reloaded mini app list:', reloadedApps)
updateMinapps(reloadedApps)
} catch (error) {
messageApi.error(t('settings.miniapps.custom.save_error'))
console.error('Failed to save custom mini app config:', error)
}
}, [customMiniAppContent, messageApi, t, updateMinapps])
const handleResetMinApps = useCallback(() => {
setVisibleMiniApps(DEFAULT_MIN_APPS)
@@ -235,30 +144,6 @@ const MiniAppSettings: FC = () => {
onChange={(checked) => dispatch(setShowOpenedMinappsInSidebar(checked))}
/>
</SettingRow>
<SettingDivider />
<SettingRow>
<SettingLabelGroup>
<SettingRowTitle>{t('settings.miniapps.custom.edit_title')}</SettingRowTitle>
<SettingDescription>{t('settings.miniapps.custom.edit_description')}</SettingDescription>
</SettingLabelGroup>
</SettingRow>
<CustomEditorContainer>
<Input.TextArea
value={customMiniAppContent}
onChange={(e) => setCustomMiniAppContent(e.target.value)}
placeholder={t('settings.miniapps.custom.placeholder')}
style={{
minHeight: 200,
fontFamily: 'monospace',
backgroundColor: 'var(--color-bg-2)',
color: 'var(--color-text)',
borderColor: 'var(--color-border)'
}}
/>
<Button type="primary" onClick={handleSaveCustomMiniApp} style={{ marginTop: 8 }}>
{t('settings.miniapps.custom.save')}
</Button>
</CustomEditorContainer>
</SettingGroup>
</SettingContainer>
)

View File

@@ -1,6 +1,6 @@
import { isOpenAILLMModel } from '@renderer/config/models'
import { getDefaultModel } from '@renderer/services/AssistantService'
import { Assistant, Model, Provider, Suggestion } from '@renderer/types'
import { Assistant, MCPCallToolResponse, MCPTool, MCPToolResponse, Model, Provider, Suggestion } from '@renderer/types'
import { Message } from '@renderer/types/newMessage'
import OpenAI from 'openai'
@@ -18,6 +18,7 @@ import OpenAIProvider from './OpenAIProvider'
export default class AihubmixProvider extends BaseProvider {
private providers: Map<string, BaseProvider> = new Map()
private defaultProvider: BaseProvider
private currentProvider: BaseProvider
constructor(provider: Provider) {
super(provider)
@@ -30,6 +31,7 @@ export default class AihubmixProvider extends BaseProvider {
// 设置默认提供商
this.defaultProvider = this.providers.get('default')!
this.currentProvider = this.defaultProvider
}
/**
@@ -70,7 +72,8 @@ export default class AihubmixProvider extends BaseProvider {
public async completions(params: CompletionsParams): Promise<void> {
const model = params.assistant.model
return this.getProvider(model!).completions(params)
this.currentProvider = this.getProvider(model!)
return this.currentProvider.completions(params)
}
public async translate(
@@ -100,4 +103,12 @@ export default class AihubmixProvider extends BaseProvider {
public async getEmbeddingDimensions(model: Model): Promise<number> {
return this.getProvider(model).getEmbeddingDimensions(model)
}
public convertMcpTools<T>(mcpTools: MCPTool[]) {
return this.currentProvider.convertMcpTools(mcpTools) as T[]
}
public mcpToolCallResponseToMessage(mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) {
return this.currentProvider.mcpToolCallResponseToMessage(mcpToolResponse, resp, model)
}
}

View File

@@ -1,15 +1,19 @@
import Anthropic from '@anthropic-ai/sdk'
import {
Base64ImageSource,
ImageBlockParam,
MessageCreateParamsNonStreaming,
MessageParam,
TextBlockParam,
ToolResultBlockParam,
ToolUnion,
ToolUseBlock,
WebSearchResultBlock,
WebSearchTool20250305,
WebSearchToolResultError
} from '@anthropic-ai/sdk/resources'
import { DEFAULT_MAX_TOKENS } from '@renderer/config/constant'
import { isReasoningModel, isVisionModel, isWebSearchModel } from '@renderer/config/models'
import { isReasoningModel, isWebSearchModel } from '@renderer/config/models'
import { getStoreSetting } from '@renderer/hooks/useSettings'
import i18n from '@renderer/i18n'
import { getAssistantSettings, getDefaultModel, getTopNamingModel } from '@renderer/services/AssistantService'
@@ -23,16 +27,24 @@ import {
Assistant,
EFFORT_RATIO,
FileTypes,
MCPCallToolResponse,
MCPTool,
MCPToolResponse,
Model,
Provider,
Suggestion,
ToolCallResponse,
WebSearchSource
} from '@renderer/types'
import { ChunkType } from '@renderer/types/chunk'
import type { Message } from '@renderer/types/newMessage'
import { removeSpecialCharactersForTopicName } from '@renderer/utils'
import { mcpToolCallResponseToAnthropicMessage, parseAndCallTools } from '@renderer/utils/mcp-tools'
import {
anthropicToolUseToMcpTool,
mcpToolCallResponseToAnthropicMessage,
mcpToolsToAnthropicTools,
parseAndCallTools
} from '@renderer/utils/mcp-tools'
import { findFileBlocks, findImageBlocks, getMainTextContent } from '@renderer/utils/messageUtils/find'
import { buildSystemPrompt } from '@renderer/utils/prompt'
import { first, flatten, sum, takeRight } from 'lodash'
@@ -199,7 +211,7 @@ export default class AnthropicProvider extends BaseProvider {
public async completions({ messages, assistant, mcpTools, onChunk, onFilterMessages }: CompletionsParams) {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const { contextCount, maxTokens, streamOutput, enableToolUse } = getAssistantSettings(assistant)
const userMessagesParams: MessageParam[] = []
@@ -215,10 +227,16 @@ export default class AnthropicProvider extends BaseProvider {
const userMessages = flatten(userMessagesParams)
const lastUserMessage = _messages.findLast((m) => m.role === 'user')
// const tools = mcpTools ? mcpToolsToAnthropicTools(mcpTools) : undefined
let systemPrompt = assistant.prompt
if (mcpTools && mcpTools.length > 0) {
const { tools } = this.setupToolsConfig<ToolUnion>({
model,
mcpTools,
enableToolUse
})
if (this.useSystemPromptForTools && mcpTools && mcpTools.length) {
systemPrompt = buildSystemPrompt(systemPrompt, mcpTools)
}
@@ -232,8 +250,6 @@ export default class AnthropicProvider extends BaseProvider {
const isEnabledBuiltinWebSearch = assistant.enableWebSearch
const tools: ToolUnion[] = []
if (isEnabledBuiltinWebSearch) {
const webSearchTool = await this.getWebSearchParams(model)
if (webSearchTool) {
@@ -244,7 +260,6 @@ export default class AnthropicProvider extends BaseProvider {
const body: MessageCreateParamsNonStreaming = {
model: model.id,
messages: userMessages,
// tools: isEmpty(tools) ? undefined : tools,
max_tokens: maxTokens || DEFAULT_MAX_TOKENS,
temperature: this.getTemperature(assistant, model),
top_p: this.getTopP(assistant, model),
@@ -303,7 +318,7 @@ export default class AnthropicProvider extends BaseProvider {
const processStream = (body: MessageCreateParamsNonStreaming, idx: number) => {
return new Promise<void>((resolve, reject) => {
// 等待接口返回流
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
const toolCalls: ToolUseBlock[] = []
let hasThinkingContent = false
this.sdk.messages
.stream({ ...body, stream: true }, { signal, timeout: 5 * 60 * 1000 })
@@ -380,30 +395,70 @@ export default class AnthropicProvider extends BaseProvider {
})
thinking_content += thinking
})
.on('contentBlock', (content) => {
if (content.type === 'tool_use') {
toolCalls.push(content)
}
})
.on('finalMessage', async (message) => {
const toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
// tool call
if (toolCalls.length > 0) {
const mcpToolResponses = toolCalls
.map((toolCall) => {
const mcpTool = anthropicToolUseToMcpTool(mcpTools, toolCall)
if (!mcpTool) {
return undefined
}
return {
id: toolCall.id,
toolCallId: toolCall.id,
tool: mcpTool,
arguments: toolCall.input as Record<string, unknown>,
status: 'pending'
} as ToolCallResponse
})
.filter((t) => typeof t !== 'undefined')
toolResults.push(
...(await parseAndCallTools(
mcpToolResponses,
toolResponses,
onChunk,
this.mcpToolCallResponseToMessage,
model,
mcpTools
))
)
}
// tool use
const content = message.content[0]
if (content && content.type === 'text') {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: content.text })
const toolResults = await parseAndCallTools(
content.text,
toolResponses,
onChunk,
idx,
mcpToolCallResponseToAnthropicMessage,
mcpTools,
isVisionModel(model)
toolResults.push(
...(await parseAndCallTools(
content.text,
toolResponses,
onChunk,
this.mcpToolCallResponseToMessage,
model,
mcpTools
))
)
if (toolResults.length > 0) {
userMessages.push({
role: message.role,
content: message.content
})
}
toolResults.forEach((ts) => userMessages.push(ts as MessageParam))
const newBody = body
newBody.messages = userMessages
await processStream(newBody, idx + 1)
}
userMessages.push({
role: message.role,
content: message.content
})
if (toolResults.length > 0) {
toolResults.forEach((ts) => userMessages.push(ts as MessageParam))
const newBody = body
newBody.messages = userMessages
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
await processStream(newBody, idx + 1)
}
const time_completion_millsec = new Date().getTime() - start_time_millsec
@@ -434,7 +489,7 @@ export default class AnthropicProvider extends BaseProvider {
})
})
}
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
await processStream(body, 0).finally(cleanup)
}
@@ -683,4 +738,47 @@ export default class AnthropicProvider extends BaseProvider {
public async getEmbeddingDimensions(): Promise<number> {
return 0
}
public convertMcpTools<T>(mcpTools: MCPTool[]): T[] {
return mcpToolsToAnthropicTools(mcpTools) as T[]
}
public mcpToolCallResponseToMessage = (mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) => {
if ('toolUseId' in mcpToolResponse && mcpToolResponse.toolUseId) {
return mcpToolCallResponseToAnthropicMessage(mcpToolResponse, resp, model)
} else if ('toolCallId' in mcpToolResponse) {
return {
role: 'user',
content: [
{
type: 'tool_result',
tool_use_id: mcpToolResponse.toolCallId!,
content: resp.content
.map((item) => {
if (item.type === 'text') {
return {
type: 'text',
text: item.text || ''
} satisfies TextBlockParam
}
if (item.type === 'image') {
return {
type: 'image',
source: {
data: item.data || '',
media_type: (item.mimeType || 'image/png') as Base64ImageSource['media_type'],
type: 'base64'
}
} satisfies ImageBlockParam
}
return
})
.filter((n) => typeof n !== 'undefined'),
is_error: resp.isError
} satisfies ToolResultBlockParam
]
}
}
return
}
}

View File

@@ -1,9 +1,13 @@
import { isFunctionCallingModel } from '@renderer/config/models'
import { REFERENCE_PROMPT } from '@renderer/config/prompts'
import { getLMStudioKeepAliveTime } from '@renderer/hooks/useLMStudio'
import type {
Assistant,
GenerateImageParams,
KnowledgeReference,
MCPCallToolResponse,
MCPTool,
MCPToolResponse,
Model,
Provider,
Suggestion,
@@ -22,10 +26,15 @@ import type OpenAI from 'openai'
import type { CompletionsParams } from '.'
export default abstract class BaseProvider {
// Threshold for determining whether to use system prompt for tools
private static readonly SYSTEM_PROMPT_THRESHOLD: number = 128
protected provider: Provider
protected host: string
protected apiKey: string
protected useSystemPromptForTools: boolean = true
constructor(provider: Provider) {
this.provider = provider
this.host = this.getBaseURL()
@@ -47,6 +56,12 @@ export default abstract class BaseProvider {
abstract generateImage(params: GenerateImageParams): Promise<string[]>
abstract generateImageByChat({ messages, assistant, onChunk, onFilterMessages }: CompletionsParams): Promise<void>
abstract getEmbeddingDimensions(model: Model): Promise<number>
public abstract convertMcpTools<T>(mcpTools: MCPTool[]): T[]
public abstract mcpToolCallResponseToMessage(
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
model: Model
): any
public getBaseURL(): string {
const host = this.provider.apiHost
@@ -229,4 +244,31 @@ export default abstract class BaseProvider {
cleanup
}
}
// Setup tools configuration based on provided parameters
protected setupToolsConfig<T>(params: { mcpTools?: MCPTool[]; model: Model; enableToolUse?: boolean }): {
tools: T[]
} {
const { mcpTools, model, enableToolUse } = params
let tools: T[] = []
// If there are no tools, return an empty array
if (!mcpTools?.length) {
return { tools }
}
// If the number of tools exceeds the threshold, use the system prompt
if (mcpTools.length > BaseProvider.SYSTEM_PROMPT_THRESHOLD) {
this.useSystemPromptForTools = true
return { tools }
}
// If the model supports function calling and tool usage is enabled
if (isFunctionCallingModel(model) && enableToolUse) {
tools = this.convertMcpTools<T>(mcpTools)
this.useSystemPromptForTools = false
}
return { tools }
}
}

View File

@@ -1,6 +1,7 @@
import {
Content,
File,
FunctionCall,
GenerateContentConfig,
GenerateContentResponse,
GoogleGenAI,
@@ -11,8 +12,9 @@ import {
PartUnion,
SafetySetting,
ThinkingConfig,
ToolListUnion
Tool
} from '@google/genai'
import { nanoid } from '@reduxjs/toolkit'
import {
findTokenLimit,
isGeminiReasoningModel,
@@ -35,17 +37,25 @@ import {
EFFORT_RATIO,
FileType,
FileTypes,
MCPCallToolResponse,
MCPTool,
MCPToolResponse,
Model,
Provider,
Suggestion,
ToolCallResponse,
Usage,
WebSearchSource
} from '@renderer/types'
import { BlockCompleteChunk, Chunk, ChunkType, LLMWebSearchCompleteChunk } from '@renderer/types/chunk'
import type { Message, Response } from '@renderer/types/newMessage'
import { removeSpecialCharactersForTopicName } from '@renderer/utils'
import { mcpToolCallResponseToGeminiMessage, parseAndCallTools } from '@renderer/utils/mcp-tools'
import {
geminiFunctionCallToMcpTool,
mcpToolCallResponseToGeminiMessage,
mcpToolsToGeminiTools,
parseAndCallTools
} from '@renderer/utils/mcp-tools'
import { findFileBlocks, findImageBlocks, getMainTextContent } from '@renderer/utils/messageUtils/find'
import { buildSystemPrompt } from '@renderer/utils/prompt'
import { MB } from '@shared/config/constant'
@@ -263,7 +273,7 @@ export default class GeminiProvider extends BaseProvider {
}: CompletionsParams): Promise<void> {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const { contextCount, maxTokens, streamOutput, enableToolUse } = getAssistantSettings(assistant)
const userMessages = filterUserRoleStartMessages(
filterEmptyMessages(filterContextMessages(takeRight(messages, contextCount + 2)))
@@ -280,12 +290,16 @@ export default class GeminiProvider extends BaseProvider {
let systemInstruction = assistant.prompt
if (mcpTools && mcpTools.length > 0) {
const { tools } = this.setupToolsConfig<Tool>({
mcpTools,
model,
enableToolUse
})
if (this.useSystemPromptForTools) {
systemInstruction = buildSystemPrompt(assistant.prompt || '', mcpTools)
}
// const tools = mcpToolsToGeminiTools(mcpTools)
const tools: ToolListUnion = []
const toolResponses: MCPToolResponse[] = []
if (assistant.enableWebSearch && isWebSearchModel(model)) {
@@ -351,6 +365,224 @@ export default class GeminiProvider extends BaseProvider {
const { cleanup, abortController } = this.createAbortController(userLastMessage?.id, true)
const processToolResults = async (toolResults: Awaited<ReturnType<typeof parseAndCallTools>>, idx: number) => {
if (toolResults.length === 0) return
const newChat = this.sdk.chats.create({
model: model.id,
config: generateContentConfig,
history: history as Content[]
})
const newStream = await newChat.sendMessageStream({
message: flatten(toolResults.map((ts) => (ts as Content).parts)) as PartUnion,
config: {
...generateContentConfig,
abortSignal: abortController.signal
}
})
await processStream(newStream, idx + 1)
}
const processToolCalls = async (toolCalls: FunctionCall[]) => {
const mcpToolResponses: ToolCallResponse[] = toolCalls
.map((toolCall) => {
const mcpTool = geminiFunctionCallToMcpTool(mcpTools, toolCall)
if (!mcpTool) return undefined
const parsedArgs = (() => {
try {
return typeof toolCall.args === 'string' ? JSON.parse(toolCall.args) : toolCall.args
} catch {
return toolCall.args
}
})()
return {
id: toolCall.id || nanoid(),
toolCallId: toolCall.id,
tool: mcpTool,
arguments: parsedArgs,
status: 'pending'
} as ToolCallResponse
})
.filter((t): t is ToolCallResponse => typeof t !== 'undefined')
return await parseAndCallTools(
mcpToolResponses,
toolResponses,
onChunk,
this.mcpToolCallResponseToMessage,
model,
mcpTools
)
}
const processToolUses = async (content: string) => {
return await parseAndCallTools(
content,
toolResponses,
onChunk,
this.mcpToolCallResponseToMessage,
model,
mcpTools
)
}
const processStream = async (
stream: AsyncGenerator<GenerateContentResponse> | GenerateContentResponse,
idx: number
) => {
history.push(messageContents)
let functionCalls: FunctionCall[] = []
if (stream instanceof GenerateContentResponse) {
let content = ''
const time_completion_millsec = new Date().getTime() - start_time_millsec
const toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
if (stream.text?.length) {
toolResults.push(...(await processToolUses(stream.text)))
}
stream.candidates?.forEach((candidate) => {
if (candidate.content) {
history.push(candidate.content)
candidate.content.parts?.forEach((part) => {
if (part.functionCall) {
functionCalls.push(part.functionCall)
}
if (part.text) {
content += part.text
onChunk({ type: ChunkType.TEXT_DELTA, text: part.text })
}
})
}
})
if (content.length) {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: content })
}
if (functionCalls.length) {
toolResults.push(...(await processToolCalls(functionCalls)))
}
if (stream.text?.length) {
toolResults.push(...(await processToolUses(stream.text)))
}
if (toolResults.length) {
await processToolResults(toolResults, idx)
}
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
text: stream.text,
usage: {
prompt_tokens: stream.usageMetadata?.promptTokenCount || 0,
thoughts_tokens: stream.usageMetadata?.thoughtsTokenCount || 0,
completion_tokens: stream.usageMetadata?.candidatesTokenCount || 0,
total_tokens: stream.usageMetadata?.totalTokenCount || 0
},
metrics: {
completion_tokens: stream.usageMetadata?.candidatesTokenCount,
time_completion_millsec,
time_first_token_millsec: 0
},
webSearch: {
results: stream.candidates?.[0]?.groundingMetadata,
source: 'gemini'
}
} as Response
} as BlockCompleteChunk)
} else {
let content = ''
let final_time_completion_millsec = 0
let lastUsage: Usage | undefined = undefined
for await (const chunk of stream) {
if (window.keyv.get(EVENT_NAMES.CHAT_COMPLETION_PAUSED)) break
// --- Calculate Metrics ---
if (time_first_token_millsec == 0 && chunk.text !== undefined) {
// Update based on text arrival
time_first_token_millsec = new Date().getTime() - start_time_millsec
}
// 1. Text Content
if (chunk.text !== undefined) {
content += chunk.text
onChunk({ type: ChunkType.TEXT_DELTA, text: chunk.text })
}
// 2. Usage Data
if (chunk.usageMetadata) {
lastUsage = {
prompt_tokens: chunk.usageMetadata.promptTokenCount || 0,
completion_tokens: chunk.usageMetadata.candidatesTokenCount || 0,
total_tokens: chunk.usageMetadata.totalTokenCount || 0
}
final_time_completion_millsec = new Date().getTime() - start_time_millsec
}
// 4. Image Generation
const generateImage = this.processGeminiImageResponse(chunk, onChunk)
if (generateImage?.images?.length) {
onChunk({ type: ChunkType.IMAGE_COMPLETE, image: generateImage })
}
if (chunk.candidates?.[0]?.finishReason) {
if (chunk.text) {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: content })
}
if (chunk.candidates?.[0]?.groundingMetadata) {
// 3. Grounding/Search Metadata
const groundingMetadata = chunk.candidates?.[0]?.groundingMetadata
onChunk({
type: ChunkType.LLM_WEB_SEARCH_COMPLETE,
llm_web_search: {
results: groundingMetadata,
source: WebSearchSource.GEMINI
}
} as LLMWebSearchCompleteChunk)
}
if (chunk.functionCalls) {
chunk.candidates?.forEach((candidate) => {
if (candidate.content) {
history.push(candidate.content)
}
})
functionCalls = functionCalls.concat(chunk.functionCalls)
}
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
metrics: {
completion_tokens: lastUsage?.completion_tokens,
time_completion_millsec: final_time_completion_millsec,
time_first_token_millsec
},
usage: lastUsage
}
})
}
// --- End Incremental onChunk calls ---
// Call processToolUses AFTER potentially processing text content in this chunk
// This assumes tools might be specified within the text stream
// Note: parseAndCallTools inside should handle its own onChunk for tool responses
let toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
if (functionCalls.length) {
toolResults = await processToolCalls(functionCalls)
}
if (content.length) {
toolResults = toolResults.concat(await processToolUses(content))
}
if (toolResults.length) {
await processToolResults(toolResults, idx)
}
}
}
}
if (!streamOutput) {
const response = await chat.sendMessage({
message: messageContents as PartUnion,
@@ -359,32 +591,10 @@ export default class GeminiProvider extends BaseProvider {
abortSignal: abortController.signal
}
})
const time_completion_millsec = new Date().getTime() - start_time_millsec
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
text: response.text,
usage: {
prompt_tokens: response.usageMetadata?.promptTokenCount || 0,
thoughts_tokens: response.usageMetadata?.thoughtsTokenCount || 0,
completion_tokens: response.usageMetadata?.candidatesTokenCount || 0,
total_tokens: response.usageMetadata?.totalTokenCount || 0
},
metrics: {
completion_tokens: response.usageMetadata?.candidatesTokenCount,
time_completion_millsec,
time_first_token_millsec: 0
},
webSearch: {
results: response.candidates?.[0]?.groundingMetadata,
source: 'gemini'
}
} as Response
} as BlockCompleteChunk)
return
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
return await processStream(response, 0).then(cleanup)
}
// 等待接口返回流
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
const userMessagesStream = await chat.sendMessageStream({
message: messageContents as PartUnion,
@@ -394,105 +604,6 @@ export default class GeminiProvider extends BaseProvider {
}
})
const processToolUses = async (content: string, idx: number) => {
const toolResults = await parseAndCallTools(
content,
toolResponses,
onChunk,
idx,
mcpToolCallResponseToGeminiMessage,
mcpTools,
isVisionModel(model)
)
if (toolResults && toolResults.length > 0) {
history.push(messageContents)
const newChat = this.sdk.chats.create({
model: model.id,
config: generateContentConfig,
history: history as Content[]
})
const newStream = await newChat.sendMessageStream({
message: flatten(toolResults.map((ts) => (ts as Content).parts)) as PartUnion,
config: {
...generateContentConfig,
abortSignal: abortController.signal
}
})
await processStream(newStream, idx + 1)
}
}
const processStream = async (stream: AsyncGenerator<GenerateContentResponse>, idx: number) => {
let content = ''
let final_time_completion_millsec = 0
let lastUsage: Usage | undefined = undefined
for await (const chunk of stream) {
if (window.keyv.get(EVENT_NAMES.CHAT_COMPLETION_PAUSED)) break
// --- Calculate Metrics ---
if (time_first_token_millsec == 0 && chunk.text !== undefined) {
// Update based on text arrival
time_first_token_millsec = new Date().getTime() - start_time_millsec
}
// 1. Text Content
if (chunk.text !== undefined) {
content += chunk.text
onChunk({ type: ChunkType.TEXT_DELTA, text: chunk.text })
}
// 2. Usage Data
if (chunk.usageMetadata) {
lastUsage = {
prompt_tokens: chunk.usageMetadata.promptTokenCount || 0,
completion_tokens: chunk.usageMetadata.candidatesTokenCount || 0,
total_tokens: chunk.usageMetadata.totalTokenCount || 0
}
final_time_completion_millsec = new Date().getTime() - start_time_millsec
}
// 4. Image Generation
const generateImage = this.processGeminiImageResponse(chunk, onChunk)
if (generateImage?.images?.length) {
onChunk({ type: ChunkType.IMAGE_COMPLETE, image: generateImage })
}
if (chunk.candidates?.[0]?.finishReason) {
if (chunk.text) {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: content })
}
if (chunk.candidates?.[0]?.groundingMetadata) {
// 3. Grounding/Search Metadata
const groundingMetadata = chunk.candidates?.[0]?.groundingMetadata
onChunk({
type: ChunkType.LLM_WEB_SEARCH_COMPLETE,
llm_web_search: {
results: groundingMetadata,
source: WebSearchSource.GEMINI
}
} as LLMWebSearchCompleteChunk)
}
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
metrics: {
completion_tokens: lastUsage?.completion_tokens,
time_completion_millsec: final_time_completion_millsec,
time_first_token_millsec
},
usage: lastUsage
}
})
}
// --- End Incremental onChunk calls ---
// Call processToolUses AFTER potentially processing text content in this chunk
// This assumes tools might be specified within the text stream
// Note: parseAndCallTools inside should handle its own onChunk for tool responses
await processToolUses(content, idx)
}
}
await processStream(userMessagesStream, 0).finally(cleanup)
const final_time_completion_millsec = new Date().getTime() - start_time_millsec
@@ -841,4 +952,32 @@ export default class GeminiProvider extends BaseProvider {
public generateImageByChat(): Promise<void> {
throw new Error('Method not implemented.')
}
public convertMcpTools<T>(mcpTools: MCPTool[]): T[] {
return mcpToolsToGeminiTools(mcpTools) as T[]
}
public mcpToolCallResponseToMessage = (mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) => {
if ('toolUseId' in mcpToolResponse && mcpToolResponse.toolUseId) {
return mcpToolCallResponseToGeminiMessage(mcpToolResponse, resp, isVisionModel(model))
} else if ('toolCallId' in mcpToolResponse) {
const toolCallOut = {
role: 'user',
parts: [
{
functionResponse: {
id: mcpToolResponse.toolCallId,
name: mcpToolResponse.tool.id,
response: {
output: !resp.isError ? resp.content : undefined,
error: resp.isError ? resp.content : undefined
}
}
}
]
} satisfies Content
return toolCallOut
}
return
}
}

View File

@@ -31,10 +31,13 @@ import {
Assistant,
EFFORT_RATIO,
FileTypes,
MCPCallToolResponse,
MCPTool,
MCPToolResponse,
Model,
Provider,
Suggestion,
ToolCallResponse,
Usage,
WebSearchSource
} from '@renderer/types'
@@ -48,7 +51,12 @@ import {
convertLinksToOpenRouter,
convertLinksToZhipu
} from '@renderer/utils/linkConverter'
import { mcpToolCallResponseToOpenAICompatibleMessage, parseAndCallTools } from '@renderer/utils/mcp-tools'
import {
mcpToolCallResponseToOpenAICompatibleMessage,
mcpToolsToOpenAIChatTools,
openAIToolsToMcpTool,
parseAndCallTools
} from '@renderer/utils/mcp-tools'
import { findFileBlocks, findImageBlocks, getMainTextContent } from '@renderer/utils/messageUtils/find'
import { buildSystemPrompt } from '@renderer/utils/prompt'
import { asyncGeneratorToReadableStream, readableStreamAsyncIterable } from '@renderer/utils/stream'
@@ -57,18 +65,22 @@ import OpenAI, { AzureOpenAI } from 'openai'
import {
ChatCompletionContentPart,
ChatCompletionCreateParamsNonStreaming,
ChatCompletionMessageParam
ChatCompletionMessageParam,
ChatCompletionMessageToolCall,
ChatCompletionTool,
ChatCompletionToolMessageParam
} from 'openai/resources'
import { CompletionsParams } from '.'
import OpenAIProvider from './OpenAIProvider'
import { BaseOpenAiProvider } from './OpenAIProvider'
// 1. 定义联合类型
export type OpenAIStreamChunk =
| { type: 'reasoning' | 'text-delta'; textDelta: string }
| { type: 'tool-calls'; delta: any }
| { type: 'finish'; finishReason: any; usage: any; delta: any; chunk: any }
export default class OpenAICompatibleProvider extends OpenAIProvider {
export default class OpenAICompatibleProvider extends BaseOpenAiProvider {
constructor(provider: Provider) {
super(provider)
@@ -313,6 +325,24 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
return {}
}
public convertMcpTools<T>(mcpTools: MCPTool[]): T[] {
return mcpToolsToOpenAIChatTools(mcpTools) as T[]
}
public mcpToolCallResponseToMessage = (mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) => {
if ('toolUseId' in mcpToolResponse && mcpToolResponse.toolUseId) {
return mcpToolCallResponseToOpenAICompatibleMessage(mcpToolResponse, resp, isVisionModel(model))
} else if ('toolCallId' in mcpToolResponse && mcpToolResponse.toolCallId) {
const toolCallOut: ChatCompletionToolMessageParam = {
role: 'tool',
tool_call_id: mcpToolResponse.toolCallId,
content: JSON.stringify(resp.content)
}
return toolCallOut
}
return
}
/**
* Generate completions for the assistant
* @param messages - The messages
@@ -330,7 +360,7 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const { contextCount, maxTokens, streamOutput, enableToolUse } = getAssistantSettings(assistant)
const isEnabledBultinWebSearch = assistant.enableWebSearch
messages = addImageFileToContents(messages)
const enableReasoning =
@@ -344,7 +374,9 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
content: `Formatting re-enabled${systemMessage ? '\n' + systemMessage.content : ''}`
}
}
if (mcpTools && mcpTools.length > 0) {
const { tools } = this.setupToolsConfig<ChatCompletionTool>({ mcpTools, model, enableToolUse })
if (this.useSystemPromptForTools) {
systemMessage.content = buildSystemPrompt(systemMessage.content || '', mcpTools)
}
@@ -379,53 +411,86 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
const toolResponses: MCPToolResponse[] = []
const processToolUses = async (content: string, idx: number) => {
const toolResults = await parseAndCallTools(
const processToolResults = async (toolResults: Awaited<ReturnType<typeof parseAndCallTools>>, idx: number) => {
if (toolResults.length === 0) return
toolResults.forEach((ts) => reqMessages.push(ts as ChatCompletionMessageParam))
console.debug('[tool] reqMessages before processing', model.id, reqMessages)
reqMessages = processReqMessages(model, reqMessages)
console.debug('[tool] reqMessages', model.id, reqMessages)
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
const newStream = await this.sdk.chat.completions
// @ts-ignore key is not typed
.create(
{
model: model.id,
messages: reqMessages,
temperature: this.getTemperature(assistant, model),
top_p: this.getTopP(assistant, model),
max_tokens: maxTokens,
keep_alive: this.keepAliveTime,
stream: isSupportStreamOutput(),
tools: !isEmpty(tools) ? tools : undefined,
...getOpenAIWebSearchParams(assistant, model),
...this.getReasoningEffort(assistant, model),
...this.getProviderSpecificParameters(assistant, model),
...this.getCustomParameters(assistant)
},
{
signal
}
)
await processStream(newStream, idx + 1)
}
const processToolCalls = async (mcpTools, toolCalls: ChatCompletionMessageToolCall[]) => {
const mcpToolResponses = toolCalls
.map((toolCall) => {
const mcpTool = openAIToolsToMcpTool(mcpTools, toolCall as ChatCompletionMessageToolCall)
if (!mcpTool) return undefined
const parsedArgs = (() => {
try {
return JSON.parse(toolCall.function.arguments)
} catch {
return toolCall.function.arguments
}
})()
return {
id: toolCall.id,
toolCallId: toolCall.id,
tool: mcpTool,
arguments: parsedArgs,
status: 'pending'
} as ToolCallResponse
})
.filter((t): t is ToolCallResponse => typeof t !== 'undefined')
return await parseAndCallTools(
mcpToolResponses,
toolResponses,
onChunk,
this.mcpToolCallResponseToMessage,
model,
mcpTools
)
}
const processToolUses = async (content: string) => {
return await parseAndCallTools(
content,
toolResponses,
onChunk,
idx,
mcpToolCallResponseToOpenAICompatibleMessage,
mcpTools,
isVisionModel(model)
this.mcpToolCallResponseToMessage,
model,
mcpTools
)
if (toolResults.length > 0) {
reqMessages.push({
role: 'assistant',
content: content
} as ChatCompletionMessageParam)
toolResults.forEach((ts) => reqMessages.push(ts as ChatCompletionMessageParam))
reqMessages = processReqMessages(model, reqMessages)
const newStream = await this.sdk.chat.completions
// @ts-ignore key is not typed
.create(
{
model: model.id,
messages: reqMessages,
temperature: this.getTemperature(assistant, model),
top_p: this.getTopP(assistant, model),
max_tokens: maxTokens,
keep_alive: this.keepAliveTime,
stream: isSupportStreamOutput(),
// tools: tools,
service_tier: this.getServiceTier(model),
...getOpenAIWebSearchParams(assistant, model),
...this.getReasoningEffort(assistant, model),
...this.getProviderSpecificParameters(assistant, model),
...this.getCustomParameters(assistant)
},
{
signal,
timeout: this.getTimeout(model)
}
)
await processStream(newStream, idx + 1)
}
}
const processStream = async (stream: any, idx: number) => {
const toolCalls: ChatCompletionMessageToolCall[] = []
// Handle non-streaming case (already returns early, no change needed here)
if (!isSupportStreamOutput()) {
const time_completion_millsec = new Date().getTime() - start_time_millsec
@@ -439,10 +504,59 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
// Create a synthetic usage object if stream.usage is undefined
const finalUsage = stream.usage
// Separate onChunk calls for text and usage/metrics
if (stream.choices[0].message?.content) {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: stream.choices[0].message.content })
let content = ''
stream.choices.forEach((choice) => {
// reasoning
if (choice.message.reasoning) {
onChunk({ type: ChunkType.THINKING_DELTA, text: choice.message.reasoning })
onChunk({
type: ChunkType.THINKING_COMPLETE,
text: choice.message.reasoning,
thinking_millsec: time_completion_millsec
})
}
// text
if (choice.message.content) {
content += choice.message.content
onChunk({ type: ChunkType.TEXT_DELTA, text: choice.message.content })
}
// tool call
if (choice.message.tool_calls && choice.message.tool_calls.length) {
choice.message.tool_calls.forEach((t) => toolCalls.push(t))
}
reqMessages.push({
role: choice.message.role,
content: choice.message.content,
tool_calls: toolCalls.length
? toolCalls.map((toolCall) => ({
id: toolCall.id,
function: {
...toolCall.function,
arguments:
typeof toolCall.function.arguments === 'string'
? toolCall.function.arguments
: JSON.stringify(toolCall.function.arguments)
},
type: 'function'
}))
: undefined
})
})
if (content.length) {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: content })
}
const toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
if (toolCalls.length) {
toolResults.push(...(await processToolCalls(mcpTools, toolCalls)))
}
if (stream.choices[0].message?.content) {
toolResults.push(...(await processToolUses(stream.choices[0].message?.content)))
}
await processToolResults(toolResults, idx)
// Always send usage and metrics data
onChunk({ type: ChunkType.BLOCK_COMPLETE, response: { usage: finalUsage, metrics: finalMetrics } })
return
@@ -486,6 +600,9 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
if (delta?.content) {
yield { type: 'text-delta', textDelta: delta.content }
}
if (delta?.tool_calls) {
yield { type: 'tool-calls', delta: delta }
}
const finishReason = chunk.choices[0]?.finish_reason
if (!isEmpty(finishReason)) {
@@ -563,6 +680,25 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
onChunk({ type: ChunkType.TEXT_DELTA, text: textDelta })
break
}
case 'tool-calls': {
chunk.delta.tool_calls.forEach((toolCall) => {
const { id, index, type, function: fun } = toolCall
if (id && type === 'function' && fun) {
const { name, arguments: args } = fun
toolCalls.push({
id,
function: {
name: name || '',
arguments: args || ''
},
type: 'function'
})
} else if (fun?.arguments) {
toolCalls[index].function.arguments += fun.arguments
}
})
break
}
case 'finish': {
const finishReason = chunk.finishReason
const usage = chunk.usage
@@ -624,7 +760,33 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
} as LLMWebSearchCompleteChunk)
}
}
await processToolUses(content, idx)
reqMessages.push({
role: 'assistant',
content: content,
tool_calls: toolCalls.length
? toolCalls.map((toolCall) => ({
id: toolCall.id,
function: {
...toolCall.function,
arguments:
typeof toolCall.function.arguments === 'string'
? toolCall.function.arguments
: JSON.stringify(toolCall.function.arguments)
},
type: 'function'
}))
: undefined
})
let toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
if (toolCalls.length) {
toolResults = await processToolCalls(mcpTools, toolCalls)
}
if (content.length) {
toolResults = toolResults.concat(await processToolUses(content))
}
if (toolResults.length) {
await processToolResults(toolResults, idx)
}
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
@@ -657,7 +819,7 @@ export default class OpenAICompatibleProvider extends OpenAIProvider {
max_tokens: maxTokens,
keep_alive: this.keepAliveTime,
stream: isSupportStreamOutput(),
// tools: tools,
tools: !isEmpty(tools) ? tools : undefined,
service_tier: this.getServiceTier(model),
...getOpenAIWebSearchParams(assistant, model),
...this.getReasoningEffort(assistant, model),

View File

@@ -21,10 +21,13 @@ import {
Assistant,
FileTypes,
GenerateImageParams,
MCPCallToolResponse,
MCPTool,
MCPToolResponse,
Model,
Provider,
Suggestion,
ToolCallResponse,
Usage,
WebSearchSource
} from '@renderer/types'
@@ -33,7 +36,12 @@ import { Message } from '@renderer/types/newMessage'
import { removeSpecialCharactersForTopicName } from '@renderer/utils'
import { addImageFileToContents } from '@renderer/utils/formats'
import { convertLinks } from '@renderer/utils/linkConverter'
import { mcpToolCallResponseToOpenAIMessage, parseAndCallTools } from '@renderer/utils/mcp-tools'
import {
mcpToolCallResponseToOpenAIMessage,
mcpToolsToOpenAIResponseTools,
openAIToolsToMcpTool,
parseAndCallTools
} from '@renderer/utils/mcp-tools'
import { findFileBlocks, findImageBlocks, getMainTextContent } from '@renderer/utils/messageUtils/find'
import { buildSystemPrompt } from '@renderer/utils/prompt'
import { isEmpty, takeRight } from 'lodash'
@@ -45,7 +53,7 @@ import { FileLike, toFile } from 'openai/uploads'
import { CompletionsParams } from '.'
import BaseProvider from './BaseProvider'
export default class OpenAIProvider extends BaseProvider {
export abstract class BaseOpenAiProvider extends BaseProvider {
protected sdk: OpenAI
constructor(provider: Provider) {
@@ -61,6 +69,14 @@ export default class OpenAIProvider extends BaseProvider {
})
}
abstract convertMcpTools<T>(mcpTools: MCPTool[]): T[]
abstract mcpToolCallResponseToMessage: (
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
model: Model
) => OpenAI.Responses.ResponseInputItem | ChatCompletionMessageParam | undefined
/**
* Extract the file content from the message
* @param message - The message
@@ -91,16 +107,23 @@ export default class OpenAIProvider extends BaseProvider {
return ''
}
private async getReponseMessageParam(message: Message, model: Model): Promise<OpenAI.Responses.EasyInputMessage> {
private async getReponseMessageParam(message: Message, model: Model): Promise<OpenAI.Responses.ResponseInputItem> {
const isVision = isVisionModel(model)
const content = await this.getMessageContent(message)
const fileBlocks = findFileBlocks(message)
const imageBlocks = findImageBlocks(message)
if (fileBlocks.length === 0 && imageBlocks.length === 0) {
return {
role: message.role === 'system' ? 'user' : message.role,
content: content ? [{ type: 'input_text', text: content }] : []
if (message.role === 'assistant') {
return {
role: 'assistant',
content: content
}
} else {
return {
role: message.role === 'system' ? 'user' : message.role,
content: content ? [{ type: 'input_text', text: content }] : []
} as OpenAI.Responses.EasyInputMessage
}
}
@@ -285,10 +308,8 @@ export default class OpenAIProvider extends BaseProvider {
}
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const { contextCount, maxTokens, streamOutput, enableToolUse } = getAssistantSettings(assistant)
const isEnabledBuiltinWebSearch = assistant.enableWebSearch
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
// 退回到 OpenAI 兼容模式
if (isOpenAIWebSearch(model)) {
const systemMessage = { role: 'system', content: assistant.prompt || '' }
@@ -387,7 +408,7 @@ export default class OpenAIProvider extends BaseProvider {
})
return
}
const tools: OpenAI.Responses.Tool[] = []
let tools: OpenAI.Responses.Tool[] = []
const toolChoices: OpenAI.Responses.ToolChoiceTypes = {
type: 'web_search_preview'
}
@@ -411,7 +432,15 @@ export default class OpenAIProvider extends BaseProvider {
systemMessage.role = 'developer'
}
if (mcpTools && mcpTools.length > 0) {
const { tools: extraTools } = this.setupToolsConfig<OpenAI.Responses.Tool>({
mcpTools,
model,
enableToolUse
})
tools = tools.concat(extraTools)
if (this.useSystemPromptForTools) {
systemMessageInput.text = buildSystemPrompt(systemMessageInput.text || '', mcpTools)
}
systemMessageContent.push(systemMessageInput)
@@ -421,7 +450,7 @@ export default class OpenAIProvider extends BaseProvider {
)
onFilterMessages(_messages)
const userMessage: OpenAI.Responses.EasyInputMessage[] = []
const userMessage: OpenAI.Responses.ResponseInputItem[] = []
for (const message of _messages) {
userMessage.push(await this.getReponseMessageParam(message, model))
}
@@ -434,7 +463,7 @@ export default class OpenAIProvider extends BaseProvider {
const { signal } = abortController
// 当 systemMessage 内容为空时不发送 systemMessage
let reqMessages: OpenAI.Responses.EasyInputMessage[]
let reqMessages: OpenAI.Responses.ResponseInput
if (!systemMessage.content) {
reqMessages = [...userMessage]
} else {
@@ -443,48 +472,84 @@ export default class OpenAIProvider extends BaseProvider {
const toolResponses: MCPToolResponse[] = []
const processToolUses = async (content: string, idx: number) => {
const toolResults = await parseAndCallTools(
const processToolResults = async (toolResults: Awaited<ReturnType<typeof parseAndCallTools>>, idx: number) => {
if (toolResults.length === 0) return
toolResults.forEach((ts) => reqMessages.push(ts as OpenAI.Responses.EasyInputMessage))
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
const stream = await this.sdk.responses.create(
{
model: model.id,
input: reqMessages,
temperature: this.getTemperature(assistant, model),
top_p: this.getTopP(assistant, model),
max_output_tokens: maxTokens,
stream: streamOutput,
tools: !isEmpty(tools) ? tools : undefined,
service_tier: this.getServiceTier(model),
...this.getResponseReasoningEffort(assistant, model),
...this.getCustomParameters(assistant)
},
{
signal,
timeout: this.getTimeout(model)
}
)
await processStream(stream, idx + 1)
}
const processToolCalls = async (mcpTools, toolCalls: OpenAI.Responses.ResponseFunctionToolCall[]) => {
const mcpToolResponses = toolCalls
.map((toolCall) => {
const mcpTool = openAIToolsToMcpTool(mcpTools, toolCall as OpenAI.Responses.ResponseFunctionToolCall)
if (!mcpTool) return undefined
const parsedArgs = (() => {
try {
return JSON.parse(toolCall.arguments)
} catch {
return toolCall.arguments
}
})()
return {
id: toolCall.call_id,
toolCallId: toolCall.call_id,
tool: mcpTool,
arguments: parsedArgs,
status: 'pending'
} as ToolCallResponse
})
.filter((t): t is ToolCallResponse => typeof t !== 'undefined')
return await parseAndCallTools<OpenAI.Responses.ResponseInputItem | ChatCompletionMessageParam>(
mcpToolResponses,
toolResponses,
onChunk,
this.mcpToolCallResponseToMessage,
model,
mcpTools
)
}
const processToolUses = async (content: string) => {
return await parseAndCallTools(
content,
toolResponses,
onChunk,
idx,
mcpToolCallResponseToOpenAIMessage,
mcpTools,
isVisionModel(model)
this.mcpToolCallResponseToMessage,
model,
mcpTools
)
if (toolResults.length > 0) {
reqMessages.push({
role: 'assistant',
content: content
})
toolResults.forEach((ts) => reqMessages.push(ts as OpenAI.Responses.EasyInputMessage))
const newStream = await this.sdk.responses.create(
{
model: model.id,
input: reqMessages,
temperature: this.getTemperature(assistant, model),
top_p: this.getTopP(assistant, model),
max_output_tokens: maxTokens,
stream: true,
service_tier: this.getServiceTier(model),
...this.getResponseReasoningEffort(assistant, model),
...this.getCustomParameters(assistant)
},
{
signal,
timeout: this.getTimeout(model)
}
)
await processStream(newStream, idx + 1)
}
}
const processStream = async (
stream: Stream<OpenAI.Responses.ResponseStreamEvent> | OpenAI.Responses.Response,
idx: number
) => {
const toolCalls: OpenAI.Responses.ResponseFunctionToolCall[] = []
if (!streamOutput) {
const nonStream = stream as OpenAI.Responses.Response
const time_completion_millsec = new Date().getTime() - start_time_millsec
@@ -502,11 +567,15 @@ export default class OpenAIProvider extends BaseProvider {
prompt_tokens: nonStream.usage?.input_tokens || 0,
total_tokens
}
let content = ''
for (const output of nonStream.output) {
switch (output.type) {
case 'message':
if (output.content[0].type === 'output_text') {
onChunk({ type: ChunkType.TEXT_DELTA, text: output.content[0].text })
onChunk({ type: ChunkType.TEXT_COMPLETE, text: output.content[0].text })
content += output.content[0].text
if (output.content[0].annotations && output.content[0].annotations.length > 0) {
onChunk({
type: ChunkType.LLM_WEB_SEARCH_COMPLETE,
@@ -525,8 +594,32 @@ export default class OpenAIProvider extends BaseProvider {
thinking_millsec: new Date().getTime() - start_time_millsec
})
break
case 'function_call':
toolCalls.push(output)
}
}
if (content) {
reqMessages.push({
role: 'assistant',
content: content
})
}
if (toolCalls.length) {
toolCalls.forEach((toolCall) => {
reqMessages.push(toolCall)
})
}
const toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
if (toolCalls.length) {
toolResults.push(...(await processToolCalls(mcpTools, toolCalls)))
}
if (content.length) {
toolResults.push(...(await processToolUses(content)))
}
await processToolResults(toolResults, idx)
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
@@ -537,6 +630,9 @@ export default class OpenAIProvider extends BaseProvider {
return
}
let content = ''
const outputItems: OpenAI.Responses.ResponseOutputItem[] = []
let lastUsage: Usage | undefined = undefined
let final_time_completion_millsec_delta = 0
for await (const chunk of stream as Stream<OpenAI.Responses.ResponseStreamEvent>) {
@@ -547,6 +643,12 @@ export default class OpenAIProvider extends BaseProvider {
case 'response.created':
time_first_token_millsec = new Date().getTime()
break
case 'response.output_item.added':
if (chunk.item.type === 'function_call') {
outputItems.push(chunk.item)
}
break
case 'response.reasoning_summary_text.delta':
onChunk({
type: ChunkType.THINKING_DELTA,
@@ -579,6 +681,21 @@ export default class OpenAIProvider extends BaseProvider {
text: content
})
break
case 'response.function_call_arguments.done': {
const outputItem: OpenAI.Responses.ResponseOutputItem | undefined = outputItems.find(
(item) => item.id === chunk.item_id
)
if (outputItem) {
if (outputItem.type === 'function_call') {
toolCalls.push({
...outputItem,
arguments: chunk.arguments
})
}
}
break
}
case 'response.content_part.done':
if (chunk.part.type === 'output_text' && chunk.part.annotations && chunk.part.annotations.length > 0) {
onChunk({
@@ -615,9 +732,31 @@ export default class OpenAIProvider extends BaseProvider {
})
break
}
// --- End of Incremental onChunk calls ---
} // End of for await loop
if (content) {
reqMessages.push({
role: 'assistant',
content: content
})
}
if (toolCalls.length) {
toolCalls.forEach((toolCall) => {
reqMessages.push(toolCall)
})
}
await processToolUses(content, idx)
// Call processToolUses AFTER the loop finishes processing the main stream content
// Note: parseAndCallTools inside processToolUses should handle its own onChunk for tool responses
const toolResults: Awaited<ReturnType<typeof parseAndCallTools>> = []
if (toolCalls.length) {
toolResults.push(...(await processToolCalls(mcpTools, toolCalls)))
}
if (content) {
toolResults.push(...(await processToolUses(content)))
}
await processToolResults(toolResults, idx)
onChunk({
type: ChunkType.BLOCK_COMPLETE,
@@ -632,6 +771,7 @@ export default class OpenAIProvider extends BaseProvider {
})
}
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
const stream = await this.sdk.responses.create(
{
model: model.id,
@@ -1081,3 +1221,31 @@ export default class OpenAIProvider extends BaseProvider {
return data.data[0].embedding.length
}
}
export default class OpenAIProvider extends BaseOpenAiProvider {
constructor(provider: Provider) {
super(provider)
}
public convertMcpTools<T>(mcpTools: MCPTool[]) {
return mcpToolsToOpenAIResponseTools(mcpTools) as T[]
}
public mcpToolCallResponseToMessage = (
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
model: Model
): OpenAI.Responses.ResponseInputItem | undefined => {
if ('toolUseId' in mcpToolResponse && mcpToolResponse.toolUseId) {
return mcpToolCallResponseToOpenAIMessage(mcpToolResponse, resp, isVisionModel(model))
} else if ('toolCallId' in mcpToolResponse && mcpToolResponse.toolCallId) {
const toolCallOut: OpenAI.Responses.ResponseInputItem = {
type: 'function_call_output',
call_id: mcpToolResponse.toolCallId,
output: JSON.stringify(resp.content)
}
return toolCallOut
}
return
}
}

View File

@@ -107,6 +107,7 @@ export const getAssistantSettings = (assistant: Assistant): AssistantSettings =>
enableMaxTokens: assistant?.settings?.enableMaxTokens ?? false,
maxTokens: getAssistantMaxTokens(),
streamOutput: assistant?.settings?.streamOutput ?? true,
enableToolUse: assistant?.settings?.enableToolUse ?? false,
hideMessages: assistant?.settings?.hideMessages ?? false,
defaultModel: assistant?.defaultModel ?? undefined,
customParameters: assistant?.settings?.customParameters ?? []

View File

@@ -46,7 +46,7 @@ const persistedReducer = persistReducer(
{
key: 'cherry-studio',
storage,
version: 99,
version: 98,
blacklist: ['runtime', 'messages', 'messageBlocks'],
migrate
},

View File

@@ -476,16 +476,6 @@ export const INITIAL_PROVIDERS: Provider[] = [
models: SYSTEM_MODELS.voyageai,
isSystem: true,
enabled: false
},
{
id: 'paratera',
name: 'Paratera AI',
type: 'openai-compatible',
apiKey: '',
apiHost: 'https://llmapi.paratera.com',
models: SYSTEM_MODELS.paratera,
isSystem: true,
enabled: false
}
]

View File

@@ -1248,15 +1248,6 @@ const migrateConfig = {
provider.type = 'openai-compatible'
}
})
return state
} catch (error) {
return state
}
},
'99': (state: RootState) => {
try {
addProvider(state, 'paratera')
return state
} catch (error) {
return state

View File

@@ -427,7 +427,17 @@ const fetchAndProcessAssistantResponseImpl = async (
}
},
onToolCallInProgress: (toolResponse: MCPToolResponse) => {
if (toolResponse.status === 'invoking') {
if (lastBlockType === MessageBlockType.UNKNOWN && lastBlockId) {
lastBlockType = MessageBlockType.TOOL
const changes = {
type: MessageBlockType.TOOL,
status: MessageBlockStatus.PROCESSING,
metadata: { rawMcpToolResponse: toolResponse }
}
dispatch(updateOneBlock({ id: lastBlockId, changes }))
saveUpdatedBlockToDB(lastBlockId, assistantMsgId, topicId, getState)
toolCallIdToBlockIdMap.set(toolResponse.id, lastBlockId)
} else if (toolResponse.status === 'invoking') {
const toolBlock = createToolBlock(assistantMsgId, toolResponse.id, {
toolName: toolResponse.tool.name,
status: MessageBlockStatus.PROCESSING,

View File

@@ -55,6 +55,7 @@ export type AssistantSettings = {
maxTokens: number | undefined
enableMaxTokens: boolean
streamOutput: boolean
enableToolUse: boolean
hideMessages: boolean
defaultModel?: Model
customParameters?: AssistantSettingCustomParameters[]
@@ -570,13 +571,25 @@ export interface MCPConfig {
servers: MCPServer[]
}
export interface MCPToolResponse {
id: string // tool call id, it should be unique
tool: MCPTool // tool info
interface BaseToolResponse {
id: string // unique id
tool: MCPTool
arguments: Record<string, unknown> | undefined
status: string // 'invoking' | 'done'
response?: any
}
export interface ToolUseResponse extends BaseToolResponse {
toolUseId: string
}
export interface ToolCallResponse extends BaseToolResponse {
// gemini tool call id might be undefined
toolCallId?: string
}
export type MCPToolResponse = ToolUseResponse | ToolCallResponse
export interface MCPToolResultContent {
type: 'text' | 'image' | 'audio' | 'resource'
text?: string
@@ -586,6 +599,7 @@ export interface MCPToolResultContent {
uri?: string
text?: string
mimeType?: string
blob?: string
}
}

View File

@@ -1,18 +1,31 @@
import { ContentBlockParam, ToolUnion, ToolUseBlock } from '@anthropic-ai/sdk/resources'
import { MessageParam } from '@anthropic-ai/sdk/resources'
import { Content, FunctionCall, Part } from '@google/genai'
import {
ContentBlockParam,
MessageParam,
ToolResultBlockParam,
ToolUnion,
ToolUseBlock
} from '@anthropic-ai/sdk/resources'
import { Content, FunctionCall, Part, Tool, Type as GeminiSchemaType } from '@google/genai'
import { isVisionModel } from '@renderer/config/models'
import store from '@renderer/store'
import { addMCPServer } from '@renderer/store/mcp'
import { MCPCallToolResponse, MCPServer, MCPTool, MCPToolResponse } from '@renderer/types'
import { MCPCallToolResponse, MCPServer, MCPTool, MCPToolResponse, Model, ToolUseResponse } from '@renderer/types'
import type { MCPToolCompleteChunk, MCPToolInProgressChunk } from '@renderer/types/chunk'
import { ChunkType } from '@renderer/types/chunk'
import { isArray, isObject, pull, transform } from 'lodash'
import { nanoid } from 'nanoid'
import OpenAI from 'openai'
import { ChatCompletionContentPart, ChatCompletionMessageParam, ChatCompletionMessageToolCall } from 'openai/resources'
import {
ChatCompletionContentPart,
ChatCompletionMessageParam,
ChatCompletionMessageToolCall,
ChatCompletionTool
} from 'openai/resources'
import { CompletionsParams } from '../providers/AiProvider'
const MCP_AUTO_INSTALL_SERVER_NAME = '@cherry/mcp-auto-install'
const EXTRA_SCHEMA_KEYS = ['schema', 'headers']
// const ensureValidSchema = (obj: Record<string, any>) => {
// // Filter out unsupported keys for Gemini
@@ -153,77 +166,116 @@ const MCP_AUTO_INSTALL_SERVER_NAME = '@cherry/mcp-auto-install'
// return processedProperties
// }
// export function mcpToolsToOpenAITools(mcpTools: MCPTool[]): Array<ChatCompletionTool> {
// return mcpTools.map((tool) => ({
// type: 'function',
// name: tool.name,
// function: {
// name: tool.id,
// description: tool.description,
// parameters: {
// type: 'object',
// properties: filterPropertieAttributes(tool)
// }
// }
// }))
// }
export function openAIToolsToMcpTool(
mcpTools: MCPTool[] | undefined,
llmTool: ChatCompletionMessageToolCall
): MCPTool | undefined {
if (!mcpTools) {
return undefined
export function filterProperties(
properties: Record<string, any> | string | number | boolean | Array<Record<string, any> | string | number | boolean>,
supportedKeys: string[]
) {
// If it is an array, recursively process each element
if (isArray(properties)) {
return properties.map((item) => filterProperties(item, supportedKeys))
}
const tool = mcpTools.find(
(mcptool) => mcptool.id === llmTool.function.name || mcptool.name === llmTool.function.name
)
// If it is an object, recursively process each property
if (isObject(properties)) {
return transform(
properties,
(result, value, key) => {
if (key === 'properties') {
result[key] = transform(value, (acc, v, k) => {
acc[k] = filterProperties(v, supportedKeys)
})
if (!tool) {
console.warn('No MCP Tool found for tool call:', llmTool)
return undefined
result['additionalProperties'] = false
result['required'] = pull(Object.keys(value), ...EXTRA_SCHEMA_KEYS)
} else if (key === 'oneOf') {
// openai only supports anyOf
result['anyOf'] = filterProperties(value, supportedKeys)
} else if (supportedKeys.includes(key)) {
result[key] = filterProperties(value, supportedKeys)
if (key === 'type' && value === 'object') {
result['additionalProperties'] = false
}
}
},
{}
)
}
console.log(
`[MCP] OpenAI Tool to MCP Tool: ${tool.serverName} ${tool.name}`,
tool,
'args',
llmTool.function.arguments
)
// use this to parse the arguments and avoid parsing errors
let args: any = {}
try {
args = JSON.parse(llmTool.function.arguments)
} catch (e) {
console.error('Error parsing arguments', e)
}
return {
id: tool.id,
serverId: tool.serverId,
serverName: tool.serverName,
name: tool.name,
description: tool.description,
inputSchema: args
}
// Return other types directly (e.g., string, number, etc.)
return properties
}
export async function callMCPTool(tool: MCPTool): Promise<MCPCallToolResponse> {
console.log(`[MCP] Calling Tool: ${tool.serverName} ${tool.name}`, tool)
export function mcpToolsToOpenAIResponseTools(mcpTools: MCPTool[]): OpenAI.Responses.Tool[] {
const schemaKeys = ['type', 'description', 'items', 'enum', 'additionalProperties', 'anyof']
return mcpTools.map(
(tool) =>
({
type: 'function',
name: tool.id,
parameters: {
type: 'object',
properties: filterProperties(tool.inputSchema, schemaKeys).properties,
required: pull(Object.keys(tool.inputSchema.properties), ...EXTRA_SCHEMA_KEYS),
additionalProperties: false
},
strict: true
}) satisfies OpenAI.Responses.Tool
)
}
export function mcpToolsToOpenAIChatTools(mcpTools: MCPTool[]): Array<ChatCompletionTool> {
return mcpTools.map(
(tool) =>
({
type: 'function',
function: {
name: tool.id,
description: tool.description,
parameters: {
type: 'object',
properties: tool.inputSchema.properties,
required: tool.inputSchema.required
}
}
}) as ChatCompletionTool
)
}
export function openAIToolsToMcpTool(
mcpTools: MCPTool[],
toolCall: OpenAI.Responses.ResponseFunctionToolCall | ChatCompletionMessageToolCall
): MCPTool | undefined {
const tool = mcpTools.find((mcpTool) => {
if ('name' in toolCall) {
return mcpTool.id === toolCall.name || mcpTool.name === toolCall.name
} else {
return mcpTool.id === toolCall.function.name || mcpTool.name === toolCall.function.name
}
})
if (!tool) {
console.warn('No MCP Tool found for tool call:', toolCall)
return undefined
}
return tool
}
export async function callMCPTool(toolResponse: MCPToolResponse): Promise<MCPCallToolResponse> {
console.log(`[MCP] Calling Tool: ${toolResponse.tool.serverName} ${toolResponse.tool.name}`, toolResponse.tool)
try {
const server = getMcpServerByTool(tool)
const server = getMcpServerByTool(toolResponse.tool)
if (!server) {
throw new Error(`Server not found: ${tool.serverName}`)
throw new Error(`Server not found: ${toolResponse.tool.serverName}`)
}
const resp = await window.api.mcp.callTool({
server,
name: tool.name,
args: tool.inputSchema
name: toolResponse.tool.name,
args: toolResponse.arguments
})
if (tool.serverName === MCP_AUTO_INSTALL_SERVER_NAME) {
if (toolResponse.tool.serverName === MCP_AUTO_INSTALL_SERVER_NAME) {
if (resp.data) {
const mcpServer: MCPServer = {
id: `f${nanoid()}`,
@@ -241,16 +293,16 @@ export async function callMCPTool(tool: MCPTool): Promise<MCPCallToolResponse> {
}
}
console.log(`[MCP] Tool called: ${tool.serverName} ${tool.name}`, resp)
console.log(`[MCP] Tool called: ${toolResponse.tool.serverName} ${toolResponse.tool.name}`, resp)
return resp
} catch (e) {
console.error(`[MCP] Error calling Tool: ${tool.serverName} ${tool.name}`, e)
console.error(`[MCP] Error calling Tool: ${toolResponse.tool.serverName} ${toolResponse.tool.name}`, e)
return Promise.resolve({
isError: true,
content: [
{
type: 'text',
text: `Error calling tool ${tool.name}: ${e instanceof Error ? e.stack || e.message || 'No error details available' : JSON.stringify(e)}`
text: `Error calling tool ${toolResponse.tool.name}: ${e instanceof Error ? e.stack || e.message || 'No error details available' : JSON.stringify(e)}`
}
]
})
@@ -262,7 +314,7 @@ export function mcpToolsToAnthropicTools(mcpTools: MCPTool[]): Array<ToolUnion>
const t: ToolUnion = {
name: tool.id,
description: tool.description,
// @ts-ignore no check
// @ts-ignore ignore type as it it unknow
input_schema: tool.inputSchema
}
return t
@@ -275,53 +327,68 @@ export function anthropicToolUseToMcpTool(mcpTools: MCPTool[] | undefined, toolU
if (!tool) {
return undefined
}
// @ts-ignore ignore type as it it unknow
tool.inputSchema = toolUse.input
return tool
}
// export function mcpToolsToGeminiTools(mcpTools: MCPTool[] | undefined): geminiTool[] {
// if (!mcpTools || mcpTools.length === 0) {
// // No tools available
// return []
// }
// const functions: FunctionDeclaration[] = []
// for (const tool of mcpTools) {
// const properties = filterPropertieAttributes(tool, true)
// const functionDeclaration: FunctionDeclaration = {
// name: tool.id,
// description: tool.description,
// parameters: {
// type: SchemaType.OBJECT,
// properties:
// Object.keys(properties).length > 0
// ? Object.fromEntries(
// Object.entries(properties).map(([key, value]) => [key, ensureValidSchema(value as Record<string, any>)])
// )
// : { _empty: { type: SchemaType.STRING } as SimpleStringSchema }
// } as FunctionDeclarationSchema
// }
// functions.push(functionDeclaration)
// }
// const tool: geminiTool = {
// functionDeclarations: functions
// }
// return [tool]
// }
/**
* @param mcpTools
* @returns
*/
export function mcpToolsToGeminiTools(mcpTools: MCPTool[]): Tool[] {
/**
* @typedef {import('@google/genai').Schema} Schema
*/
const schemaKeys = [
'example',
'pattern',
'default',
'maxLength',
'minLength',
'minProperties',
'maxProperties',
'anyOf',
'description',
'enum',
'format',
'items',
'maxItems',
'maximum',
'minItems',
'minimum',
'nullable',
'properties',
'propertyOrdering',
'required',
'title',
'type'
]
return [
{
functionDeclarations: mcpTools?.map((tool) => {
return {
name: tool.id,
description: tool.description,
parameters: {
type: GeminiSchemaType.OBJECT,
properties: filterProperties(tool.inputSchema, schemaKeys).properties,
required: tool.inputSchema.required
}
}
})
}
]
}
export function geminiFunctionCallToMcpTool(
mcpTools: MCPTool[] | undefined,
fcall: FunctionCall | undefined
toolCall: FunctionCall | undefined
): MCPTool | undefined {
if (!fcall) return undefined
if (!toolCall) return undefined
if (!mcpTools) return undefined
const tool = mcpTools.find((tool) => tool.id === fcall.name)
const tool = mcpTools.find((tool) => tool.id === toolCall.name)
if (!tool) {
return undefined
}
// @ts-ignore schema is not a valid property
tool.inputSchema = fcall.args
return tool
}
@@ -368,13 +435,13 @@ export function getMcpServerByTool(tool: MCPTool) {
return servers.find((s) => s.id === tool.serverId)
}
export function parseToolUse(content: string, mcpTools: MCPTool[]): MCPToolResponse[] {
export function parseToolUse(content: string, mcpTools: MCPTool[]): ToolUseResponse[] {
if (!content || !mcpTools || mcpTools.length === 0) {
return []
}
const toolUsePattern =
/<tool_use>([\s\S]*?)<name>([\s\S]*?)<\/name>([\s\S]*?)<arguments>([\s\S]*?)<\/arguments>([\s\S]*?)<\/tool_use>/g
const tools: MCPToolResponse[] = []
const tools: ToolUseResponse[] = []
let match
let idx = 0
// Find all tool use blocks
@@ -401,10 +468,9 @@ export function parseToolUse(content: string, mcpTools: MCPTool[]): MCPToolRespo
// Add to tools array
tools.push({
id: `${toolName}-${idx++}`, // Unique ID for each tool use
tool: {
...mcpTool,
inputSchema: parsedArgs
},
toolUseId: mcpTool.id,
tool: mcpTool,
arguments: parsedArgs,
status: 'pending'
})
@@ -414,36 +480,69 @@ export function parseToolUse(content: string, mcpTools: MCPTool[]): MCPToolRespo
return tools
}
export async function parseAndCallTools(
content: string,
toolResponses: MCPToolResponse[],
export async function parseAndCallTools<R>(
tools: MCPToolResponse[],
allToolResponses: MCPToolResponse[],
onChunk: CompletionsParams['onChunk'],
idx: number,
convertToMessage: (
toolCallId: string,
resp: MCPCallToolResponse,
isVisionModel: boolean
) => ChatCompletionMessageParam | MessageParam | Content | OpenAI.Responses.EasyInputMessage,
mcpTools?: MCPTool[],
isVisionModel: boolean = false
): Promise<(ChatCompletionMessageParam | MessageParam | Content | OpenAI.Responses.EasyInputMessage)[]> {
const toolResults: (ChatCompletionMessageParam | MessageParam | Content | OpenAI.Responses.EasyInputMessage)[] = []
// process tool use
const tools = parseToolUse(content, mcpTools || [])
if (!tools || tools.length === 0) {
convertToMessage: (mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) => R | undefined,
model: Model,
mcpTools?: MCPTool[]
): Promise<
(ChatCompletionMessageParam | MessageParam | Content | OpenAI.Responses.ResponseInputItem | ToolResultBlockParam)[]
>
export async function parseAndCallTools<R>(
content: string,
allToolResponses: MCPToolResponse[],
onChunk: CompletionsParams['onChunk'],
convertToMessage: (mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) => R | undefined,
model: Model,
mcpTools?: MCPTool[]
): Promise<
(ChatCompletionMessageParam | MessageParam | Content | OpenAI.Responses.ResponseInputItem | ToolResultBlockParam)[]
>
export async function parseAndCallTools<R>(
content: string | MCPToolResponse[],
allToolResponses: MCPToolResponse[],
onChunk: CompletionsParams['onChunk'],
convertToMessage: (mcpToolResponse: MCPToolResponse, resp: MCPCallToolResponse, model: Model) => R | undefined,
model: Model,
mcpTools?: MCPTool[]
): Promise<R[]> {
const toolResults: R[] = []
let curToolResponses: MCPToolResponse[] = []
if (Array.isArray(content)) {
curToolResponses = content
} else {
// process tool use
curToolResponses = parseToolUse(content, mcpTools || [])
}
if (!curToolResponses || curToolResponses.length === 0) {
return toolResults
}
for (let i = 0; i < tools.length; i++) {
const tool = tools[i]
upsertMCPToolResponse(toolResponses, { id: `${tool.id}-${idx}-${i}`, tool: tool.tool, status: 'invoking' }, onChunk)
for (let i = 0; i < curToolResponses.length; i++) {
const toolResponse = curToolResponses[i]
upsertMCPToolResponse(
allToolResponses,
{
...toolResponse,
status: 'invoking'
},
onChunk
)
}
const toolPromises = tools.map(async (tool, i) => {
const toolPromises = curToolResponses.map(async (toolResponse) => {
const images: string[] = []
const toolCallResponse = await callMCPTool(tool.tool)
const toolCallResponse = await callMCPTool(toolResponse)
upsertMCPToolResponse(
toolResponses,
{ id: `${tool.id}-${idx}-${i}`, tool: tool.tool, status: 'done', response: toolCallResponse },
allToolResponses,
{
...toolResponse,
status: 'done',
response: toolCallResponse
},
onChunk
)
@@ -466,15 +565,15 @@ export async function parseAndCallTools(
})
}
return convertToMessage(tool.tool.id, toolCallResponse, isVisionModel)
return convertToMessage(toolResponse, toolCallResponse, model)
})
toolResults.push(...(await Promise.all(toolPromises)))
toolResults.push(...(await Promise.all(toolPromises)).filter((t) => typeof t !== 'undefined'))
return toolResults
}
export function mcpToolCallResponseToOpenAICompatibleMessage(
toolCallId: string,
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
isVisionModel: boolean = false
): ChatCompletionMessageParam {
@@ -488,7 +587,7 @@ export function mcpToolCallResponseToOpenAICompatibleMessage(
const content: ChatCompletionContentPart[] = [
{
type: 'text',
text: `Here is the result of tool call ${toolCallId}:`
text: `Here is the result of mcp tool use \`${mcpToolResponse.tool.name}\`:`
}
]
@@ -541,7 +640,7 @@ export function mcpToolCallResponseToOpenAICompatibleMessage(
}
export function mcpToolCallResponseToOpenAIMessage(
toolCallId: string,
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
isVisionModel: boolean = false
): OpenAI.Responses.EasyInputMessage {
@@ -555,7 +654,7 @@ export function mcpToolCallResponseToOpenAIMessage(
const content: OpenAI.Responses.ResponseInputContent[] = [
{
type: 'input_text',
text: `Here is the result of tool call ${toolCallId}:`
text: `Here is the result of mcp tool use \`${mcpToolResponse.tool.name}\`:`
}
]
@@ -597,9 +696,9 @@ export function mcpToolCallResponseToOpenAIMessage(
}
export function mcpToolCallResponseToAnthropicMessage(
toolCallId: string,
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
isVisionModel: boolean = false
model: Model
): MessageParam {
const message = {
role: 'user'
@@ -610,10 +709,10 @@ export function mcpToolCallResponseToAnthropicMessage(
const content: ContentBlockParam[] = [
{
type: 'text',
text: `Here is the result of tool call ${toolCallId}:`
text: `Here is the result of mcp tool use \`${mcpToolResponse.tool.name}\`:`
}
]
if (isVisionModel) {
if (isVisionModel(model)) {
for (const item of resp.content) {
switch (item.type) {
case 'text':
@@ -665,7 +764,7 @@ export function mcpToolCallResponseToAnthropicMessage(
}
export function mcpToolCallResponseToGeminiMessage(
toolCallId: string,
mcpToolResponse: MCPToolResponse,
resp: MCPCallToolResponse,
isVisionModel: boolean = false
): Content {
@@ -682,7 +781,7 @@ export function mcpToolCallResponseToGeminiMessage(
} else {
const parts: Part[] = [
{
text: `Here is the result of tool call ${toolCallId}:`
text: `Here is the result of mcp tool use \`${mcpToolResponse.tool.name}\`:`
}
]
if (isVisionModel) {

View File

@@ -147,7 +147,7 @@ ${availableTools}
</tools>`
}
export const buildSystemPrompt = (userSystemPrompt: string, tools: MCPTool[]): string => {
export const buildSystemPrompt = (userSystemPrompt: string, tools?: MCPTool[]): string => {
if (tools && tools.length > 0) {
return SYSTEM_PROMPT.replace('{{ USER_SYSTEM_PROMPT }}', userSystemPrompt)
.replace('{{ TOOL_USE_EXAMPLES }}', ToolUseExamples)