Compare commits

..

311 Commits

Author SHA1 Message Date
Soulter
26467fbe22 feat: implement unified provider availability testing across components
- Added a `test` method to each provider class to standardize availability checks.
- Updated the dashboard and command routes to utilize the new `test` method for provider reachability verification, simplifying the logic and improving maintainability.
- Removed redundant reachability check logic from the command handler.
2025-12-01 00:39:14 +08:00
Soulter
38281ba2cf refactor: restore reachability check configuration in default settings and localization files 2025-12-01 00:38:30 +08:00
Soulter
21aa3174f4 fix: disable reachability check in default configuration 2025-12-01 00:16:11 +08:00
邹永赫
dcda871fc0 feat: provider availability reachability improvements (#3708) 2025-12-01 01:06:10 +09:00
Soulter
c13c51f499 fix: assistant message validation error when tool_call exists but content not exists (#3862)
* fix: assistant message validation error when tool_call exists but content not exists

* fix: enhance content validation in Message model to allow None for assistant role with tool_calls
2025-11-30 23:42:37 +08:00
Dt8333
a130db5cf4 fix: 将 Graceful shutdown 的异常改为 KeyboardInterrupt (#3855) 2025-11-30 20:31:17 +08:00
邹永赫
7faeb5cea8 Merge pull request #3850 from zouyonghe/feature/plugin-upgrade-all
增加升级所有插件按钮
2025-11-30 15:12:36 +09:00
ZouYonghe
8d3ff61e0d Format plugin route with ruff 2025-11-30 11:56:24 +08:00
ZouYonghe
4c03e82570 Fix plugin update JSON parsing and concurrency handling 2025-11-30 11:50:46 +08:00
ZouYonghe
e7e8664ab4 chore: tweak update all label 2025-11-30 11:18:30 +08:00
ZouYonghe
1dd1623e7d feat: batch update plugins via new api 2025-11-30 11:11:36 +08:00
ZouYonghe
80d8161d58 feat: add update all plugins action 2025-11-30 10:40:46 +08:00
Soulter
fc80d7d681 chore: bump version to 4.7.3 2025-11-30 00:42:49 +08:00
Soulter
c2f036b27c chore: bump vertion to 4.7.2 2025-11-30 00:33:07 +08:00
Soulter
4087bbb512 perf: set content attribute optional to AssistantMessageSegment for enhanced message handling
fixes: #3843
2025-11-30 00:32:00 +08:00
Soulter
e1c728582d chore: bump version to 4.7.2 2025-11-30 00:18:23 +08:00
Oscar Shaw
93c69a639a feat: 新增群聊模式下的专用图片转述模型配置 (#3822)
* feat: add image caption provider configuration for group chat

- Introduced `image_caption_provider_id` to allow separate configuration for group chat image understanding.
- Updated metadata and hints in English and Chinese for clarity on new settings.
- Adjusted logic in long term memory to utilize the new provider ID for image captioning.

* fix: format

* Fix logic for image caption and active reply settings

* Fix indentation and formatting in long_term_memory.py

* chore: ruff format

---------

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
Co-authored-by: Soulter <905617992@qq.com>
2025-11-29 23:53:32 +08:00
Soulter
a7fdc98b29 fix: third party agent runner cannot run properly when using non-default config file
fix: #3815
2025-11-29 23:45:12 +08:00
Soulter
85b7f104df fix: remove unnecessary provider check (#3846)
fixes: #3815
2025-11-29 23:15:19 +08:00
Oscar Shaw
d76d1bd7fe perf: adjust padding for PlatformPage and ProviderPage log sections (#3825)
- Added bottom margin to log card for better spacing.
2025-11-29 19:15:35 +08:00
Soulter
df4412aa80 style: adjust bot-embedded-image max-width and remove hover effect for improved layout 2025-11-29 01:31:25 +08:00
Soulter
ab2c94e19a chore: comment out error logging in provider sources to reduce verbosity 2025-11-28 19:59:33 +08:00
Oscar Shaw
37cc4e2121 perf: console tag UI improve (#3816)
- Added yarn.lock to .gitignore to prevent tracking of Yarn lock files.
- Updated ConsoleDisplayer.vue to improve chip styling
2025-11-28 17:17:11 +08:00
Soulter
60dfdd0a66 chore: update astrbot cli version 2025-11-28 16:53:20 +08:00
Soulter
bb8b2cb194 chore: bump version to 4.7.1 2025-11-28 15:13:35 +08:00
Soulter
4e29684aa3 fix: add plugin set and knowledge bases selection in custom rules page (#3813)
fixes: #3806
2025-11-28 13:29:50 +08:00
Soulter
0e17e3553d chore: bump version to 4.7.0 2025-11-27 23:50:05 +08:00
Soulter
0a55060e89 fix: session controller in webchat 2025-11-27 22:32:35 +08:00
Soulter
77859c7daa feat: enhance provider status display in ProviderPage
- Added a tooltip to show detailed provider status, including availability and error messages.
- Refactored item details template to include status chips for better visual representation.
- Removed unused status section to streamline the UI.
2025-11-27 16:39:51 +08:00
Soulter
ba39c393a0 perf: enhance provider management with reload locking and logging (#3793)
- Introduced a reload lock to prevent concurrent reloads of providers.
- Added logging to indicate when a provider is disabled and when providers are being synchronized with the configuration.
- Refactored the reload method to improve clarity and maintainability.


Co-authored-by: anka <1350989414@qq.com>
2025-11-27 16:25:31 +08:00
Soulter
6a50d316d9 fix: mcp server cannot reload successfully after updating mcp server config (#3797)
fixes: #3780
2025-11-27 16:22:26 +08:00
Soulter
88c1d77f0b perf: add at message to group chat history (#3796)
* feat: enhance long-term memory message formatting

- Added support for 'At' message components in long-term memory, allowing for better representation of mentions in messages.

* chore: ruff check
2025-11-27 15:59:07 +08:00
Dt8333
758ce40cc1 chore: fix test (#3787) 2025-11-27 14:02:42 +08:00
Soulter
3e7bb80492 chore: ruff format 2025-11-27 14:01:25 +08:00
Soulter
75e95aa9ca fix: update session management icon in sidebar
- Changed the icon for the session management sidebar item from 'mdi-account-group' to 'mdi-pencil-ruler' for better representation.
2025-11-27 14:00:05 +08:00
Soulter
a389842e25 feat: update session management UI with information button and layout adjustments
- Added an information button linking to custom rules documentation.
- Adjusted layout for improved spacing and readability in the session management page.
- Minor refactoring of the data table component for better alignment.
2025-11-27 13:58:37 +08:00
Soulter
0f6a3c3f5a refactor: session management custom rules (#3792)
* refactor: umo custom rules

* feat(i18n): update session management translations and improve provider configuration handling

- Updated English and Chinese translations for session management, including "Unified Message Origin" and "Follow Config".
- Enhanced provider configuration options to include "Follow Config" as a selectable item.
- Removed unused clear buttons and refactored provider configuration saving logic to handle updates and deletions more efficiently.
2025-11-27 13:30:43 +08:00
Soulter
133f27422d feat: implement i18n of astrbot config (#3772)
* feat: implement i18n of astrbot config

* feat(config): update configuration metadata with i18n details and future deprecation notes
2025-11-26 16:40:58 +08:00
RC-CHN
abc6deb244 feat: add plugin logo placeholder (#3784) 2025-11-26 16:22:11 +08:00
teapot1de
06869b4597 docs: clarify segmented_reply words_count_threshold hint (#3779)
Update the configuration hint for `words_count_threshold` to explicitly state that it acts as a maximum limit for segmentation, preventing user confusion about it being a minimum trigger.
2025-11-26 16:15:09 +08:00
dependabot[bot]
d32cea9870 chore(deps): bump actions/checkout in the github-actions group (#3775)
Bumps the github-actions group with 1 update: [actions/checkout](https://github.com/actions/checkout).


Updates `actions/checkout` from 5 to 6
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](https://github.com/actions/checkout/compare/v5...v6)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-version: '6'
  dependency-type: direct:production
  update-type: version-update:semver-major
  dependency-group: github-actions
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-11-26 16:13:42 +08:00
Soulter
4b68100f16 feat(chat): add standalone chat component and integrate with config page for testing configurations (#3767)
* feat(chat): add standalone chat component and integrate with config page for testing configurations

* feat(chat): add error handling for message sending and session creation
2025-11-24 22:06:02 +08:00
Soulter
5c5515d462 fix: segmented reply regex error handling (#3771)
* fix: segmented reply regex error handling

closes: #3761

* fix: improve regex handling for segmented replies to support multiline input

* fix: update regex handling in ResultDecorateStage to use findall for segmented replies

* fix: update error logging message for segmented reply regex handling
2025-11-24 22:00:59 +08:00
Soulter
3932b8f982 Merge pull request #3760 from AstrBotDevs/feat/agent-runner
refactor: transfer dify, coze and alibaba dashscope from chat provider to agent runner
2025-11-24 15:33:20 +08:00
Soulter
82488ca900 feat(api): enhance file upload method to support mime type and file name 2025-11-24 15:30:49 +08:00
Soulter
29d9b9b2d6 feat(config): add condition for display_reasoning_text based on agent_runner_type 2025-11-24 15:10:17 +08:00
Soulter
02215e9b7b feat(config): update hint for agent_runner execution method to clarify third-party integration 2025-11-24 15:07:33 +08:00
Soulter
7160b7a18b fix: dify workflow streaming mode 2025-11-24 15:04:15 +08:00
Soulter
ea8dac837a feat(config): enhance hint for agent_runner execution method in configuration 2025-11-24 14:42:36 +08:00
Soulter
e2a7a028bd feat(migration): enhance migration process with error handling and agent runner config updates 2025-11-24 14:37:25 +08:00
Soulter
70db8d264b fix(config): disable auto_save_history option in configuration 2025-11-24 14:25:14 +08:00
Soulter
0518e6d487 feat(config): add hint for agent_runner execution method in configuration 2025-11-24 14:23:53 +08:00
Soulter
39eb367866 perf: improve file structure
- Implemented CozeAPIClient for file upload, image download, chat messaging, and context management.
- Developed DashscopeAgentRunner for handling requests to the Dashscope API with streaming support.
- Created DifyAgentRunner to manage interactions with the Dify API, including file uploads and workflow execution.
- Introduced DifyAPIClient for making asynchronous requests to the Dify API.
- Updated third-party agent imports to reflect new module structure.
2025-11-24 14:00:16 +08:00
Soulter
f1d51a22ad feat(dashscope_agent_runner): refactor request payload construction and enhance streaming response handling 2025-11-24 13:21:34 +08:00
Soulter
77fb554e8f feat(dashscope_agent_runner): implement streaming response handling and request payload construction 2025-11-24 13:09:57 +08:00
Soulter
91f8a0ae09 fix(provider_manager): use get method for provider_type check in load_provider 2025-11-24 10:57:13 +08:00
Soulter
370cda7cf0 feat(dify_api_client): add docstring for file_upload method 2025-11-24 10:53:50 +08:00
Soulter
66b3eed273 fix: correct typo in agent state transition log message 2025-11-24 00:03:22 +08:00
Soulter
99b061a143 fix: make session properties required in Session interface 2025-11-23 23:25:29 +08:00
Soulter
5f3c7ed673 feat(conversation): update agent runner type configuration path to provider_settings 2025-11-23 23:05:36 +08:00
Soulter
a6dc458212 feat(third-party-agent): implement streaming response handling and enhance agent execution flow 2025-11-23 23:03:56 +08:00
Soulter
520f521887 feat(provider): enhance agent runner provider selection with subtype filtering 2025-11-23 22:23:23 +08:00
Soulter
01427d9969 feat(config): add hint for non-built-in agent execution model configuration 2025-11-23 22:13:52 +08:00
Soulter
34c03ce983 Merge remote-tracking branch 'origin/master' into feat/agent-runner 2025-11-23 22:06:52 +08:00
Soulter
95e9da42d6 fix(webchat): webchat session cannot be deleted (#3759) 2025-11-23 22:03:07 +08:00
Soulter
1338cab61b feat: add configuration selector for session management and enhance session handling in chat components 2025-11-23 21:53:56 +08:00
Soulter
7ba98c1e91 feat: enhance provider display with grouped categorization and improved filtering 2025-11-23 21:06:16 +08:00
Soulter
9a5f507cbe feat: enable agent runner providers in configuration 2025-11-23 20:58:18 +08:00
Soulter
d560671d1f feat: agent runner config migration 2025-11-23 20:54:19 +08:00
Soulter
82c9cf4db6 chore: remove legacy coze and dashscope provider 2025-11-23 20:18:51 +08:00
Soulter
910ec6c695 feat: implement third party agent sub stage and refactor provider management
- Added `ThirdPartyAgentSubStage` to handle interactions with third-party agent runners (Dify, Coze, Dashscope).
- Refactored `star_request.py` to ensure consistent return types in the `process` method.
- Updated `stage.py` to initialize and utilize the new `AgentRequestSubStage`.
- Modified `ProviderManager` to skip loading agent runner providers.
- Removed `Dify` source implementation as it is now handled by the new agent runner structure.
- Enhanced `DifyAPIClient` to support file uploads via both file path and file data.
- Cleaned up shared preferences handling to simplify session preference retrieval.
- Updated dashboard configuration to reflect changes in agent runner provider selection.
- Refactored conversation commands to accommodate the new agent runner structure and remove direct dependencies on Dify.
- Adjusted main application logic to ensure compatibility with the new conversation management approach.
2025-11-23 20:18:51 +08:00
Soulter
766d6f2bec fix(conversation): update session configuration retrieval to use unified message origin 2025-11-23 20:18:51 +08:00
Soulter
9f39140987 fix(conversation): update session configuration retrieval to use unified message origin 2025-11-23 19:59:21 +08:00
Soulter
89716ef4da Merge remote-tracking branch 'origin/master' into feat/agent-runner 2025-11-23 14:48:08 +08:00
Soulter
3c4ea5a339 chore: bump version to 4.6.1 2025-11-23 13:58:53 +08:00
Soulter
601846a8c1 docs: refine readme 2025-11-22 18:57:08 +08:00
Soulter
85d66c1056 fix(migration): update migration_done key for webchat session tracking (#3746) 2025-11-22 18:51:00 +08:00
Dt8333
b89d3f663c fix(core.db): 修复升级后webchat未正确迁移的问题 (#3745)
不是所有人都叫Astrbot

#3722
2025-11-22 18:37:39 +08:00
Soulter
0260d430d1 Merge pull request #3706 from piexian/master 2025-11-22 01:11:35 +08:00
piexian
2e608cdc09 refactor(bailian_rerank): 修复误删除并优化top_n参数处理
- 移除不合理的知识库配置读取逻辑
- 添加os模块导入(用于读取环境变量)
- 抽取辅助函数:_build_payload()、_parse_results()、_log_usage()
- 添加自定义异常类:BailianRerankError、BailianAPIError、BailianNetworkError
- 使用.get()安全访问API响应字段,避免KeyError
- 使用raise ... from e保持异常链
2025-11-21 05:34:18 +08:00
piexian
234ce93dc1 refactor(bailian_rerank): 优化代码质量和错误处理
- 移除未使用的 os 导入
- 简化 API Key 验证逻辑
- 优化 top_n 参数处理,优先使用传入值
- 改进错误处理,使用 RuntimeError 替代通用 Exception
- 添加异常链保持原始错误上下文
2025-11-21 04:07:45 +08:00
Soulter
4e2154feb7 fix(ci): repository name must be lowercase 2025-11-20 23:46:34 +08:00
Soulter
604958898c chore: bump version to 4.6.0 2025-11-20 23:41:20 +08:00
Soulter
a093f5ad0a fix(dependencies): specify upper version limit for google-genai 2025-11-20 23:32:05 +08:00
Soulter
a7e9a7f30c fix(gemini): ensure extra_content is not empty before processing 2025-11-20 23:30:19 +08:00
Soulter
5d1e9de096 Merge pull request #3678 from AstrBotDevs/refactor/webchat-session
refactor: Implement WebChat session management and migration
2025-11-20 17:23:10 +08:00
Soulter
89da4eb747 Merge branch 'master' into refactor/webchat-session 2025-11-20 17:21:48 +08:00
Soulter
8899a1dee1 feat(chat): refactor chat component structure and add new features (#3701)
- Introduced `ConversationSidebar.vue` for improved conversation management and sidebar functionality.
- Enhanced `MessageList.vue` to handle loading states and improved message rendering.
- Created new composables: `useConversations`, `useMessages`, `useMediaHandling`, `useRecording` for better code organization and reusability.
- Added loading indicators and improved user experience during message processing.
- Ensured backward compatibility and maintained existing functionalities.
2025-11-20 17:19:45 +08:00
Soulter
384a687ec3 delete: remove useConversations composable 2025-11-20 17:15:47 +08:00
Soulter
70cfdd2f8b feat(chat): refactor chat component structure and add new features (#3701)
- Introduced `ConversationSidebar.vue` for improved conversation management and sidebar functionality.
- Enhanced `MessageList.vue` to handle loading states and improved message rendering.
- Created new composables: `useConversations`, `useMessages`, `useMediaHandling`, `useRecording` for better code organization and reusability.
- Added loading indicators and improved user experience during message processing.
- Ensured backward compatibility and maintained existing functionalities.
2025-11-20 17:15:04 +08:00
Soulter
bdbd2f009a delete: useConversations 2025-11-20 17:11:01 +08:00
Soulter
164e0d26e0 feat(chat): refactor chat component structure and add new features (#3701)
- Introduced `ConversationSidebar.vue` for improved conversation management and sidebar functionality.
- Enhanced `MessageList.vue` to handle loading states and improved message rendering.
- Created new composables: `useConversations`, `useMessages`, `useMediaHandling`, `useRecording` for better code organization and reusability.
- Added loading indicators and improved user experience during message processing.
- Ensured backward compatibility and maintained existing functionalities.
2025-11-20 17:10:36 +08:00
Soulter
cb087b5ff9 refactor: update timestamp handling in session management and chat components 2025-11-20 17:02:01 +08:00
Soulter
1d3928d145 refactor(sqlite): remove auto-generation of session_id in insert method 2025-11-20 16:33:57 +08:00
Soulter
6dc3d161e7 feat(chat): refactor chat component structure and add new features (#3701)
- Introduced `ConversationSidebar.vue` for improved conversation management and sidebar functionality.
- Enhanced `MessageList.vue` to handle loading states and improved message rendering.
- Created new composables: `useConversations`, `useMessages`, `useMediaHandling`, `useRecording` for better code organization and reusability.
- Added loading indicators and improved user experience during message processing.
- Ensured backward compatibility and maintained existing functionalities.
2025-11-20 16:30:05 +08:00
Soulter
e9805ba205 fix: anyio.ClosedResourceError when calling mcp tools (#3700)
* fix: anyio.ClosedResourceError when calling mcp tools

added reconnect mechanism

fixes: 3676

* fix(mcp_client): implement thread-safe reconnection using asyncio.Lock
2025-11-20 16:24:02 +08:00
Dt8333
d5280dcd88 fix(core.platform): 修复启用多个企业微信智能机器人适配器时消息混乱的问题 (#3693)
* fix(core.platform): 修复启用多个企业微信智能机器人适配器时消息混乱的问题

移除了全局的消息队列,改为每个适配器处理自己的队列。修改相关方法适应该更改。

#3673

* chore: apply suggestions from code review

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-20 16:24:02 +08:00
Dt8333
67a9663eff fix(dashboard.i18n): complete the missing i18n keys(#3699)
#3679
2025-11-20 16:24:02 +08:00
Soulter
77dd89b8eb feat: add supports for gemini-3 series thought signature (#3698)
* feat: add supports for gemini-3 series thought signature

* feat: refactor tools_call_extra_content to use a dictionary for better structure
2025-11-20 16:24:02 +08:00
Soulter
8e511bf14b fix: build docker ci failed 2025-11-20 16:24:02 +08:00
Soulter
164a4226ea feat(chat): refactor chat component structure and add new features (#3701)
- Introduced `ConversationSidebar.vue` for improved conversation management and sidebar functionality.
- Enhanced `MessageList.vue` to handle loading states and improved message rendering.
- Created new composables: `useConversations`, `useMessages`, `useMediaHandling`, `useRecording` for better code organization and reusability.
- Added loading indicators and improved user experience during message processing.
- Ensured backward compatibility and maintained existing functionalities.
2025-11-20 16:07:09 +08:00
Soulter
6d6fefc435 fix: anyio.ClosedResourceError when calling mcp tools (#3700)
* fix: anyio.ClosedResourceError when calling mcp tools

added reconnect mechanism

fixes: 3676

* fix(mcp_client): implement thread-safe reconnection using asyncio.Lock
2025-11-20 16:01:22 +08:00
Soulter
aa59532287 refactor: implement migration for WebChat sessions by creating PlatformSession records from platform_message_history 2025-11-20 15:58:27 +08:00
piexian
2ada1deb9a 修复文档返回读取问题 2025-11-20 08:31:50 +08:00
piexian
788ceb9721 添加阿里百炼重排序模型 2025-11-20 08:05:42 +08:00
Dt8333
8488c9aeab fix(core.platform): 修复启用多个企业微信智能机器人适配器时消息混乱的问题 (#3693)
* fix(core.platform): 修复启用多个企业微信智能机器人适配器时消息混乱的问题

移除了全局的消息队列,改为每个适配器处理自己的队列。修改相关方法适应该更改。

#3673

* chore: apply suggestions from code review

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-19 21:44:38 +08:00
Dt8333
676f9fd4ff fix(dashboard.i18n): complete the missing i18n keys(#3699)
#3679
2025-11-19 21:36:34 +08:00
Soulter
1935ce4700 refactor: update session handling by replacing conversation_id with session_id in chat routes and components 2025-11-19 19:54:29 +08:00
Soulter
e760956353 refactor: enhance PlatformSession migration by adding display_name from Conversations and improve session item styling 2025-11-19 19:41:57 +08:00
Soulter
be3e5f3f8b refactor: update message history deletion logic to remove newer records based on offset 2025-11-19 19:41:25 +08:00
Soulter
cdf617feac refactor: optimize WebChat session migration by batch inserting records 2025-11-19 19:16:15 +08:00
Soulter
afb56cf707 feat: add supports for gemini-3 series thought signature (#3698)
* feat: add supports for gemini-3 series thought signature

* feat: refactor tools_call_extra_content to use a dictionary for better structure
2025-11-19 18:54:56 +08:00
Soulter
cd2556ab94 fix: build docker ci failed 2025-11-19 15:40:41 +08:00
Soulter
cf4a5d9ea4 refactor: change to platform session 2025-11-18 22:37:55 +08:00
Soulter
0747099cac fix: restore migration check for version 4.7 2025-11-18 22:07:43 +08:00
Soulter
323ec29b02 refactor: Implement WebChat session management and migration from version 4.6 to 4.7
- Added WebChatSession model for managing user sessions.
- Introduced methods for creating, retrieving, updating, and deleting WebChat sessions in the database.
- Updated core lifecycle to include migration from version 4.6 to 4.7, creating WebChat sessions from existing platform message history.
- Refactored chat routes to support new session-based architecture, replacing conversation-related endpoints with session endpoints.
- Updated frontend components to handle sessions instead of conversations, including session creation and management.
2025-11-18 22:04:26 +08:00
magisk317
ae81d70685 ci(docker-build): build nightly image everyday (#3120)
* ci: build test image on master pushes

* ci: split workflows for master test and release builds

* test ci

* test ci

* Update docker-image.yml

* test ci

Updated README to enhance deployment instructions.

* Make GHCR publishing optional in Docker workflow

* chore: Update DockerHub password secret in workflow

* Update .github/workflows/docker-image.yml

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* chore: rename job to build nightly image in workflow

* feat: schedule the nightly build at 0:00 am everyday, if have new commits

* fix: update build-nightly-image job to trigger only on schedule events

* Update fetch-depth and enable fetch-tag in workflows

---------

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Soulter <905617992@qq.com>
2025-11-18 10:47:58 +08:00
RC-CHN
270c89c12f feat: Add URL document parser for knowledge base (#3622)
* feat: 添加从 URL 上传文档的功能,支持进度回调和错误处理

* feat: 添加从 URL 上传文档的前端

* chore: 添加 URL 上传功能的警告提示,确保用户配置正确

* feat: 添加内容清洗功能,支持从 URL 上传文档时的清洗设置和服务提供商选择

* feat: 更新内容清洗系统提示,增强信息提取规则;添加 URL 上传功能的测试版标识

* style: format code

* perf: 优化上传设置,增强 URL 上传时的禁用逻辑和清洗提供商验证

* refactor:使用自带chunking模块

* refactor: 提取prompt到单独文件

* feat: 添加 Tavily API Key 配置对话框,增强网页搜索功能的配置体验

* fix: update URL hint and warning messages for clarity in knowledge base upload settings

* fix: 修复设置tavily_key的热重载问题

---------

Co-authored-by: Soulter <905617992@qq.com>
2025-11-17 19:05:14 +08:00
Soulter
c7a58252fe feat: supports knowledge base agentic search (#3667)
* feat: supports knowledge base agentic search

* fix: correct formatting of system prompt in knowledge base results
2025-11-17 17:29:18 +08:00
Soulter
47ad8c86e5 docs: update translations of README 2025-11-17 12:50:01 +08:00
Soulter
937e879e5e chore: revise the issue template
Updated the bug report template to include English translations for all fields and improved clarity.
2025-11-17 11:35:24 +08:00
Soulter
1ecf26eead chore: revice pr template
Removed unnecessary comments and streamlined the pull request template.
2025-11-17 11:27:48 +08:00
Soulter
adbb84530a chore: bump version to 4.5.8 2025-11-17 09:58:02 +08:00
piexian
6cf169f4f2 fix: ImageURLPart typo (#3665)
* 修复新版本更新对不上格式的问题

entities.py生成的格式:{"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,..."}}
ImageURLPart期望的格式:{"type": "image_url", "image_url": "data:image/jpeg;base64,..."}

* Revert "修复新版本更新对不上格式的问题"

This reverts commit 28b4791391.

* fix(core.agent): 修复ImageURLPart的声明,修复pydantic校验失败的问题。

---------

Co-authored-by: piexian <piexian@users.noreply.github.com>
Co-authored-by: Dt8333 <lb0016@foxmail.com>
2025-11-17 09:52:31 +08:00
Soulter
5ab9ea12c0 chore: bump verstion to 4.5.7 2025-11-16 14:01:25 +08:00
Soulter
fd9cb703db refactor: update ToolSet initialization to use Pydantic Field and clean up deprecated methods in Context 2025-11-16 12:13:11 +08:00
Soulter
388c1ab16d fix: ensure parameter properties are correctly handled in spec_to_func 2025-11-16 11:50:58 +08:00
Soulter
f867c2a271 feat: enhance parameter type handling in LLM tool registration with JSON schema support (#3655)
* feat: enhance parameter type handling in LLM tool registration with JSON schema support

* refactor: remove debug print statement from FunctionToolManager
2025-11-16 00:55:40 +08:00
Soulter
605bb2cb90 refactor: disable debug logging for chunk delta in OpenAI provider 2025-11-15 22:29:06 +08:00
Soulter
5ea15dde5a feat: enhance LLM handsoff tool execution with system prompt and run hooks 2025-11-15 22:26:13 +08:00
Soulter
3ca545c4c7 Merge pull request #3636 from AstrBotDevs/feat/context-llm-capability
refactor: better invoke the LLM / Agent capabilities
2025-11-15 21:41:42 +08:00
Soulter
e200835074 refactor: remove unused Message import and context_model initialization in LLMRequestSubStage 2025-11-15 21:36:54 +08:00
Soulter
3a90348353 Merge branch 'master' into feat/context-llm-capability 2025-11-15 21:34:54 +08:00
Soulter
5a11d8f0ee refactor: LLM response handling with reasoning content (#3632)
* refactor: LLM response handling with reasoning content

- Added a `show_reasoning` parameter to `run_agent` to control the display of reasoning content.
- Updated `LLMResponse` to include a `reasoning_content` field for storing reasoning text.
- Modified `WebChatMessageEvent` to handle and send reasoning content in streaming responses.
- Implemented reasoning extraction in various provider sources (e.g., OpenAI, Gemini).
- Updated the chat interface to display reasoning content in a collapsible format.
- Removed the deprecated `thinking_filter` package and its associated logic.
- Updated localization files to include new reasoning-related strings.

* feat: add Groq chat completion provider and associated configurations

* Update astrbot/core/provider/sources/gemini_source.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-15 21:31:03 +08:00
Soulter
824af5eeea fix: Provider.meta() error (#3647)
fixes: #3643
2025-11-15 21:30:05 +08:00
Dt8333
08ec787491 fix(core.platform): make DingTalk user-ID compliant with UMO (#3634) 2025-11-15 21:30:05 +08:00
Soulter
b062e83d54 refactor: remove redundant session lock management from message sending logic in RespondStage (#3645)
fixes: #3644

Co-authored-by: Dt8333 <lb0016@foxmail.com>
2025-11-15 21:30:05 +08:00
Soulter
17422ba9c3 feat: introduce messages field in agent RunContext 2025-11-15 21:15:20 +08:00
Soulter
6849af2bad refactor: LLM response handling with reasoning content (#3632)
* refactor: LLM response handling with reasoning content

- Added a `show_reasoning` parameter to `run_agent` to control the display of reasoning content.
- Updated `LLMResponse` to include a `reasoning_content` field for storing reasoning text.
- Modified `WebChatMessageEvent` to handle and send reasoning content in streaming responses.
- Implemented reasoning extraction in various provider sources (e.g., OpenAI, Gemini).
- Updated the chat interface to display reasoning content in a collapsible format.
- Removed the deprecated `thinking_filter` package and its associated logic.
- Updated localization files to include new reasoning-related strings.

* feat: add Groq chat completion provider and associated configurations

* Update astrbot/core/provider/sources/gemini_source.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-15 18:59:17 +08:00
Soulter
09c3da64f9 fix: Provider.meta() error (#3647)
fixes: #3643
2025-11-15 18:01:51 +08:00
Dt8333
2c8470e8ac fix(core.platform): make DingTalk user-ID compliant with UMO (#3634) 2025-11-15 17:31:03 +08:00
Soulter
c4ea3db73d refactor: remove redundant session lock management from message sending logic in RespondStage (#3645)
fixes: #3644

Co-authored-by: Dt8333 <lb0016@foxmail.com>
2025-11-15 16:39:49 +08:00
Soulter
89e79863f6 fix: ensure image_urls and system_prompt default to empty values in ProviderRequest 2025-11-14 22:45:55 +08:00
Soulter
d19945009f refactor: decople the agent impl part and introduce some helper context method to call llm 2025-11-14 19:17:24 +08:00
Soulter
c77256ee0e feat: add id field to ProviderMetaData and update provider manager to set provider ID 2025-11-14 12:35:30 +08:00
Soulter
7d823af627 refactor: update provider metadata handling and enhance ProviderMetaData structure 2025-11-13 19:53:23 +08:00
Soulter
3957861878 refactor: streamline llm processing logic (#3607)
* refactor: streamline llm processing logic

* perf: merge-nested-ifs

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

* fix: ruff format

* refactor: remove unnecessary debug logs in FunctionToolExecutor and LLMRequestSubStage

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-11-13 10:08:57 +08:00
Dt8333
6ac43c600e perf: improve streaming fallback strategy for streaming-unsupported platform (#3547)
* feat: 修改tool_loop_agent_runner,新增stream_to_general属性。

Co-authored-by: aider (openai/gemini-2.5-flash-preview) <aider@aider.chat>

* refactor: 优化text_chat_stream,直接yield完整信息

Co-authored-by: aider (openai/gemini-2.5-flash-preview) <aider@aider.chat>

* feat(core):  添加streaming_fallback选项,允许进行流式请求和非流式输出

添加了streaming_fallback配置,默认为false。在PlatformMetadata中新增字段用于标识是否支持真流式输出。在LLMRequest中添加判断是否启用Fallback。

#3431 #2793 #3014

* refactor(core): 将stream_to_general移出toolLoopAgentRunner

* refactor(core.platform): 修改metadata中的属性名称

* fix: update streaming provider settings descriptions and add conditions

* fix: update streaming configuration to use unsupported_streaming_strategy and adjust related logic

* fix: remove support_streaming_message flag from WecomAIBotAdapter registration

* fix: update hint for non-streaming platform handling in configuration

* fix(core.pipeline): Update astrbot/core/pipeline/process_stage/method/llm_request.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* fix(core.pipeline): Update astrbot/core/pipeline/process_stage/method/llm_request.py

---------

Co-authored-by: aider (openai/gemini-2.5-flash-preview) <aider@aider.chat>
Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
Co-authored-by: Soulter <905617992@qq.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-11-12 18:01:20 +08:00
RC-CHN
27af9ebb6b feat: changelog display improvement
* feat: 添加旧版本changelog的modal

* style: 调整发布说明对话框的样式,移除背景颜色
2025-11-12 14:54:03 +08:00
Soulter
b360c8446e feat: add default model selection chip in provider model selector 2025-11-10 13:04:28 +08:00
Soulter
6d00717655 feat: add streaming support with toggle in chat interface and adjust layout for mobile 2025-11-09 21:57:30 +08:00
Soulter
bb5f06498e perf: refine login page 2025-11-09 20:57:45 +08:00
Dt8333
aca5743ab6 feat: 为部分适配器添加缺失的 send_streaming 方法 (#3545)
为Wechatpadpro和discord添加缺失的方法。
2025-11-09 16:00:24 +08:00
Soulter
6903032f7e fix: improve knowledge base chip display with truncation and styling (#3582)
fixes: #3546
2025-11-09 15:30:41 +08:00
nazo
1ce0ff87bd feat: supports to add custom headers for openai providers (#3581)
* feat: OPENAI系支持自定义添加请求头

* chore: add custom headers and extra body to config for zhipu

---------

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
2025-11-09 15:12:52 +08:00
Soulter
e39d6bae0b fix: update JSON submission link in plugin publish template 2025-11-09 15:06:40 +08:00
Raven95676
8028e9e9a6 chore: bump version to 4.5.6 2025-11-07 16:20:19 +08:00
Raven95676
817f20ea01 fix: pyproject 2025-11-07 16:18:42 +08:00
Raven95676
ad5579a2f4 chore: bump version to 4.5.5 2025-11-07 15:52:58 +08:00
Raven95676
81a689a79b fix: typo 2025-11-07 15:41:14 +08:00
Raven95676
1893dd8336 fix: dockefile 2025-11-07 15:41:03 +08:00
Soulter
021ca8175b chore: bump version to 4.5.4 2025-11-07 14:28:51 +08:00
Soulter
39d6207fe1 chore: remove dynamic version 2025-11-07 14:26:56 +08:00
Soulter
23ce687229 chore: fix dockerfile 2025-11-07 14:23:49 +08:00
鸦羽
3715312fd2 fix: update project description to English (#3516) 2025-11-07 01:13:32 +08:00
Soulter
8196922cac docs: simplify README 2025-11-06 15:22:43 +08:00
Soulter
8089ad91da perf: improve extension market ui 2025-11-06 13:57:46 +08:00
Soulter
2930cc3fd8 chore: bump version to 4.5.3 2025-11-05 21:21:14 +08:00
Soulter
0e841a8b25 fix: correct tools dictionary comprehension in get_tool_list method 2025-11-05 21:19:10 +08:00
Soulter
67fa1611cc chore: bump version to 4.5.2 2025-11-05 19:02:51 +08:00
Soulter
91136bb9f7 fix: llm tool register error (#3493) 2025-11-05 14:27:37 +08:00
Copilot
7c050d1adc feat: add customizable sidebar module ordering (#3307)
* Initial plan

* Add sidebar customization feature with drag-and-drop support

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>

* Add dist/ to .gitignore to exclude build artifacts

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>

* Fix memory leak and improve code quality per code review

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>

* Fix i18n key format: use dot notation instead of colon notation

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>

* Fix drag-and-drop to empty list issue

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
2025-11-04 23:59:45 +08:00
Misaka Mikoto
a0690a6afc feat: support options to delete plugins config and data (#3280)
* - 为插件管理页面中,删除插件提供一致的二次确认(原本只有卡片视图有二次确认)
- 二次确认时可选删除插件配置和持久化数据
- 添加对应的i18n支持

* ruff

* 移除未使用的
const $confirm = inject('$confirm');
2025-11-04 11:48:48 +08:00
Dt8333
c51609b261 fix: typing error (#3267)
* fix: 修复一些小错误。

修复aiocqhttp和slack中部分逻辑缺失的await。修复discord中错误的异常捕获类型。

* fix(core.platform): 修复discord适配器中错误的message_chain赋值

* fix(aiocqhttp): 更新convert_message方法的返回类型为AstrBotMessage | None

---------

Co-authored-by: Soulter <905617992@qq.com>
2025-11-03 23:38:52 +08:00
Soulter
72148f66eb chore: nodejs in Dockerfile 2025-11-03 13:19:51 +08:00
Copilot
a04993a2bb Replace insecure random with secrets module in cryptographic contexts (#3248)
* Initial plan

* Security fixes: Replace insecure random with secrets module and improve SSL context

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Address code review feedback: fix POST method and add named constants

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Improve documentation for random number generation constants

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Update astrbot/core/utils/io.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/platform/sources/wecom_ai_bot/WXBizJsonMsgCrypt.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/test_security_fixes.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/utils/io.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/utils/io.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Fix: Handle path parameter in SSL fallback for download_image_by_url

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>
Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-11-03 02:43:00 +08:00
LIghtJUNction
74f845b06d Chore: Dockerfile (#3266)
* fix: Dockerfile

python main.py 改为uv run main.py

* fix(dockerfile): 减少重复安装

* fix: 修复一些细节问题

* fix(.dockerignore): 需要git文件夹以获取astrbot版本(带git commit hash后缀)

* fix(.dockerignore): uv run之前会uv sync
2025-11-03 02:41:40 +08:00
Soulter
50144ddcae refactor: revise LLM message schema and fix the reload logic when using dataclass-based LLM Tool registration (#3234)
* refactor: llm message schema

* feat: implement MCPTool and local LLM tools with enhanced context handling

* refactor: reorganize imports and enhance docstrings for clarity

* refactor: enhance ContentPart validation and add message pair handling in ConversationManager

* chore: ruff format

* refactor: remove debug print statement from payloads in ProviderOpenAIOfficial

* Update astrbot/core/agent/tool.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/message.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/message.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/tool.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/pipeline/process_stage/method/llm_request.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update astrbot/core/agent/message.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* refactor: enhance documentation and import mcp in tool.py; update call method return type

* fix: 修复以数据类的方式注册 tool 时的插件重载机制问题

* refactor: change role attributes to use Literal types for message segments

* fix: add support for 'decorator_handler' method in call_local_llm_tool

* fix: handle None prompt in text_chat method and ensure context is properly formatted

---------

Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-11-02 18:12:20 +08:00
Copilot
94bf3b8195 Fix incorrect type annotations and errors (#3250)
* Initial plan

* Fix type annotation errors in cmd_conf, cmd_init, and version_comparator

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Changes before error encountered

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Fix more type annotation errors: change `= None` to `| None = None`

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Fix final batch of type annotation errors

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>
Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
2025-11-02 17:02:56 +08:00
Copilot
e190bbeeed Optimize string concatenation in loops: replace += with list.join() (#3246)
* Initial plan

* Fix string concatenation performance issues in loops

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Address code review feedback: Fix plugin list logic and add comment

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

* Improve comment clarity for at_parts accumulation

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>
2025-11-02 13:00:59 +08:00
Copilot
92abc43c9d Fix mutable default arguments in constructors and methods (#3247)
* Initial plan

* Fix mutable default arguments in constructors and methods

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>
2025-11-02 12:57:37 +08:00
Copilot
c8e34ff26f [WIP] Translate mixed English comments to Chinese (#3256)
* Initial plan

* Changes before error encountered

Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: LIghtJUNction <106986785+LIghtJUNction@users.noreply.github.com>
2025-11-02 12:52:46 +08:00
Soulter
630df3e76e refactor: reorganize ComponentType definitions and remove unused classes 2025-11-01 23:18:40 +08:00
Raven95676
bdbf382201 chore: remove astrbot.lock 2025-11-01 17:43:54 +08:00
Raven95676
00eefc82db chore(.gitignore): update ignore rule 2025-11-01 17:41:02 +08:00
LIghtJUNction
dc97080837 Update .gitignore 2025-11-01 17:37:57 +08:00
LIghtJUNction
0b7fc29ac4 style: add ruff lint module of isort and pyupgrade, and some ruff check fix (#3214)
Co-authored-by: Dt8333 <25431943+Dt8333@users.noreply.github.com>
Co-authored-by: Soulter <905617992@qq.com>
2025-11-01 13:26:19 +08:00
Soulter
ff998fdd8d chore: bump version to 4.5.1 2025-10-31 23:55:40 +08:00
LIghtJUNction
d7461ed54c fix(helper.py): 修复了迁移逻辑,现在不再误判 (#3215)
* fix(helper.py): 修复了迁移逻辑,现在不再误判

* fix(helper.py): 没有data_v3 dir
2025-10-31 23:37:37 +08:00
Soulter
3ce577acf9 docs: enhance bug report template with clarity on details
Updated bug report template to emphasize the need for detailed logs and information.
2025-10-31 23:18:15 +08:00
Chris
50b1dccff3 feat: support xAI Grok Live Search config (#3203)
* Add xai_native_search configuration option

* Implement xAI compatibility and search injection

Add support for xAI integration with search parameters injection.

* Refactor xAI handling in openai_source.py

Removed the _is_xai method and updated xAI search injection logic.

* Fix formatting of condition in default.py

* Fix formatting in openai_source.py
2025-10-31 21:48:45 +08:00
Dt8333
c33e7e30d4 chore(requirements): Sync dependencies from pyproject to requirements.txt (#3208)
* chore(requirements): 将pyproject中的dependency同步到requirements.txt

* chore(requirements): 补全遗漏dependency
2025-10-31 15:27:16 +08:00
RC-CHN
bc7f01ba36 feat: add Xinference STT provider (#3197)
* feat: add Xinference STT provider

* chore:update comment in xinference_stt_provider

* style: ruff format xinference_stt_provider

* chore: remove unused import of base64 in xinference_stt_provider

* fix: enhance model initialization check in get_text method

---------

Co-authored-by: Soulter <905617992@qq.com>
2025-10-31 01:49:35 +08:00
再吃颗电池吧
2ce653caad perf: modify the at logic in the DingTalk adapter (#3186)
* feat 初次提交

* fix: Modify the At logic in the DingTalk adapter.

* del uv.lock

* 添加at_users为空判断

* 优化钉钉at的处理逻辑,不用重复判断机器人是否is_in_at_list

* fix: refine handling of mentioned users in group messages

---------

Co-authored-by: linyiming <linyiming@example.com>
Co-authored-by: Soulter <905617992@qq.com>
2025-10-30 14:15:01 +08:00
Soulter
0d850d7b22 fix: refine docstring for add_llm_tools method in Context class 2025-10-29 20:16:27 +08:00
Soulter
a2be155b8e feat: add method to register LLM tools in Context class 2025-10-29 20:13:15 +08:00
Soulter
68aa107689 docs: update readme 2025-10-29 13:58:58 +08:00
Soulter
23096ed3a5 perf: update extension card page style, add config and view-docs button 2025-10-29 00:38:04 +08:00
RC-CHN
90a65c35c1 feat: add Xinference rerank provider (#3162)
* feat:add Xinference rerank provider

* feat:add default rerank_api_key option for Xinference provider

* style: format code

* fix: refactor XinferenceRerankProvider initialization for better error handling

* fix: update XinferenceRerankProvider to use async client methods for initialization and reranking

* feat: add launch_model_if_not_running option to XinferenceRerankProvider for better control over model initialization

* chore: remove unused asyncio import from xinference_rerank_source.py
2025-10-28 18:23:55 +08:00
a490077
3d88827a95 fix: qq_official_webhook is_sandbox field error (#3167)
* QQ官方机器人增加沙箱模式选项,让本地部署能跳过IP白名单验证

* chore: ruff format

* 修复沙盒配置为字符串判断

* 由于配置类型为字符串,修复为字符串判断

* chore: ruff format

* fix: update is_sandbox configuration to use boolean type

---------

Co-authored-by: 郭鹏 <gp@pp052.top>
Co-authored-by: Soulter <905617992@qq.com>
Co-authored-by: Dt8333 <lb0016@foxmail.com>
2025-10-28 10:15:46 +08:00
Futureppo
40a0a8df5a perf: 优化 /model 切换模型成功的提示 (#3161) 2025-10-28 09:05:42 +08:00
dependabot[bot]
20f7129c0b chore(deps): bump actions/upload-artifact in the github-actions group (#3178)
Bumps the github-actions group with 1 update: [actions/upload-artifact](https://github.com/actions/upload-artifact).


Updates `actions/upload-artifact` from 4 to 5
- [Release notes](https://github.com/actions/upload-artifact/releases)
- [Commits](https://github.com/actions/upload-artifact/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/upload-artifact
  dependency-version: '5'
  dependency-type: direct:production
  update-type: version-update:semver-major
  dependency-group: github-actions
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-10-28 08:53:28 +08:00
Soulter
0e962e95dd docs: update plugin information template in YAML 2025-10-27 14:26:59 +08:00
Soulter
07ba9c772c chore: bump version to 4.5.0 2025-10-26 21:40:11 +08:00
Soulter
0622d88b22 fix: revert 3106 (#3153)
* fix: revert 3106

Co-authored-by: Dt8333 <25431943+Dt8333@users.noreply.github.com>
Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
Co-authored-by: exynos <110159911+xiaoxi68@users.noreply.github.com>

* Update astrbot/dashboard/routes/update.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

* fix: remove unnecessary version file handling in download_dashboard function

* fix: revert

---------

Co-authored-by: Dt8333 <25431943+Dt8333@users.noreply.github.com>
Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
Co-authored-by: exynos <110159911+xiaoxi68@users.noreply.github.com>
Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-10-26 21:26:48 +08:00
Soulter
594f0fed55 style: adjust padding for card text in ExtensionPage for improved layout 2025-10-26 21:19:07 +08:00
Soulter
04b0d9b88d Merge pull request #3155 from AstrBotDevs/feat/plugin-display-name-and-logo
feat: add support for plugin display name and logo, and some extension card style fix
2025-10-26 20:54:24 +08:00
Soulter
1f2af8ef94 Update dashboard/src/components/shared/ExtensionCard.vue
Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-10-26 20:52:37 +08:00
Soulter
598ea2d857 refactor: update ExtensionCard styling and improve layout for better responsiveness 2025-10-26 20:49:27 +08:00
Soulter
6dd9bbb516 feat: enhance plugin metadata with display name and logo support 2025-10-26 20:30:54 +08:00
Soulter
3cd0b47dc6 feat: add GitHub link button to ExtensionCard for extensions with a repository 2025-10-26 19:41:00 +08:00
Soulter
65c71b5f20 refactor: remove Google search engine integration from main module and dependencies (#3154) 2025-10-26 18:54:01 +08:00
exynos
1152b11202 feat(thinking_filter): 适配第三方 Gemini 思考片段过滤 (#3139)
* feat(thinking_filter): 适配第三方 Gemini 思考片段过滤

* feat(thinking_filter): Gemini 思考过滤、序列化回退与空白清理重构

* 使用 ruff 格式化并修复导入空行
2025-10-26 18:43:58 +08:00
Soulter
51246ea31b fix: apply configuration option to enable/disable WebUI in AstrBotDashboard (#3152) 2025-10-26 17:29:04 +08:00
Soulter
7e5592dd32 fix: comment out existing configuration preview section in AddNewPlatform component 2025-10-26 17:07:04 +08:00
Soulter
c6b28caebf Merge pull request #3151 from AstrBotDevs/feat/platform-abconf-interaction
feat: enhance AddNewPlatform and ConfigPage components with improved configuration management and UI interactions
2025-10-26 17:04:34 +08:00
Soulter
ca002f6fff feat: enhance AddNewPlatform dialog with scroll functionality and toggle for configuration section 2025-10-26 17:03:07 +08:00
Soulter
14ec392091 fix: update message styling in AddNewPlatform component for better visibility 2025-10-26 17:00:36 +08:00
Soulter
5e2eb91ac0 feat: enhance AddNewPlatform and ConfigPage components with improved configuration management and UI interactions 2025-10-26 16:57:01 +08:00
Soulter
c1626613ce fix: update repository references from Soulter/AstrBot to AstrBotDevs/AstrBot across documentation and codebase (#3150)
* fix: update repository references from Soulter/AstrBot to AstrBotDevs/AstrBot across documentation and codebase

- Updated README_ja.md to reflect new GitHub repository links.
- Modified AstrBotUpdator to download from the new repository.
- Changed download URLs in io.py for dashboard releases.
- Updated changelogs to point to the new issue links.
- Adjusted Docker compose file to reference the new repository.
- Updated Vue components in the dashboard to link to the new repository.
- Changed main.py to provide the correct download instructions for the new repository.

* fix: improve error handling for configId selection in AddNewPlatform component

* Update astrbot/core/utils/io.py

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-10-26 16:17:24 +08:00
LIghtJUNction
42042d9e73 Merge branch 'master' of https://github.com/AstrBotDevs/AstrBot 2025-10-26 15:41:36 +08:00
LIghtJUNction
22c3b53ab8 fix(io.py): path改回传入文件地址,而不是传入文件夹地址 2025-10-26 15:41:20 +08:00
Soulter
090c32c90e feat: enhance AddNewPlatform dialog with data preparation on enter and improve code formatting 2025-10-26 15:40:15 +08:00
LIghtJUNction
4f4a9b9e55 fix(io.py): download_dashboard如果发现没有dist/assets/version文件,下载完毕自动写入(以防万一) 2025-10-26 15:35:25 +08:00
Soulter
6c7d7c9015 Merge pull request #3147 from AstrBotDevs/feat/kb-markitdown
feat: refactor knowledge base parsers and add MarkitdownParser for docx, xls, xlsx support
2025-10-26 13:18:52 +08:00
Soulter
562e62a8c0 feat: add new dependencies for PDF processing, file handling, and text ranking 2025-10-26 13:02:32 +08:00
Soulter
0823f7aa48 在检查字面量集合的成员资格时使用 set
Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-10-25 22:04:17 +08:00
Soulter
eb201c0420 feat: refactor knowledge base parsers and add MarkitdownParser for docx, xls, xlsx support 2025-10-25 22:00:54 +08:00
Soulter
6cfed9a39d Merge pull request #3143 from lxfight/feature/knowledge-base 2025-10-25 18:19:15 +08:00
Soulter
33618c4a6b feat: add dynamic embedding dimension retrieval for providers and enhance error handling 2025-10-25 16:39:11 +08:00
LI SONGSONG 🍂
ace0a7c219 docs: update link and description 2025-10-25 16:07:27 +08:00
Soulter
f7d018cf94 feat: add pre-checks for embedding and rerank providers in KnowledgeBaseRoute 2025-10-25 15:22:35 +08:00
Soulter
8ae2a556e4 feat: remove tips from knowledge base creation form and add persistent hints for field modifications 2025-10-25 15:06:07 +08:00
lxfight
4188deb386 fix: 简化日志错误信息格式 2025-10-25 14:13:23 +08:00
lxfight
82cf4ed909 fix: 使用ruff格式化文件代码 2025-10-25 14:10:26 +08:00
lxfight
88fc437abc feat: 优化知识库选择界面,添加自定义滚动条样式 2025-10-25 13:59:09 +08:00
lxfight
57f868cab1 Merge branch 'feature/knowledge-base' of https://github.com/lxfight/AstrBot into feature/knowledge-base 2025-10-25 13:53:03 +08:00
lxfight
6cb5527894 feat: 添加会话知识库配置的 API 接口,支持获取、设置和删除会话配置,优化知识库选择界面 2025-10-25 13:52:57 +08:00
Soulter
016783a1e5 feat: implement RecursiveCharacterChunker and update KnowledgeBaseManager to use it 2025-10-25 13:46:06 +08:00
lxfight
594ccff9c8 fix: 添加数据库连接检查和知识库终止功能,增强错误处理和清理逻辑,修复知识库无法删除的问题 2025-10-25 11:56:37 +08:00
Soulter
30792f0584 Merge pull request #114 from lxfight/lwl-dev/knowledge-base
refactor: 知识库优化
2025-10-25 00:42:16 +08:00
Soulter
8f021eb35a feat: refactor document storage to use SQLModel and enhance database operations 2025-10-24 23:17:37 +08:00
Soulter
1969abc340 feat: add route for legacy knowledge base and update UI with banner suggestion 2025-10-24 22:01:55 +08:00
Soulter
b1b53ab983 Merge remote-tracking branch 'origin/master' into lwl-dev/knowledge-base 2025-10-24 21:48:47 +08:00
Soulter
9b5af23982 feat: remove beta label from knowledge base navigation and adjust margin in KBList component 2025-10-24 21:46:53 +08:00
Soulter
4cedc6d3c8 feat: add t-SNE visualization for FAISS index and enhance knowledge base retrieval with debug mode 2025-10-24 21:22:46 +08:00
Soulter
4e9cce76da feat: add timing logs for dense and sparse retrieval processes and adjust top K results in sparse retriever 2025-10-24 17:51:30 +08:00
Soulter
9b004f3d2f feat: update document retrieval to include limit and offset parameters 2025-10-24 17:38:22 +08:00
Soulter
9430e3090d feat: add progress callback for document upload and enhance upload progress tracking 2025-10-24 17:13:44 +08:00
Soulter
ba44f9117b feat: enhance document upload process with batch settings and improved chunk handling 2025-10-24 16:37:37 +08:00
Soulter
eb56710a72 feat: add chunk size, overlap, and top K parameters to knowledge base response 2025-10-24 15:10:47 +08:00
Soulter
38e3f27899 feat: update knowledge base retrieval configuration and UI adjustments 2025-10-24 15:06:07 +08:00
Soulter
3c58d96db5 feat: add configuration for final knowledge base retrieval count and update related components 2025-10-24 14:45:07 +08:00
Soulter
a6be0cc135 feat: refresh knowledge base and document after uploading a document 2025-10-24 14:28:27 +08:00
Soulter
a53510bc41 refactor: comment out file path handling in KBHelper and search input in DocumentDetail 2025-10-24 14:27:01 +08:00
Soulter
1fd482e899 feat: update chunk deletion to include document ID and refresh metadata 2025-10-24 14:18:32 +08:00
Soulter
2f130ba009 feat: delete chunk and delete document 2025-10-24 13:59:17 +08:00
Soulter
e6d9db9395 feat: disable embedding provider selection in settings tab 2025-10-24 12:53:59 +08:00
Soulter
e0ac743cdb perf: remove rerank functionality from settings tab and related form data 2025-10-24 12:13:51 +08:00
Soulter
b0d3fc11f0 feat: remove sessions tab and related components from knowledge base detail view 2025-10-24 00:48:17 +08:00
Soulter
7e0a50fbf2 feat: enhance knowledge base retrieval with chunk metadata and pagination support; remove unused chunk model 2025-10-24 00:44:40 +08:00
Soulter
59df244173 improve 2025-10-23 21:20:41 +08:00
Soulter
deb31a02cf docs: Update badge links in README.md 2025-10-23 09:53:54 +08:00
Soulter
e3aa1315ae stage 2025-10-23 00:31:15 +08:00
Soulter
65bc5efa19 feat: 集成知识库管理器,优化知识库上下文注入流程,移除冗余代码 2025-10-22 21:59:00 +08:00
Dt8333
abc4bc24b4 fix(dashboard): webchat input textarea is disabled when session controller is active
Removed the disable attribute of Input in isConvRunning. Added an activeSSE counter to correctly determine the current session state and prevent new input from causing interface display errors during session_waiter execution. Set isStreaming after streaming input ends to restore the text box.

#3037 #2892
2025-10-22 20:32:40 +08:00
Soulter
5df3f06f83 fix: persona information is not appearing in the PersonaForm when editing 2025-10-22 17:09:21 +08:00
Soulter
0e1de82bd7 fix: correct indentation in pre-commit config for pyupgrade hook 2025-10-22 17:08:54 +08:00
Soulter
f31e41b3f1 docs: update readme 2025-10-22 13:10:44 +08:00
Soulter
61a68477d0 stage 2025-10-21 14:19:38 +08:00
LIghtJUNction
fe8d2718c4 新增pyupgrade钩子
代码风格统一化
2025-10-21 11:17:20 +08:00
Soulter
8afefada0a fix: image_caption btn 2025-10-21 11:07:39 +08:00
LIghtJUNction
745e1c37c0 Add ruff-check hook to pre-commit config
跟随官方推荐
2025-10-21 11:07:00 +08:00
LIghtJUNction
fdb5988cec 更新 .pre-commit-config.yaml 2025-10-21 11:02:30 +08:00
Soulter
36ffcf3cc3 fix: typing error 2025-10-21 10:56:44 +08:00
Soulter
e74f626383 stage 2025-10-21 09:55:14 +08:00
Soulter
ef99f64291 feat(config): 添加 agent 运行器类型及相关配置支持 2025-10-21 00:47:04 +08:00
Soulter
a0f8f3ae32 style: ruff format 2025-10-21 00:21:42 +08:00
Soulter
130f52f315 chore(monaco-editor): bump monaco-editor version to 0.54.0 2025-10-21 00:18:29 +08:00
lxfight
a05868cc45 feat: 更新知识库管理器以支持重排序模型提供商,调整相关组件的默认配置和提示信息 2025-10-20 22:38:06 +08:00
lxfight
2fc77aed15 feat: 添加知识库检索功能,支持根据知识库 ID 列出相关会话;更新相关界面和国际化文本 2025-10-20 22:23:35 +08:00
lxfight
c56edb4da6 feat: 添加知识库配置功能,支持会话管理中的知识库选择与设置 2025-10-20 21:46:39 +08:00
Soulter
6672190760 feat: add star count display and fetch functionality in sidebar 2025-10-20 18:19:21 +08:00
exynos
f122b17097 fix(update): 取消 WebUI 与核心版本对比,消除“webui有新版本!”的误报 (#3106)
* fix(update): 取消 WebUI 与核心版本对比,消除“webui有新版本!”的误报

不再比较 dv 与核心版本

* fix(update): 保留dv逻辑,新增installed标识以避免误报

新增安装状态布尔值,保留“dv 是否存在”的信息

* Fix dashboard version update check logic

---------

Co-authored-by: LIghtJUNction <lightjunction.me@gmail.com>
2025-10-20 16:15:42 +08:00
Soulter
2c5f68e696 refactor: 重构创建平台时的流程及一些 UI 优化 (#3102)
* refactor: 支持在平台直接选择配置文件

* add webchat

* feat: 支持新建平台时现场预览、创建和编辑配置文件

* fix: update configuration file descriptions and visibility based on updating mode

* perf: use incremental decoder

* perf: update descriptions

* fix: UI update issues in config file dialog

* fix: update UI elements for better readability and organization

* feat: enhance sidebar navigation with group feature and dynamic resizing

Co-authored-by:  IGCrystal <3811541171@qq.com>

* refactor: persona selector

* perf: 修改部分默认行为

* fix: adjust ExtensionCard layout and improve responsiveness

* refactor: 配置文件绑定消息平台重构为消息平台绑定配文件

* style: add custom styling for v-select selection text

* fix: correct subtitle text in provider.json

* refactor: update conversation management terminology and improve session ID handling

* refactor: add Conversation ID localization and update table header reference

* Update astrbot/core/db/migration/migra_45_to_46.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* style: format logger warning for better readability

* refactor: comment out WebChat configuration for future reference

---------

Co-authored-by: IGCrystal <3811541171@qq.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-20 12:01:06 +08:00
MoonShadow1976
e1ca645a32 feat: 增强工具调用参数处理机制 (#3036)
* feat: 增强工具调用参数处理机制

在工具调用时添加参数过滤功能,只传递函数实际需要的参数
解决问题:https://github.com/AstrBotDevs/AstrBot/issues/2988

* feat: 利用现有工具定义信息处理非期望的参数

不使用`inspect`库,利用现有工具定义信息处理非期望的参数

* ruff format for code

合并结果:
移除了多余参数避免报错,代码执行器可以正常工作。
2025-10-20 02:51:16 +08:00
lxfight
333bf56ddc feat:知识库卡片渲染统计信息。 2025-10-19 22:40:01 +08:00
lxfight
b240594859 feat:添加Beta 版本的知识库管理器前端页面;添加i18n相关文件内容。 2025-10-19 21:55:21 +08:00
lxfight
beccae933f fix:修复KBSessionConfig的导入问题 2025-10-19 21:36:01 +08:00
lxfight
e6aa1d2c54 feat:删除v2版本的知识库前端代码;删除i18n相关文件 2025-10-19 21:16:00 +08:00
magisk317
5e808bab65 fix(platform): prevent 'NoneType' object is not iterable in _outline_chain and set_result (#3103)
Guard against cases where message chain is None during pipeline execution. This change enhances error-resilience for logging and processing message chains.

- Updated AstrMessageEvent._outline_chain to return an empty string when input chain is None
- Updated AstrMessageEvent.set_result to ensure result.chain is always at least an empty list

This prevents TypeError when result.chain or chain is unexpectedly None, improving pipeline stability when handling external plugins or corner cases.

Co-authored-by: engine-labs-app[bot] <140088366+engine-labs-app[bot]@users.noreply.github.com>
Co-authored-by: cto-new[bot] <140088366+cto-new[bot]@users.noreply.github.com>
2025-10-19 20:16:14 +08:00
Dt8333
361d78247b fix(core): 修复人格预设对话的重复注入 (#3088)
备份Context避免供应商适配器移除Context内字段导致将预设会话存入历史。深拷贝人格预设会话防止运行时被意外修改。

#3063
2025-10-19 20:13:57 +08:00
a490077
3550103e45 feat: QQ 官方机器人增加沙盒模式选项,让本地部署能跳过 IP 白名单验证 (#3087)
* QQ官方机器人增加沙箱模式选项,让本地部署能跳过IP白名单验证

* chore: ruff format

---------

Co-authored-by: 郭鹏 <gp@pp052.top>
Co-authored-by: Soulter <905617992@qq.com>
2025-10-19 20:09:08 +08:00
PaloMiku
8b0d4d4de4 feat: 优化 Misskey 适配器的通知和聊天消息处理,改进 @用户提及逻辑 (#3075) 2025-10-19 20:05:55 +08:00
shangxue
dc71c04b67 feat(satori): 添加对合并转发消息功能的支持 (#3050)
* Update satori_event.py

* Update satori_event.py

* Update satori_event.py

* Update satori_adapter.py

* style: format code for better readability in satori_adapter.py and satori_event.py

---------

Co-authored-by: Soulter <905617992@qq.com>
2025-10-19 20:05:03 +08:00
lxfight
a0254ed817 refactor: 优化知识库管理器和数据库操作的代码格式 2025-10-19 19:36:26 +08:00
lxfight
2563ecf3c5 feat: 实现知识库前端组件和路由
- 实现知识库 V2 主页面和 4 个子面板组件
- 文档管理面板:支持上传、删除、查看文档分块
- 检索测试面板:支持测试知识库检索效果
- 全局设置面板:配置嵌入模型、重排序、检索参数
- 会话配置面板:管理会话与知识库的绑定关系
- 重构 Alkaid 路由为嵌套结构,添加知识库 V2 路由
- 在翻译系统中注册知识库 V2 多语言支持
- 默认进入 Alkaid 时跳转到原生知识库页面
2025-10-19 18:43:58 +08:00
lxfight
c04738d9fe feat: 实现知识库前端界面(英文国际化)
- 添加知识库 V2 完整英文翻译文件
- 包括:主页、文档管理、检索测试、全局设置、会话配置
- 在 Alkaid 导航中添加 "Native Knowledge Base" 入口
- 区分 "Native Knowledge Base" 和 "Knowledge Base (Plugin)"
2025-10-19 18:43:35 +08:00
lxfight
1266b4d086 feat: 实现知识库前端界面(中文国际化)
- 添加知识库 V2 完整中文翻译文件
- 包括:主页、文档管理、检索测试、全局设置、会话配置
- 在 Alkaid 导航中添加"原生知识库"入口
- 区分"原生知识库"和"知识库(插件)"两个入口
2025-10-19 18:42:43 +08:00
lxfight
99cf0a1522 feat: 添加知识库 Dashboard API 路由
- 实现知识库管理 API(创建、删除、列表、更新)
- 实现文档管理 API(上传、删除、列表、分块信息)
- 实现知识库检索测试 API(支持调试和验证)
- 实现会话配置 API(绑定/解绑知识库、配置检索参数)
- 实现全局配置 API(启用/禁用、模型选择、检索参数)
- 在 Dashboard 服务器中注册知识库路由
2025-10-19 18:41:54 +08:00
lxfight
98a75e923d feat: 集成知识库到核心生命周期和消息流水线
- 在 AstrBotCoreLifecycle 中初始化知识库管理器
- 将知识库注入器添加到消息处理上下文
- 在消息流水线中添加 KBEnhanceStage(知识库增强阶段)
- 实现会话删除时的知识库配置级联清理机制
- 添加会话管理器的回调注册机制,支持零侵入扩展
2025-10-19 18:41:34 +08:00
lxfight
ad96d676e6 feat: 实现知识库核心后端模块
- 实现完整的知识库数据模型(知识库、文档、文档块、会话配置)
- 实现基于 SQLite 的向量数据库存储和检索
- 实现文档解析器(PDF、TXT)和固定大小分块器
- 实现混合检索系统(密集向量检索 + BM25 稀疏检索 + RRF 融合)
- 实现知识库生命周期管理和消息注入器
- 支持会话级别的知识库配置和关联
2025-10-19 18:40:55 +08:00
lxfight
79333bbc35 feat: 添加知识库核心依赖和配置
- 添加 pypdf、aiofiles、rank-bm25 依赖包支持文档解析和检索
- 在 default.py 中添加知识库完整配置项
- 配置包括嵌入模型、重排序、存储路径、分块策略、检索参数等
- 默认禁用知识库功能,需用户主动启用
2025-10-19 18:39:10 +08:00
Soulter
5c5b0f4fde fix: 修复未安装知识库插件时的错误引导 2025-10-18 10:36:11 +08:00
Dt8333
ed6cdfedbb fix: 修复 dashboard 的部分编译错误 (#3041)
* chore(dashboard): adding missing dependency

* fix(dashboard): 修复vertical-header中 $router 类型错误
2025-10-16 10:32:08 +08:00
PaloMiku
23f13ef05f feat:Misskey 适配器支持文件上传、投票内容感知功能和重构部分代码 (#2986)
* feat: 为 Misskey 适配器修正一些问题,添加投票信息读取支持

* feat: 增强 Misskey 平台适配器,添加随机重连延迟和通道重新订阅功能

* feat: 添加文件上传功能并优化消息发送接口,支持同时发送文件和文本

* feat: 增强文件上传功能,支持 MIME 类型检测和外部 URL 回退

* feat: 增加 Misskey 文件上传功能开关,支持配置文件上传启用与并发限制

* feat: 添加 Misskey 文件上传目标文件夹配置,支持将文件上传到指定文件夹

* feat: 优化 Misskey 平台适配器,增强文件上传和消息发送功能,支持更多可选字段

* feat: 代码优化结构与功能

* feat(misskey): 增强消息发送逻辑和工具函数

- 重构了 `misskey_event.py` 中的 `send` 方法,使用新的适配器方法 `send_by_session`,以改进消息处理(包括文件上传)。
- 添加了详细的日志记录,以提高消息发送过程的可追溯性。
- 在 `misskey_utils.py` 中引入了 `FileIDExtractor` 和 `MessagePayloadBuilder` 类,以简化文件 ID 提取和消息载荷构建。
- 在 `misskey_utils.py` 中实现了 MIME 类型检测和文件扩展名解析,以支持多种文件上传。
- 增强了 `resolve_component_url_or_path`,以更好地处理不同类型的组件上传文件。
- 在 `upload_local_with_retries` 中添加了重试逻辑,以优雅地处理不允许的文件类型。

* feat(misskey): 限制文件上传并发数,优化消息处理逻辑

* feat(misskey): ruff formatted

* feat: 大幅优化 misskey 文件上传逻辑,简化上传流程并增强可见性解析

* feat(misskey): 移除 Url上传方式,精简日志

* fix(misskey): 修复错把URL文件当本地文件上传的问题,明确处理 URL 和本地文件的方式

* fix(misskey): 修复 session_id 解析逻辑,确保与 user_cache 键格式匹配

* perf: streaming the file with a file object in FormData to reduce peak memory usage.

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* style: format debug log message for local file upload in MisskeyAPI

* refactor: remove unnecessary thread executor for reading file bytes in MisskeyAPI

---------

Co-authored-by: Soulter <37870767+Soulter@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Soulter <905617992@qq.com>
2025-10-16 10:27:04 +08:00
Soulter
f9c59d9706 docs: fix typo 2025-10-16 09:17:09 +08:00
Soulter
e1cec42227 chore: add Node.js setup step in CI workflow 2025-10-15 23:32:53 +08:00
Soulter
8d79c50d53 chore: update CI workflow to use pnpm for package management 2025-10-15 23:12:38 +08:00
Soulter
d77830b97f feat: add markdown-it type definitions as a dev dependency 2025-10-15 23:01:38 +08:00
Soulter
394540f689 docs: Update support status for various platforms 2025-10-15 18:48:25 +08:00
445 changed files with 32245 additions and 13834 deletions

View File

@@ -1,9 +1,9 @@
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# github acions
# github actions
.git
.github/
.*ignore
.git/
# User-specific stuff
.idea/
# Byte-compiled / optimized / DLL files
@@ -15,10 +15,10 @@ env/
venv*/
ENV/
.conda/
README*.md
dashboard/
data/
changelogs/
tests/
.ruff_cache/
.astrbot
.astrbot
astrbot.lock

View File

@@ -16,7 +16,7 @@ body:
请将插件信息填写到下方的 JSON 代码块中。其中 `tags`(插件标签)和 `social_link`(社交链接)选填。
不熟悉 JSON 现在可以从 [这里](https://plugins.astrbot.app/#/submit) 获取你的 JSON 啦!获取到了记得复制粘贴过来哦!
不熟悉 JSON ?可以从 [此站](https://plugins.astrbot.app) 右下角提交。
- type: textarea
id: plugin-info
@@ -26,12 +26,13 @@ body:
value: |
```json
{
"name": "插件名",
"desc": "插件介绍",
"name": "插件名,请以 astrbot_plugin_ 开头",
"display_name": "用于展示的插件名,方便人类阅读",
"desc": "插件的简短介绍",
"author": "作者名",
"repo": "插件仓库链接",
"tags": [],
"social_link": ""
"social_link": "",
}
```
validations:

View File

@@ -1,46 +1,44 @@
name: '🐛 报告 Bug'
name: '🐛 Report Bug / 报告 Bug'
title: '[Bug]'
description: 提交报告帮助我们改进。
description: Submit bug report to help us improve. / 提交报告帮助我们改进。
labels: [ 'bug' ]
body:
- type: markdown
attributes:
value: |
感谢您抽出时间报告问题!请准确解释您的问题。如果可能,请提供一个可复现的片段(这有助于更快地解决问题)。
Thank you for taking the time to report this issue! Please describe your problem accurately. If possible, please provide a reproducible snippet (this will help resolve the issue more quickly). Please note that issues that are not detailed or have no logs will be closed immediately. Thank you for your understanding. / 感谢您抽出时间报告问题!请准确解释您的问题。如果可能,请提供一个可复现的片段(这有助于更快地解决问题)。请注意,不详细 / 没有日志的 issue 会被直接关闭,谢谢理解。
- type: textarea
attributes:
label: 发生了什么
description: 描述你遇到的异常
label: What happened / 发生了什么
description: Description
placeholder: >
一个清晰且具体的描述这个异常是什么
Please provide a clear and specific description of what this exception is. Please note that issues that are not detailed or have no logs will be closed immediately. Thank you for your understanding. / 一个清晰且具体的描述这个异常是什么。请注意,不详细 / 没有日志的 issue 会被直接关闭,谢谢理解
validations:
required: true
- type: textarea
attributes:
label: 如何复现?
label: Reproduce / 如何复现?
description: >
复现该问题的步骤
The steps to reproduce the issue. / 复现该问题的步骤
placeholder: >
: 1. 打开 '...'
Example: 1. Open '...'
validations:
required: true
- type: textarea
attributes:
label: AstrBot 版本、部署方式(如 Windows Docker Desktop 部署)、使用的提供商、使用的消息平台适配器
description: >
请提供您的 AstrBot 版本和部署方式。
label: AstrBot version, deployment method (e.g., Windows Docker Desktop deployment), provider used, and messaging platform used. / AstrBot 版本、部署方式(如 Windows Docker Desktop 部署)、使用的提供商、使用的消息平台适配器
placeholder: >
如: 3.1.8 Docker, 3.1.7 Windows启动器
Example: 4.5.7 Docker, 3.1.7 Windows Launcher
validations:
required: true
- type: dropdown
attributes:
label: 操作系统
label: OS
description: |
你在哪个操作系统上遇到了这个问题?
On which operating system did you encounter this problem? / 你在哪个操作系统上遇到了这个问题?
multiple: false
options:
- 'Windows'
@@ -53,30 +51,30 @@ body:
- type: textarea
attributes:
label: 报错日志
label: Logs / 报错日志
description: >
如报错日志、截图等。请提供完整的 Debug 级别的日志,不要介意它很长!
Please provide complete Debug-level logs, such as error logs and screenshots. Don't worry if they're long! Please note that issues with insufficient details or no logs will be closed immediately. Thank you for your understanding. / 如报错日志、截图等。请提供完整的 Debug 级别的日志,不要介意它很长!请注意,不详细 / 没有日志的 issue 会被直接关闭,谢谢理解。
placeholder: >
请提供完整的报错日志或截图。
Please provide a complete error log or screenshot. / 请提供完整的报错日志或截图。
validations:
required: true
- type: checkboxes
attributes:
label: 你愿意提交 PR 吗?
label: Are you willing to submit a PR? / 你愿意提交 PR 吗?
description: >
这不是必需的,但我们很乐意在贡献过程中为您提供指导特别是如果你已经很好地理解了如何实现修复。
This is not required, but we would be happy to provide guidance during the contribution process, especially if you already have a good understanding of how to implement the fix. / 这不是必需的,但我们很乐意在贡献过程中为您提供指导特别是如果你已经很好地理解了如何实现修复。
options:
- label: 是的,我愿意提交 PR!
- label: Yes!
- type: checkboxes
attributes:
label: Code of Conduct
options:
- label: >
我已阅读并同意遵守该项目的 [行为准则](https://docs.github.com/zh/site-policy/github-terms/github-community-code-of-conduct)。
I have read and agree to abide by the project's [Code of Conduct](https://docs.github.com/zh/site-policy/github-terms/github-community-code-of-conduct)。
required: true
- type: markdown
attributes:
value: "感谢您填写我们的表单!"
value: "Thank you for filling out our form! / 感谢您填写我们的表单!"

View File

@@ -1,44 +1,25 @@
<!-- 如果有的话,请指定此 PR 旨在解决的 ISSUE 编号。 -->
<!-- If applicable, please specify the ISSUE number this PR aims to resolve. -->
fixes #XYZ
---
### Motivation / 动机
<!--请描述此项更改的动机:它解决了什么问题?(例如:修复了 XX 错误,添加了 YY 功能)-->
<!--Please describe the motivation for this change: What problem does it solve? (e.g., Fixes XX bug, adds YY feature)-->
<!--Please describe the motivation for this change: What problem does it solve? (e.g., Fixes XX issue, adds YY feature)-->
<!--请描述此项更改的动机:它解决了什么问题?(例如:修复了 XX issue添加了 YY 功能)-->
### Modifications / 改动点
<!--请总结你的改动:哪些核心文件被修改了?实现了什么功能?-->
<!--Please summarize your changes: What core files were modified? What functionality was implemented?-->
### Verification Steps / 验证步骤
<!--请为审查者 (Reviewer) 提供清晰、可复现的验证步骤例如1. 导航到... 2. 点击...)。-->
<!--Please provide clear and reproducible verification steps for the Reviewer (e.g., 1. Navigate to... 2. Click...).-->
- [x] This is NOT a breaking change. / 这不是一个破坏性变更。
<!-- If your changes is a breaking change, please uncheck the checkbox above -->
### Screenshots or Test Results / 运行截图或测试结果
<!--请粘贴截图、GIF 或测试日志,作为执行“验证步骤”的证据,证明此改动有效。-->
<!--Please paste screenshots, GIFs, or test logs here as evidence of executing the "Verification Steps" to prove this change is effective.-->
### Compatibility & Breaking Changes / 兼容性与破坏性变更
<!--请说明此变更的兼容性:哪些是破坏性变更?哪些地方做了向后兼容处理?是否提供了数据迁移方法?-->
<!--Please explain the compatibility of this change: What are the breaking changes? What backward-compatible measures were taken? Are data migration paths provided?-->
- [ ] 这是一个破坏性变更 (Breaking Change)。/ This is a breaking change.
- [ ] 这不是一个破坏性变更。/ This is NOT a breaking change.
<!--请粘贴截图、GIF 或测试日志,作为执行“验证步骤”的证据,证明此改动有效。-->
---
### Checklist / 检查清单
<!--如果分支被合并,您的代码将服务于数万名用户!在提交前,请核查一下几点内容。-->
<!--If merged, your code will serve tens of thousands of users! Please double-check the following items before submitting.-->
<!--如果分支被合并,您的代码将服务于数万名用户!在提交前,请核查一下几点内容。-->
- [ ] 😊 如果 PR 中有新加入的功能,已经通过 Issue / 邮件等方式和作者讨论过。/ If there are new features added in the PR, I have discussed it with the authors through issues/emails, etc.
- [ ] 👀 我的更改经过了良好的测试,**并已在上方提供了“验证步骤”和“运行截图”**。/ My changes have been well-tested, **and "Verification Steps" and "Screenshots" have been provided above**.

View File

@@ -13,7 +13,7 @@ jobs:
contents: write
steps:
- name: Checkout repository
uses: actions/checkout@v5
uses: actions/checkout@v6
- name: Dashboard Build
run: |
@@ -70,7 +70,7 @@ jobs:
needs: build-and-publish-to-github-release
steps:
- name: Checkout repository
uses: actions/checkout@v5
uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v6

View File

@@ -12,7 +12,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v5
uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v6

View File

@@ -56,7 +56,7 @@ jobs:
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v5
uses: actions/checkout@v6
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL

View File

@@ -17,7 +17,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v5
uses: actions/checkout@v6
with:
fetch-depth: 0

View File

@@ -11,13 +11,20 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v5
uses: actions/checkout@v6
- name: Setup Node.js
uses: actions/setup-node@v6
with:
node-version: 'latest'
- name: npm install, build
run: |
cd dashboard
npm install
npm run build
npm install pnpm -g
pnpm install
pnpm i --save-dev @types/markdown-it
pnpm run build
- name: Inject Commit SHA
id: get_sha
@@ -29,7 +36,7 @@ jobs:
zip -r dist.zip dist
- name: Archive production artifacts
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v5
with:
name: dist-without-markdown
path: |

View File

@@ -3,18 +3,125 @@ name: Docker Image CI/CD
on:
push:
tags:
- 'v*'
- "v*"
schedule:
# Run at 00:00 UTC every day
- cron: "0 0 * * *"
workflow_dispatch:
jobs:
publish-docker:
build-nightly-image:
if: github.event_name == 'schedule'
runs-on: ubuntu-latest
env:
DOCKER_HUB_USERNAME: ${{ secrets.DOCKER_HUB_USERNAME }}
GHCR_OWNER: soulter
HAS_GHCR_TOKEN: ${{ secrets.GHCR_GITHUB_TOKEN != '' }}
steps:
- name: Pull The Codes
uses: actions/checkout@v5
- name: Checkout
uses: actions/checkout@v6
with:
fetch-depth: 0 # Must be 0 so we can fetch tags
fetch-depth: 1
fetch-tag: true
- name: Check for new commits today
if: github.event_name == 'schedule'
id: check-commits
run: |
# Get commits from the last 24 hours
commits=$(git log --since="24 hours ago" --oneline)
if [ -z "$commits" ]; then
echo "No commits in the last 24 hours, skipping build"
echo "has_commits=false" >> $GITHUB_OUTPUT
else
echo "Found commits in the last 24 hours:"
echo "$commits"
echo "has_commits=true" >> $GITHUB_OUTPUT
fi
- name: Exit if no commits
if: github.event_name == 'schedule' && steps.check-commits.outputs.has_commits == 'false'
run: exit 0
- name: Build Dashboard
run: |
cd dashboard
npm install
npm run build
mkdir -p dist/assets
echo $(git rev-parse HEAD) > dist/assets/version
cd ..
mkdir -p data
cp -r dashboard/dist data/
- name: Determine test image tags
id: test-meta
run: |
short_sha=$(echo "${GITHUB_SHA}" | cut -c1-12)
build_date=$(date +%Y%m%d)
echo "short_sha=$short_sha" >> $GITHUB_OUTPUT
echo "build_date=$build_date" >> $GITHUB_OUTPUT
- name: Set QEMU
uses: docker/setup-qemu-action@v3
- name: Set Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_HUB_USERNAME }}
password: ${{ secrets.DOCKER_HUB_PASSWORD }}
- name: Login to GitHub Container Registry
if: env.HAS_GHCR_TOKEN == 'true'
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ env.GHCR_OWNER }}
password: ${{ secrets.GHCR_GITHUB_TOKEN }}
- name: Build nightly image tags list
id: test-tags
run: |
TAGS="${{ env.DOCKER_HUB_USERNAME }}/astrbot:nightly-latest
${{ env.DOCKER_HUB_USERNAME }}/astrbot:nightly-${{ steps.test-meta.outputs.build_date }}-${{ steps.test-meta.outputs.short_sha }}"
if [ "${{ env.HAS_GHCR_TOKEN }}" = "true" ]; then
TAGS="$TAGS
ghcr.io/${{ env.GHCR_OWNER }}/astrbot:nightly-latest
ghcr.io/${{ env.GHCR_OWNER }}/astrbot:nightly-${{ steps.test-meta.outputs.build_date }}-${{ steps.test-meta.outputs.short_sha }}"
fi
echo "tags<<EOF" >> $GITHUB_OUTPUT
echo "$TAGS" >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
- name: Build and Push Nightly Image
uses: docker/build-push-action@v6
with:
context: .
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.test-tags.outputs.tags }}
- name: Post build notifications
run: echo "Test Docker image has been built and pushed successfully"
build-release-image:
if: github.event_name == 'workflow_dispatch' || (github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v'))
runs-on: ubuntu-latest
env:
DOCKER_HUB_USERNAME: ${{ secrets.DOCKER_HUB_USERNAME }}
GHCR_OWNER: soulter
HAS_GHCR_TOKEN: ${{ secrets.GHCR_GITHUB_TOKEN != '' }}
steps:
- name: Checkout
uses: actions/checkout@v6
with:
fetch-depth: 1
fetch-tag: true
- name: Get latest tag (only on manual trigger)
id: get-latest-tag
@@ -27,21 +134,22 @@ jobs:
if: github.event_name == 'workflow_dispatch'
run: git checkout ${{ steps.get-latest-tag.outputs.latest_tag }}
- name: Check if version is pre-release
id: check-prerelease
- name: Compute release metadata
id: release-meta
run: |
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
if [ "${{ github.event_name }}" = "workflow_dispatch" ]; then
version="${{ steps.get-latest-tag.outputs.latest_tag }}"
else
version="${{ github.ref_name }}"
version="${GITHUB_REF#refs/tags/}"
fi
if [[ "$version" == *"beta"* ]] || [[ "$version" == *"alpha"* ]]; then
echo "is_prerelease=true" >> $GITHUB_OUTPUT
echo "Version $version is a pre-release, will not push latest tag"
echo "Version $version marked as pre-release"
else
echo "is_prerelease=false" >> $GITHUB_OUTPUT
echo "Version $version is a stable release, will push latest tag"
echo "Version $version marked as stable"
fi
echo "version=$version" >> $GITHUB_OUTPUT
- name: Build Dashboard
run: |
@@ -67,23 +175,24 @@ jobs:
password: ${{ secrets.DOCKER_HUB_PASSWORD }}
- name: Login to GitHub Container Registry
if: env.HAS_GHCR_TOKEN == 'true'
uses: docker/login-action@v3
with:
registry: ghcr.io
username: Soulter
username: ${{ env.GHCR_OWNER }}
password: ${{ secrets.GHCR_GITHUB_TOKEN }}
- name: Build and Push Docker to DockerHub and Github GHCR
- name: Build and Push Release Image
uses: docker/build-push-action@v6
with:
context: .
platforms: linux/amd64,linux/arm64
push: true
tags: |
${{ steps.check-prerelease.outputs.is_prerelease == 'false' && format('{0}/astrbot:latest', secrets.DOCKER_HUB_USERNAME) || '' }}
${{ secrets.DOCKER_HUB_USERNAME }}/astrbot:${{ github.event_name == 'workflow_dispatch' && steps.get-latest-tag.outputs.latest_tag || github.ref_name }}
${{ steps.check-prerelease.outputs.is_prerelease == 'false' && 'ghcr.io/soulter/astrbot:latest' || '' }}
ghcr.io/soulter/astrbot:${{ github.event_name == 'workflow_dispatch' && steps.get-latest-tag.outputs.latest_tag || github.ref_name }}
${{ steps.release-meta.outputs.is_prerelease == 'false' && format('{0}/astrbot:latest', env.DOCKER_HUB_USERNAME) || '' }}
${{ steps.release-meta.outputs.is_prerelease == 'false' && env.HAS_GHCR_TOKEN == 'true' && format('ghcr.io/{0}/astrbot:latest', env.GHCR_OWNER) || '' }}
${{ format('{0}/astrbot:{1}', env.DOCKER_HUB_USERNAME, steps.release-meta.outputs.version) }}
${{ env.HAS_GHCR_TOKEN == 'true' && format('ghcr.io/{0}/astrbot:{1}', env.GHCR_OWNER, steps.release-meta.outputs.version) || '' }}
- name: Post build notifications
run: echo "Docker image has been built and pushed successfully"
run: echo "Release Docker image has been built and pushed successfully"

65
.gitignore vendored
View File

@@ -1,35 +1,52 @@
# Python related
__pycache__
botpy.log
.vscode
.mypy_cache
.venv*
.idea
data_v2.db
data_v3.db
configs/session
configs/config.yaml
**/.DS_Store
temp
cmd_config.json
data
cookies.json
logs/
addons/plugins
.conda/
uv.lock
.coverage
# IDE and editors
.vscode
.idea
# Logs and temporary files
botpy.log
logs/
temp
cookies.json
# Data files
data_v2.db
data_v3.db
data
configs/session
configs/config.yaml
cmd_config.json
# Plugins and packages
addons/plugins
packages/python_interpreter/workplace
tests/astrbot_plugin_openai
chroma
# Dashboard
dashboard/node_modules/
dashboard/dist/
.DS_Store
package-lock.json
package.json
venv/*
packages/python_interpreter/workplace
.venv/*
.conda/
.idea
pytest.ini
.astrbot
yarn.lock
uv.lock
# Operating System
**/.DS_Store
.DS_Store
# AstrBot specific
.astrbot
astrbot.lock
# Other
chroma
venv/*
pytest.ini
AGENTS.md
IFLOW.md

View File

@@ -6,8 +6,20 @@ ci:
autoupdate_schedule: weekly
autoupdate_commit_msg: ":balloon: pre-commit autoupdate"
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.2
hooks:
- id: ruff
- id: ruff-format
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.14.1
hooks:
# Run the linter.
- id: ruff-check
types_or: [ python, pyi ]
args: [ --fix ]
# Run the formatter.
- id: ruff-format
types_or: [ python, pyi ]
- repo: https://github.com/asottile/pyupgrade
rev: v3.21.0
hooks:
- id: pyupgrade
args: [--py310-plus]

View File

@@ -12,19 +12,21 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
ca-certificates \
bash \
ffmpeg \
curl \
gnupg \
git \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
&& rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
RUN apt-get update && apt-get install -y curl gnupg && \
curl -fsSL https://deb.nodesource.com/setup_lts.x | bash - && \
apt-get install -y nodejs && \
rm -rf /var/lib/apt/lists/*
RUN apt-get update && apt-get install -y curl gnupg \
&& curl -fsSL https://deb.nodesource.com/setup_lts.x | bash - \
&& apt-get install -y nodejs
RUN python -m pip install uv
RUN python -m pip install uv \
&& echo "3.11" > .python-version
RUN uv pip install -r requirements.txt --no-cache-dir --system
RUN uv pip install socksio uv pilk --no-cache-dir --system
EXPOSE 6185
EXPOSE 6186
CMD [ "python", "main.py" ]
CMD ["python", "main.py"]

View File

@@ -1,35 +0,0 @@
FROM python:3.10-slim
WORKDIR /AstrBot
COPY . /AstrBot/
RUN apt-get update && apt-get install -y --no-install-recommends \
gcc \
build-essential \
python3-dev \
libffi-dev \
libssl-dev \
curl \
unzip \
ca-certificates \
bash \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# Installation of Node.js
ENV NVM_DIR="/root/.nvm"
RUN curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.2/install.sh | bash && \
. "$NVM_DIR/nvm.sh" && \
nvm install 22 && \
nvm use 22
RUN /bin/bash -c ". \"$NVM_DIR/nvm.sh\" && node -v && npm -v"
RUN python -m pip install uv
RUN uv pip install -r requirements.txt --no-cache-dir --system
RUN uv pip install socksio uv pyffmpeg --no-cache-dir --system
EXPOSE 6185
EXPOSE 6186
CMD ["python", "main.py"]

150
README.md
View File

@@ -4,24 +4,35 @@
<div align="center">
<a href="https://trendshift.io/repositories/12875" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12875" alt="Soulter%2FAstrBot | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<br>
[![GitHub release (latest by date)](https://img.shields.io/github/v/release/Soulter/AstrBot?style=for-the-badge&color=76bad9)](https://github.com/Soulter/AstrBot/releases/latest)
<div>
<a href="https://trendshift.io/repositories/12875" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12875" alt="Soulter%2FAstrBot | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<a href="https://hellogithub.com/repository/AstrBotDevs/AstrBot" target="_blank"><img src="https://api.hellogithub.com/v1/widgets/recommend.svg?rid=d127d50cd5e54c5382328acc3bb25483&claim_uid=ZO9by7qCXgSd6Lp&t=2" alt="FeaturedHelloGitHub" style="width: 250px; height: 54px;" width="250" height="54" /></a>
</div>
<br>
<div>
<img src="https://img.shields.io/github/v/release/AstrBotDevs/AstrBot?style=for-the-badge&color=76bad9" href="https://github.com/AstrBotDevs/AstrBot/releases/latest">
<img src="https://img.shields.io/badge/python-3.10+-blue.svg?style=for-the-badge&color=76bad9" alt="python">
<a href="https://hub.docker.com/r/soulter/astrbot"><img alt="Docker pull" src="https://img.shields.io/docker/pulls/soulter/astrbot.svg?style=for-the-badge&color=76bad9"/></a>
<a href="https://qm.qq.com/cgi-bin/qm/qr?k=wtbaNx7EioxeaqS9z7RQWVXPIxg2zYr7&jump_from=webapi&authKey=vlqnv/AV2DbJEvGIcxdlNSpfxVy+8vVqijgreRdnVKOaydpc+YSw4MctmEbr0k5"><img alt="QQ_community" src="https://img.shields.io/badge/QQ群-775869627-purple?style=for-the-badge&color=76bad9"></a>
<a href="https://t.me/+hAsD2Ebl5as3NmY1"><img alt="Telegram_community" src="https://img.shields.io/badge/Telegram-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.soulter.top%2Fastrbot%2Fplugin-num&query=%24.result&suffix=%E4%B8%AA&style=for-the-badge&label=%E6%8F%92%E4%BB%B6%E5%B8%82%E5%9C%BA&cacheSeconds=3600)
<a href="https://qm.qq.com/cgi-bin/qm/qr?k=wtbaNx7EioxeaqS9z7RQWVXPIxg2zYr7&jump_from=webapi&authKey=vlqnv/AV2DbJEvGIcxdlNSpfxVy+8vVqijgreRdnVKOaydpc+YSw4MctmEbr0k5"><img alt="QQ_community" src="https://img.shields.io/badge/QQ群-775869627-purple?style=for-the-badge&color=76bad9"></a>
<a href="https://t.me/+hAsD2Ebl5as3NmY1"><img alt="Telegram_community" src="https://img.shields.io/badge/Telegram-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
<img src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.soulter.top%2Fastrbot%2Fplugin-num&query=%24.result&suffix=%E4%B8%AA&style=for-the-badge&label=%E6%8F%92%E4%BB%B6%E5%B8%82%E5%9C%BA&cacheSeconds=3600">
</div>
<a href="https://github.com/Soulter/AstrBot/blob/master/README_en.md">English</a>
<a href="https://github.com/Soulter/AstrBot/blob/master/README_ja.md">日本語</a>
<br>
<a href="https://github.com/AstrBotDevs/AstrBot/blob/master/README_en.md">English</a>
<a href="https://github.com/AstrBotDevs/AstrBot/blob/master/README_ja.md">日本語</a>
<a href="https://astrbot.app/">文档</a>
<a href="https://blog.astrbot.app/">Blog</a>
<a href="https://astrbot.featurebase.app/roadmap">路线图</a>
<a href="https://github.com/Soulter/AstrBot/issues">问题提交</a>
<a href="https://github.com/AstrBotDevs/AstrBot/issues">问题提交</a>
</div>
AstrBot 是一个开源的一站式 Agent 聊天机器人平台及开发框架
AstrBot 是一个开源的一站式 Agent 聊天机器人平台,可无缝接入主流即时通讯软件,为个人、开发者和团队打造可靠、可扩展的对话式智能基础设施。无论是个人 AI 伙伴、智能客服、自动化助手还是企业知识库AstrBot 都能在你的即时通讯软件平台的工作流中快速构建生产可用的 AI 应用
## 主要功能
@@ -31,7 +42,7 @@ AstrBot 是一个开源的一站式 Agent 聊天机器人平台及开发框架
4. **插件扩展**。深度优化的插件机制,支持[开发插件](https://astrbot.app/dev/plugin.html)扩展功能,社区插件生态丰富。
5. **WebUI**。可视化配置和管理机器人,功能齐全。
## 部署方式
## 部署方式
#### Docker 部署(推荐 🥳)
@@ -61,7 +72,7 @@ AstrBot 已由雨云官方上架至云应用平台,可一键部署。
社区贡献的部署方式。
[![Run on Repl.it](https://repl.it/badge/github/Soulter/AstrBot)](https://repl.it/github/Soulter/AstrBot)
[![Run on Repl.it](https://repl.it/badge/github/AstrBotDevs/AstrBot)](https://repl.it/github/AstrBotDevs/AstrBot)
#### Windows 一键安装器部署
@@ -108,82 +119,73 @@ uv run main.py
<a href="https://discord.gg/hAVk6tgV36"><img alt="Discord_community" src="https://img.shields.io/badge/Discord-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
## 消息平台支持情况
## 支持的消息平台
**官方维护**
| 平台 | 支持性 |
| -------- | ------- |
| QQ(官方平台) | ✔ |
| QQ(OneBot) | ✔ |
| Telegram | ✔ |
| 企微应用 | ✔ |
| 微信客服 | ✔ |
| 微信公众号 | ✔ |
| 飞书 | ✔ |
| 钉钉 | ✔ |
| Slack | ✔ |
| Discord | ✔ |
| Satori | ✔ |
| Misskey | ✔ |
| 企微智能机器人 | 将支持 |
| Whatsapp | 将支持 |
| LINE | 将支持 |
- QQ (官方平台 & OneBot)
- Telegram
- 企微应用 & 企微智能机器人
- 微信客服 & 微信公众号
- 飞书
- 钉钉
- Slack
- Discord
- Satori
- Misskey
- Whatsapp (将支持)
- LINE (将支持)
**社区维护**
| 平台 | 支持性 |
| -------- | ------- |
| [KOOK](https://github.com/wuyan1003/astrbot_plugin_kook_adapter) | ✔ |
| [VoceChat](https://github.com/HikariFroya/astrbot_plugin_vocechat) | ✔ |
| [Bilibili 私信](https://github.com/Hina-Chat/astrbot_plugin_bilibili_adapter) | ✔ |
- [KOOK](https://github.com/wuyan1003/astrbot_plugin_kook_adapter)
- [VoceChat](https://github.com/HikariFroya/astrbot_plugin_vocechat)
- [Bilibili 私信](https://github.com/Hina-Chat/astrbot_plugin_bilibili_adapter)
- [wxauto](https://github.com/luosheng520qaq/wxauto-repost-onebotv11)
## ⚡ 提供商支持情况
## 支持的模型服务
**大模型服务**
| 名称 | 支持性 | 备注 |
| -------- | ------- | ------- |
| OpenAI | ✔ | 支持任何兼容 OpenAI API 的服务 |
| Anthropic | ✔ | |
| Google Gemini | ✔ | |
| Moonshot AI | ✔ | |
| 智谱 AI | ✔ | |
| DeepSeek | ✔ | |
| Ollama | ✔ | 本地部署 DeepSeek 等开源语言模型 |
| LM Studio | ✔ | 本地部署 DeepSeek 等开源语言模型 |
| [优云智算](https://www.compshare.cn/?ytag=GPU_YY-gh_astrbot&referral_code=FV7DcGowN4hB5UuXKgpE74) | ✔ | |
| [302.AI](https://share.302.ai/rr1M3l) | ✔ | |
| [小马算力](https://www.tokenpony.cn/3YPyf) | ✔ | |
| 硅基流动 | ✔ | |
| PPIO 派欧云 | ✔ | |
| ModelScope | ✔ | |
| OneAPI | ✔ | |
| Dify | ✔ | |
| 阿里云百炼应用 | ✔ | |
| Coze | ✔ | |
- OpenAI 及兼容服务
- Anthropic
- Google Gemini
- Moonshot AI
- 智谱 AI
- DeepSeek
- Ollama (本地部署)
- LM Studio (本地部署)
- [优云智算](https://www.compshare.cn/?ytag=GPU_YY-gh_astrbot&referral_code=FV7DcGowN4hB5UuXKgpE74)
- [302.AI](https://share.302.ai/rr1M3l)
- [小马算力](https://www.tokenpony.cn/3YPyf)
- [硅基流动](https://docs.siliconflow.cn/cn/usercases/use-siliconcloud-in-astrbot)
- [PPIO 派欧云](https://ppio.com/user/register?invited_by=AIOONE)
- ModelScope
- OneAPI
**LLMOps 平台**
- Dify
- 阿里云百炼应用
- Coze
**语音转文本服务**
| 名称 | 支持性 | 备注 |
| -------- | ------- | ------- |
| Whisper | ✔ | 支持 API、本地部署 |
| SenseVoice | ✔ | 本地部署 |
- OpenAI Whisper
- SenseVoice
**文本转语音服务**
| 名称 | 支持性 | 备注 |
| -------- | ------- | ------- |
| OpenAI TTS | ✔ | |
| Gemini TTS | ✔ | |
| GSVI | ✔ | GPT-Sovits-Inference |
| GPT-SoVITs | ✔ | GPT-Sovits |
| FishAudio | ✔ | |
| Edge TTS | ✔ | Edge 浏览器的免费 TTS |
| 阿里云百炼 TTS | ✔ | |
| Azure TTS | ✔ | |
| Minimax TTS | ✔ | |
| 火山引擎 TTS | ✔ | |
- OpenAI TTS
- Gemini TTS
- GPT-Sovits-Inference
- GPT-Sovits
- FishAudio
- Edge TTS
- 阿里云百炼 TTS
- Azure TTS
- Minimax TTS
- 火山引擎 TTS
## ❤️ 贡献
@@ -198,7 +200,7 @@ uv run main.py
AstrBot 使用 `ruff` 进行代码格式化和检查。
```bash
git clone https://github.com/Soulter/AstrBot
git clone https://github.com/AstrBotDevs/AstrBot
pip install pre-commit
pre-commit install
```
@@ -217,12 +219,12 @@ pre-commit install
## ⭐ Star History
> [!TIP]
> [!TIP]
> 如果本项目对您的生活 / 工作产生了帮助,或者您关注本项目的未来发展,请给项目 Star这是我们维护这个开源项目的动力 <3
<div align="center">
[![Star History Chart](https://api.star-history.com/svg?repos=soulter/astrbot&type=Date)](https://star-history.com/#soulter/astrbot&Date)
[![Star History Chart](https://api.star-history.com/svg?repos=astrbotdevs/astrbot&type=Date)](https://star-history.com/#astrbotdevs/astrbot&Date)
</div>

View File

@@ -1,182 +1,233 @@
<p align="center">
![6e1279651f16d7fdf4727558b72bbaf1](https://github.com/user-attachments/assets/ead4c551-fc3c-48f7-a6f7-afbfdb820512)
![AstrBot-Logo-Simplified](https://github.com/user-attachments/assets/ffd99b6b-3272-4682-beaa-6fe74250f7d9)
</p>
<div align="center">
_✨ Easy-to-use Multi-platform LLM Chatbot & Development Framework ✨_
<br>
<div>
<a href="https://trendshift.io/repositories/12875" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12875" alt="Soulter%2FAstrBot | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
[![GitHub release (latest by date)](https://img.shields.io/github/v/release/Soulter/AstrBot)](https://github.com/Soulter/AstrBot/releases/latest)
<img src="https://img.shields.io/badge/python-3.10+-blue.svg" alt="python">
<a href="https://hub.docker.com/r/soulter/astrbot"><img alt="Docker pull" src="https://img.shields.io/docker/pulls/soulter/astrbot.svg"/></a>
<a href="https://qm.qq.com/cgi-bin/qm/qr?k=wtbaNx7EioxeaqS9z7RQWVXPIxg2zYr7&jump_from=webapi&authKey=vlqnv/AV2DbJEvGIcxdlNSpfxVy+8vVqijgreRdnVKOaydpc+YSw4MctmEbr0k5"><img alt="Static Badge" src="https://img.shields.io/badge/QQ群-630166526-purple"></a>
[![wakatime](https://wakatime.com/badge/user/915e5316-99c6-4563-a483-ef186cf000c9/project/018e705a-a1a7-409a-a849-3013485e6c8e.svg)](https://wakatime.com/badge/user/915e5316-99c6-4563-a483-ef186cf000c9/project/018e705a-a1a7-409a-a849-3013485e6c8e)
![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.soulter.top%2Fastrbot%2Fstats&query=v&label=7%E6%97%A5%E6%B6%88%E6%81%AF%E4%B8%8A%E8%A1%8C%E9%87%8F&cacheSeconds=3600)
[![codecov](https://codecov.io/gh/Soulter/AstrBot/graph/badge.svg?token=FF3P5967B8)](https://codecov.io/gh/Soulter/AstrBot)
<a href="https://astrbot.app/">Documentation</a>
<a href="https://github.com/Soulter/AstrBot/issues">Issue Tracking</a>
<a href="https://hellogithub.com/repository/AstrBotDevs/AstrBot" target="_blank"><img src="https://api.hellogithub.com/v1/widgets/recommend.svg?rid=d127d50cd5e54c5382328acc3bb25483&claim_uid=ZO9by7qCXgSd6Lp&t=2" alt="FeaturedHelloGitHub" style="width: 250px; height: 54px;" width="250" height="54" /></a>
</div>
AstrBot is a loosely coupled, asynchronous chatbot and development framework that supports multi-platform deployment, featuring an easy-to-use plugin system and comprehensive Large Language Model (LLM) integration capabilities.
<br>
## ✨ Key Features
<div>
<img src="https://img.shields.io/github/v/release/AstrBotDevs/AstrBot?style=for-the-badge&color=76bad9" href="https://github.com/AstrBotDevs/AstrBot/releases/latest">
<img src="https://img.shields.io/badge/python-3.10+-blue.svg?style=for-the-badge&color=76bad9" alt="python">
<a href="https://hub.docker.com/r/soulter/astrbot"><img alt="Docker pull" src="https://img.shields.io/docker/pulls/soulter/astrbot.svg?style=for-the-badge&color=76bad9"/></a>
<a href="https://qm.qq.com/cgi-bin/qm/qr?k=wtbaNx7EioxeaqS9z7RQWVXPIxg2zYr7&jump_from=webapi&authKey=vlqnv/AV2DbJEvGIcxdlNSpfxVy+8vVqijgreRdnVKOaydpc+YSw4MctmEbr0k5"><img alt="QQ_community" src="https://img.shields.io/badge/QQ群-775869627-purple?style=for-the-badge&color=76bad9"></a>
<a href="https://t.me/+hAsD2Ebl5as3NmY1"><img alt="Telegram_community" src="https://img.shields.io/badge/Telegram-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
<img src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.soulter.top%2Fastrbot%2Fplugin-num&query=%24.result&suffix=%E4%B8%AA&style=for-the-badge&label=%E6%8F%92%E4%BB%B6%E5%B8%82%E5%9C%BA&cacheSeconds=3600">
</div>
1. **LLM Conversations** - Supports various LLMs including OpenAI API, Google Gemini, Llama, Deepseek, ChatGLM, etc. Enables local model deployment via Ollama/LLMTuner. Features multi-turn dialogues, personality contexts, multimodal capabilities (image understanding), and speech-to-text (Whisper).
2. **Multi-platform Integration** - Supports QQ (OneBot), QQ Channels, WeChat (Gewechat), Feishu, and Telegram. Planned support for DingTalk, Discord, WhatsApp, and Xiaomi Smart Speakers. Includes rate limiting, whitelisting, keyword filtering, and Baidu content moderation.
3. **Agent Capabilities** - Native support for code execution, natural language TODO lists, web search. Integrates with [Dify Platform](https://dify.ai/) for easy access to Dify assistants/knowledge bases/workflows.
4. **Plugin System** - Optimized plugin mechanism with minimal development effort. Supports multiple installed plugins.
5. **Web Dashboard** - Visual configuration management, plugin controls, logging, and WebChat interface for direct LLM interaction.
6. **High Stability & Modularity** - Event bus and pipeline architecture ensures high modularization and loose coupling.
<br>
> [!TIP]
> Dashboard Demo: [https://demo.astrbot.app/](https://demo.astrbot.app/)
> Username: `astrbot`, Password: `astrbot` (LLM not configured for chat page)
<a href="https://github.com/AstrBotDevs/AstrBot/blob/master/README.md">中文</a>
<a href="https://github.com/AstrBotDevs/AstrBot/blob/master/README_ja.md">日本語</a>
<a href="https://astrbot.app/">Documentation</a>
<a href="https://blog.astrbot.app/">Blog</a>
<a href="https://astrbot.featurebase.app/roadmap">Roadmap</a>
<a href="https://github.com/AstrBotDevs/AstrBot/issues">Issue Tracker</a>
</div>
## ✨ Deployment
AstrBot is an open-source all-in-one Agent chatbot platform and development framework.
#### Docker Deployment
## Key Features
See docs: [Deploy with Docker](https://astrbot.app/deploy/astrbot/docker.html#docker-deployment)
1. **LLM Conversations**. Supports integration with various large language model services. Features include multimodal capabilities, tool calling, MCP, native knowledge base, character personas, and more.
2. **Multi-Platform Support**. Integrates with QQ, WeChat Work, WeChat Official Accounts, Feishu, Telegram, DingTalk, Discord, KOOK, and other platforms. Supports rate limiting, whitelisting, and Baidu content moderation.
3. **Agent Capabilities**. Fully optimized agentic features including multi-turn tool calling, built-in sandboxed code executor, web search, and more.
4. **Plugin Extensions**. Deeply optimized plugin mechanism supporting [plugin development](https://astrbot.app/dev/plugin.html) to extend functionality, with a rich community plugin ecosystem.
5. **Web UI**. Visual configuration and management of your bot with comprehensive features.
#### Windows Installer
## Deployment Methods
Requires Python (>3.10). See docs: [Windows Installer Guide](https://astrbot.app/deploy/astrbot/windows.html)
#### Docker Deployment (Recommended 🥳)
#### Replit Deployment
We recommend deploying AstrBot using Docker or Docker Compose.
[![Run on Repl.it](https://repl.it/badge/github/Soulter/AstrBot)](https://repl.it/github/Soulter/AstrBot)
Please refer to the official documentation: [Deploy AstrBot with Docker](https://astrbot.app/deploy/astrbot/docker.html#%E4%BD%BF%E7%94%A8-docker-%E9%83%A8%E7%BD%B2-astrbot).
#### BT-Panel Deployment
AstrBot has partnered with BT-Panel and is now available in their marketplace.
Please refer to the official documentation: [BT-Panel Deployment](https://astrbot.app/deploy/astrbot/btpanel.html).
#### 1Panel Deployment
AstrBot has been officially listed on the 1Panel marketplace.
Please refer to the official documentation: [1Panel Deployment](https://astrbot.app/deploy/astrbot/1panel.html).
#### Deploy on RainYun
AstrBot has been officially listed on RainYun's cloud application platform with one-click deployment.
[![Deploy on RainYun](https://rainyun-apps.cn-nb1.rains3.com/materials/deploy-on-rainyun-en.svg)](https://app.rainyun.com/apps/rca/store/5994?ref=NjU1ODg0)
#### Deploy on Replit
Community-contributed deployment method.
[![Run on Repl.it](https://repl.it/badge/github/AstrBotDevs/AstrBot)](https://repl.it/github/AstrBotDevs/AstrBot)
#### Windows One-Click Installer
Please refer to the official documentation: [Deploy AstrBot with Windows One-Click Installer](https://astrbot.app/deploy/astrbot/windows.html).
#### CasaOS Deployment
Community-contributed method.
See docs: [CasaOS Deployment](https://astrbot.app/deploy/astrbot/casaos.html)
Community-contributed deployment method.
Please refer to the official documentation: [CasaOS Deployment](https://astrbot.app/deploy/astrbot/casaos.html).
#### Manual Deployment
See docs: [Source Code Deployment](https://astrbot.app/deploy/astrbot/cli.html)
First, install uv:
## ⚡ Platform Support
```bash
pip install uv
```
| Platform | Status | Details | Message Types |
| -------------------------------------------------------------- | ------ | ------------------- | ------------------- |
| QQ (Official Bot) | ✔ | Private/Group chats | Text, Images |
| QQ (OneBot) | ✔ | Private/Group chats | Text, Images, Voice |
| WeChat (Personal) | ✔ | Private/Group chats | Text, Images, Voice |
| [Telegram](https://github.com/Soulter/astrbot_plugin_telegram) | ✔ | Private/Group chats | Text, Images |
| [WeChat Work](https://github.com/Soulter/astrbot_plugin_wecom) | ✔ | Private chats | Text, Images, Voice |
| Feishu | ✔ | Group chats | Text, Images |
| WeChat Open Platform | 🚧 | Planned | - |
| Discord | 🚧 | Planned | - |
| WhatsApp | 🚧 | Planned | - |
| Xiaomi Speakers | 🚧 | Planned | - |
Install AstrBot via Git Clone:
## Provider Support Status
```bash
git clone https://github.com/AstrBotDevs/AstrBot && cd AstrBot
uv run main.py
```
| Name | Support | Type | Notes |
|---------------------------|---------|------------------------|-----------------------------------------------------------------------|
| OpenAI API | ✔ | Text Generation | Supports all OpenAI API-compatible services including DeepSeek, Google Gemini, GLM, Moonshot, Alibaba Cloud Bailian, Silicon Flow, xAI, etc. |
| Claude API | ✔ | Text Generation | |
| Google Gemini API | ✔ | Text Generation | |
| Dify | ✔ | LLMOps | |
| DashScope (Alibaba Cloud) | ✔ | LLMOps | |
| Ollama | ✔ | Model Loader | Local deployment for open-source LLMs (DeepSeek, Llama, etc.) |
| LM Studio | ✔ | Model Loader | Local deployment for open-source LLMs (DeepSeek, Llama, etc.) |
| LLMTuner | ✔ | Model Loader | Local loading of fine-tuned models (e.g. LoRA) |
| OneAPI | ✔ | LLM Distribution | |
| Whisper | ✔ | Speech-to-Text | Supports API and local deployment |
| SenseVoice | ✔ | Speech-to-Text | Local deployment |
| OpenAI TTS API | ✔ | Text-to-Speech | |
| Fishaudio | ✔ | Text-to-Speech | Project involving GPT-Sovits author |
Or refer to the official documentation: [Deploy AstrBot from Source](https://astrbot.app/deploy/astrbot/cli.html).
# 🦌 Roadmap
## 🌍 Community
> [!TIP]
> Suggestions welcome via Issues <3
### QQ Groups
- [ ] Ensure feature parity across all platform adapters
- [ ] Optimize plugin APIs
- [ ] Add default TTS services (e.g., GPT-Sovits)
- [ ] Enhance chat features with persistent memory
- [ ] i18n Planning
- Group 1: 322154837
- Group 3: 630166526
- Group 5: 822130018
- Group 6: 753075035
- Developer Group: 975206796
## ❤️ Contributions
### Telegram Group
All Issues/PRs welcome! Simply submit your changes to this project :)
<a href="https://t.me/+hAsD2Ebl5as3NmY1"><img alt="Telegram_community" src="https://img.shields.io/badge/Telegram-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
For major features, please discuss via Issues first.
### Discord Server
## 🌟 Support
<a href="https://discord.gg/hAVk6tgV36"><img alt="Discord_community" src="https://img.shields.io/badge/Discord-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
- Star this project!
- Support via [Afdian](https://afdian.com/a/soulter)
- WeChat support: [QR Code](https://drive.soulter.top/f/pYfA/d903f4fa49a496fda3f16d2be9e023b5.png)
## Supported Messaging Platforms
## ✨ Demos
**Officially Maintained**
> [!NOTE]
> Code executor file I/O currently tested with Napcat(QQ)/Lagrange(QQ)
- QQ (Official Platform & OneBot)
- Telegram
- WeChat Work Application & WeChat Work Intelligent Bot
- WeChat Customer Service & WeChat Official Accounts
- Feishu (Lark)
- DingTalk
- Slack
- Discord
- Satori
- Misskey
- WhatsApp (Coming Soon)
- LINE (Coming Soon)
<div align='center'>
**Community Maintained**
<img src="https://github.com/user-attachments/assets/4ee688d9-467d-45c8-99d6-368f9a8a92d8" width="600">
- [KOOK](https://github.com/wuyan1003/astrbot_plugin_kook_adapter)
- [VoceChat](https://github.com/HikariFroya/astrbot_plugin_vocechat)
- [Bilibili Direct Messages](https://github.com/Hina-Chat/astrbot_plugin_bilibili_adapter)
- [wxauto](https://github.com/luosheng520qaq/wxauto-repost-onebotv11)
_✨ Docker-based Sandboxed Code Executor (Beta) ✨_
## Supported Model Services
<img src="https://github.com/user-attachments/assets/0378f407-6079-4f64-ae4c-e97ab20611d2" height=500>
**LLM Services**
_✨ Multimodal Input, Web Search, Text-to-Image ✨_
- OpenAI and Compatible Services
- Anthropic
- Google Gemini
- Moonshot AI
- Zhipu AI
- DeepSeek
- Ollama (Self-hosted)
- LM Studio (Self-hosted)
- [CompShare](https://www.compshare.cn/?ytag=GPU_YY-gh_astrbot&referral_code=FV7DcGowN4hB5UuXKgpE74)
- [302.AI](https://share.302.ai/rr1M3l)
- [TokenPony](https://www.tokenpony.cn/3YPyf)
- [SiliconFlow](https://docs.siliconflow.cn/cn/usecases/use-siliconcloud-in-astrbot)
- [PPIO Cloud](https://ppio.com/user/register?invited_by=AIOONE)
- ModelScope
- OneAPI
<img src="https://github.com/user-attachments/assets/8ec12797-e70f-460a-959e-48eca39ca2bb" height=100>
**LLMOps Platforms**
_✨ Natural Language TODO Lists ✨_
- Dify
- Alibaba Cloud Bailian Applications
- Coze
<img src="https://github.com/user-attachments/assets/e137a9e1-340a-4bf2-bb2b-771132780735" height=150>
<img src="https://github.com/user-attachments/assets/480f5e82-cf6a-4955-a869-0d73137aa6e1" height=150>
**Speech-to-Text Services**
_✨ Plugin System Showcase ✨_
- OpenAI Whisper
- SenseVoice
<img src="https://github.com/user-attachments/assets/592a8630-14c7-4e06-b496-9c0386e4f36c" width=600>
**Text-to-Speech Services**
_✨ Web Dashboard ✨_
- OpenAI TTS
- Gemini TTS
- GPT-Sovits-Inference
- GPT-Sovits
- FishAudio
- Edge TTS
- Alibaba Cloud Bailian TTS
- Azure TTS
- Minimax TTS
- Volcano Engine TTS
![webchat](https://drive.soulter.top/f/vlsA/ezgif-5-fb044b2542.gif)
## ❤️ Contributing
_✨ Built-in Web Chat Interface ✨_
Issues and Pull Requests are always welcome! Feel free to submit your changes to this project :)
</div>
### How to Contribute
You can contribute by reviewing issues or helping with pull request reviews. Any issues or PRs are welcome to encourage community participation. Of course, these are just suggestions—you can contribute in any way you like. For adding new features, please discuss through an Issue first.
### Development Environment
AstrBot uses `ruff` for code formatting and linting.
```bash
git clone https://github.com/AstrBotDevs/AstrBot
pip install pre-commit
pre-commit install
```
## ❤️ Special Thanks
Special thanks to all Contributors and plugin developers for their contributions to AstrBot ❤️
<a href="https://github.com/AstrBotDevs/AstrBot/graphs/contributors">
<img src="https://contrib.rocks/image?repo=AstrBotDevs/AstrBot" />
</a>
Additionally, the birth of this project would not have been possible without the help of the following open-source projects:
- [NapNeko/NapCatQQ](https://github.com/NapNeko/NapCatQQ) - The amazing cat framework
## ⭐ Star History
> [!TIP]
> If this project helps you, please give it a star <3
> [!TIP]
> If this project has helped you in your life or work, or if you're interested in its future development, please give the project a Star. It's the driving force behind maintaining this open-source project <3
<div align="center">
[![Star History Chart](https://api.star-history.com/svg?repos=soulter/astrbot&type=Date)](https://star-history.com/#soulter/astrbot&Date)
[![Star History Chart](https://api.star-history.com/svg?repos=astrbotdevs/astrbot&type=Date)](https://star-history.com/#astrbotdevs/astrbot&Date)
</div>
## Disclaimer
1. Licensed under `AGPL-v3`.
2. WeChat integration uses [Gewechat](https://github.com/Devo919/Gewechat). Use at your own risk with non-critical accounts.
3. Users must comply with local laws and regulations.
<!-- ## ✨ ATRI [Beta]
Available as plugin: [astrbot_plugin_atri](https://github.com/Soulter/astrbot_plugin_atri)
1. Qwen1.5-7B-Chat Lora model fine-tuned with ATRI character data
2. Long-term memory
3. Meme understanding & responses
4. TTS integration
-->
</details>
_私は、高性能ですから!_

View File

@@ -1,167 +1,233 @@
<p align="center">
![6e1279651f16d7fdf4727558b72bbaf1](https://github.com/user-attachments/assets/ead4c551-fc3c-48f7-a6f7-afbfdb820512)
![AstrBot-Logo-Simplified](https://github.com/user-attachments/assets/ffd99b6b-3272-4682-beaa-6fe74250f7d9)
</p>
<div align="center">
_✨ 簡単に使えるマルチプラットフォーム LLM チャットボットおよび開発フレームワーク ✨_
<br>
<div>
<a href="https://trendshift.io/repositories/12875" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12875" alt="Soulter%2FAstrBot | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
[![GitHub release (latest by date)](https://img.shields.io/github/v/release/Soulter/AstrBot)](https://github.com/Soulter/AstrBot/releases/latest)
<img src="https://img.shields.io/badge/python-3.10+-blue.svg" alt="python">
<a href="https://hub.docker.com/r/soulter/astrbot"><img alt="Docker pull" src="https://img.shields.io/docker/pulls/soulter/astrbot.svg"/></a>
<img alt="Static Badge" src="https://img.shields.io/badge/QQ群-630166526-purple">
[![wakatime](https://wakatime.com/badge/user/915e5316-99c6-4563-a483-ef186cf000c9/project/018e705a-a1a7-409a-a849-3013485e6c8e.svg)](https://wakatime.com/badge/user/915e5316-99c6-4563-a483-ef186cf000c9/project/018e705a-a1a7-409a-a849-3013485e6c8e)
![Dynamic JSON Badge](https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.soulter.top%2Fastrbot%2Fstats&query=v&label=7%E6%97%A5%E6%B6%88%E6%81%AF%E4%B8%8A%E8%A1%8C%E9%87%8F&cacheSeconds=3600)
[![codecov](https://codecov.io/gh/Soulter/AstrBot/graph/badge.svg?token=FF3P5967B8)](https://codecov.io/gh/Soulter/AstrBot)
<a href="https://astrbot.app/">ドキュメントを見る</a>
<a href="https://github.com/Soulter/AstrBot/issues">問題を報告する</a>
<a href="https://hellogithub.com/repository/AstrBotDevs/AstrBot" target="_blank"><img src="https://api.hellogithub.com/v1/widgets/recommend.svg?rid=d127d50cd5e54c5382328acc3bb25483&claim_uid=ZO9by7qCXgSd6Lp&t=2" alt="FeaturedHelloGitHub" style="width: 250px; height: 54px;" width="250" height="54" /></a>
</div>
AstrBot は、疎結合、非同期、複数のメッセージプラットフォームに対応したデプロイ、使いやすいプラグインシステム、および包括的な大規模言語モデルLLM接続機能を備えたチャットボットおよび開発フレームワークです。
<br>
## ✨ 主な機能
<div>
<img src="https://img.shields.io/github/v/release/AstrBotDevs/AstrBot?style=for-the-badge&color=76bad9" href="https://github.com/AstrBotDevs/AstrBot/releases/latest">
<img src="https://img.shields.io/badge/python-3.10+-blue.svg?style=for-the-badge&color=76bad9" alt="python">
<a href="https://hub.docker.com/r/soulter/astrbot"><img alt="Docker pull" src="https://img.shields.io/docker/pulls/soulter/astrbot.svg?style=for-the-badge&color=76bad9"/></a>
<a href="https://qm.qq.com/cgi-bin/qm/qr?k=wtbaNx7EioxeaqS9z7RQWVXPIxg2zYr7&jump_from=webapi&authKey=vlqnv/AV2DbJEvGIcxdlNSpfxVy+8vVqijgreRdnVKOaydpc+YSw4MctmEbr0k5"><img alt="QQ_community" src="https://img.shields.io/badge/QQ群-775869627-purple?style=for-the-badge&color=76bad9"></a>
<a href="https://t.me/+hAsD2Ebl5as3NmY1"><img alt="Telegram_community" src="https://img.shields.io/badge/Telegram-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
<img src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fapi.soulter.top%2Fastrbot%2Fplugin-num&query=%24.result&suffix=%E4%B8%AA&style=for-the-badge&label=%E6%8F%92%E4%BB%B6%E5%B8%82%E5%9C%BA&cacheSeconds=3600">
</div>
1. **大規模言語モデルの対話**。OpenAI API、Google Gemini、Llama、Deepseek、ChatGLM など、さまざまな大規模言語モデルをサポートし、Ollama、LLMTuner を介してローカルにデプロイされた大規模モデルをサポートします。多輪対話、人格シナリオ、多モーダル機能を備え、画像理解、音声からテキストへの変換Whisperをサポートします。
2. **複数のメッセージプラットフォームの接続**。QQOneBot、QQ チャンネル、Feishu、Telegram への接続をサポートします。今後、DingTalk、Discord、WhatsApp、Xiaoai 音響をサポートする予定です。レート制限、ホワイトリスト、キーワードフィルタリング、Baidu コンテンツ監査をサポートします。
3. **エージェント**。一部のエージェント機能をネイティブにサポートし、コードエグゼキューター、自然言語タスク、ウェブ検索などを提供します。[Dify プラットフォーム](https://dify.ai/)と連携し、Dify スマートアシスタント、ナレッジベース、Dify ワークフローを簡単に接続できます。
4. **プラグインの拡張**。深く最適化されたプラグインメカニズムを備え、[プラグインの開発](https://astrbot.app/dev/plugin.html)をサポートし、機能を拡張できます。複数のプラグインのインストールをサポートします。
5. **ビジュアル管理パネル**。設定の視覚的な変更、プラグイン管理、ログの表示などをサポートし、設定の難易度を低減します。WebChat を統合し、パネル上で大規模モデルと対話できます。
6. **高い安定性と高いモジュール性**。イベントバスとパイプラインに基づくアーキテクチャ設計により、高度にモジュール化され、低結合です。
<br>
> [!TIP]
> 管理パネルのオンラインデモを体験する: [https://demo.astrbot.app/](https://demo.astrbot.app/)
>
> ユーザー名: `astrbot`, パスワード: `astrbot`。LLM が設定されていないため、チャットページで大規模モデルを使用することはできません。(デモのログインパスワードを変更しないでください 😭)
<a href="https://github.com/AstrBotDevs/AstrBot/blob/master/README.md">中文</a>
<a href="https://github.com/AstrBotDevs/AstrBot/blob/master/README_en.md">English</a>
<a href="https://astrbot.app/">ドキュメント</a>
<a href="https://blog.astrbot.app/">Blog</a>
<a href="https://astrbot.featurebase.app/roadmap">ロードマップ</a>
<a href="https://github.com/AstrBotDevs/AstrBot/issues">Issue</a>
</div>
## ✨ 使用方法
AstrBot は、オープンソースのオールインワン Agent チャットボットプラットフォーム及び開発フレームワークです。
#### Docker デプロイ
## 主な機能
公式ドキュメント [Docker を使用して AstrBot をデプロイする](https://astrbot.app/deploy/astrbot/docker.html#%E4%BD%BF%E7%94%A8-docker-%E9%83%A8%E7%BD%B2-astrbot) を参照してください
1. **大規模言語モデル対話**。多様な大規模言語モデルサービスとの統合をサポート。マルチモーダル、ツール呼び出し、MCP、ネイティブナレッジベース、キャラクター設定などの機能を搭載
2. **マルチメッセージプラットフォームサポート**。QQ、WeChat Work、WeChat公式アカウント、Feishu、Telegram、DingTalk、Discord、KOOK などのプラットフォームと統合可能。レート制限、ホワイトリスト、Baidu コンテンツ審査をサポート。
3. **Agent**。完全に最適化された Agentic 機能。マルチターンツール呼び出し、内蔵サンドボックスコード実行環境、Web 検索などの機能をサポート。
4. **プラグイン拡張**。深く最適化されたプラグインメカニズムで、[プラグイン開発](https://astrbot.app/dev/plugin.html)による機能拡張をサポート。豊富なコミュニティプラグインエコシステム。
5. **WebUI**。ビジュアル設定とボット管理、充実した機能。
#### Windows ワンクリックインストーラーのデプロイ
## デプロイ方法
コンピュータに Python>3.10)がインストールされている必要があります。公式ドキュメント [Windows ワンクリックインストーラーを使用して AstrBot をデプロイする](https://astrbot.app/deploy/astrbot/windows.html) を参照してください。
#### Docker デプロイ(推奨 🥳)
#### Replit デプロイ
Docker / Docker Compose を使用した AstrBot デプロイを推奨します。
[![Run on Repl.it](https://repl.it/badge/github/Soulter/AstrBot)](https://repl.it/github/Soulter/AstrBot)
公式ドキュメント [Docker を使用した AstrBot のデプロイ](https://astrbot.app/deploy/astrbot/docker.html#%E4%BD%BF%E7%94%A8-docker-%E9%83%A8%E7%BD%B2-astrbot) をご参照ください。
#### 宝塔パネルデプロイ
AstrBot は宝塔パネルと提携し、宝塔パネルに公開されています。
公式ドキュメント [宝塔パネルデプロイ](https://astrbot.app/deploy/astrbot/btpanel.html) をご参照ください。
#### 1Panel デプロイ
AstrBot は 1Panel 公式により 1Panel パネルに公開されています。
公式ドキュメント [1Panel デプロイ](https://astrbot.app/deploy/astrbot/1panel.html) をご参照ください。
#### 雨云でのデプロイ
AstrBot は雨云公式によりクラウドアプリケーションプラットフォームに公開され、ワンクリックでデプロイ可能です。
[![Deploy on RainYun](https://rainyun-apps.cn-nb1.rains3.com/materials/deploy-on-rainyun-en.svg)](https://app.rainyun.com/apps/rca/store/5994?ref=NjU1ODg0)
#### Replit でのデプロイ
コミュニティ貢献によるデプロイ方法。
[![Run on Repl.it](https://repl.it/badge/github/AstrBotDevs/AstrBot)](https://repl.it/github/AstrBotDevs/AstrBot)
#### Windows ワンクリックインストーラーデプロイ
公式ドキュメント [Windows ワンクリックインストーラーを使用した AstrBot のデプロイ](https://astrbot.app/deploy/astrbot/windows.html) をご参照ください。
#### CasaOS デプロイ
コミュニティが提供するデプロイ方法です
コミュニティ貢献によるデプロイ方法。
公式ドキュメント [ソースコードを使用して AstrBot をデプロイする](https://astrbot.app/deploy/astrbot/casaos.html) を参照してください。
公式ドキュメント [CasaOS デプロイ](https://astrbot.app/deploy/astrbot/casaos.html) を参照ください。
#### 手動デプロイ
公式ドキュメント [ソースコードを使用して AstrBot をデプロイする](https://astrbot.app/deploy/astrbot/cli.html) を参照してください。
まず uv をインストールします:
## ⚡ メッセージプラットフォームのサポート状況
```bash
pip install uv
```
| プラットフォーム | サポート状況 | 詳細 | メッセージタイプ |
| -------- | ------- | ------- | ------ |
| QQ(公式ロボットインターフェース) | ✔ | プライベートチャット、グループチャット、QQ チャンネルプライベートチャット、グループチャット | テキスト、画像 |
| QQ(OneBot) | ✔ | プライベートチャット、グループチャット | テキスト、画像、音声 |
| WeChat(個人アカウント) | ✔ | WeChat 個人アカウントのプライベートチャット、グループチャット | テキスト、画像、音声 |
| [Telegram](https://github.com/Soulter/astrbot_plugin_telegram) | ✔ | プライベートチャット、グループチャット | テキスト、画像 |
| [WeChat(企業 WeChat)](https://github.com/Soulter/astrbot_plugin_wecom) | ✔ | プライベートチャット | テキスト、画像、音声 |
| Feishu | ✔ | グループチャット | テキスト、画像 |
| WeChat 対話オープンプラットフォーム | 🚧 | 計画中 | - |
| Discord | 🚧 | 計画中 | - |
| WhatsApp | 🚧 | 計画中 | - |
| Xiaoai 音響 | 🚧 | 計画中 | - |
Git Clone で AstrBot をインストール:
# 🦌 今後のロードマップ
```bash
git clone https://github.com/AstrBotDevs/AstrBot && cd AstrBot
uv run main.py
```
> [!TIP]
> Issue でさらに多くの提案を歓迎します <3
または、公式ドキュメント [ソースコードから AstrBot をデプロイ](https://astrbot.app/deploy/astrbot/cli.html) をご参照ください。
- [ ] 現在のすべてのプラットフォームアダプターの機能の一貫性を確保し、改善する
- [ ] プラグインインターフェースの最適化
- [ ] GPT-Sovits などの TTS サービスをデフォルトでサポート
- [ ] "チャット強化" 部分を完成させ、永続的な記憶をサポート
- [ ] i18n の計画
## 🌍 コミュニティ
## ❤️ 貢献
### QQ グループ
Issue や Pull Request を歓迎します!このプロジェクトに変更を加えるだけです :)
- 1群:322154837
- 3群:630166526
- 5群:822130018
- 6群:753075035
- 開発者群:975206796
新機能の追加については、まず Issue で議論してください。
### Telegram グループ
## 🌟 サポート
<a href="https://t.me/+hAsD2Ebl5as3NmY1"><img alt="Telegram_community" src="https://img.shields.io/badge/Telegram-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
- このプロジェクトに Star を付けてください!
- [愛発電](https://afdian.com/a/soulter)で私をサポートしてください!
- [WeChat](https://drive.soulter.top/f/pYfA/d903f4fa49a496fda3f16d2be9e023b5.png)で私をサポートしてください~
### Discord サーバー
## ✨ デモ
<a href="https://discord.gg/hAVk6tgV36"><img alt="Discord_community" src="https://img.shields.io/badge/Discord-AstrBot-purple?style=for-the-badge&color=76bad9"></a>
> [!NOTE]
> コードエグゼキューターのファイル入力/出力は現在 Napcat(QQ)、Lagrange(QQ) でのみテストされています
## サポートされているメッセージプラットフォーム
<div align='center'>
**公式メンテナンス**
<img src="https://github.com/user-attachments/assets/4ee688d9-467d-45c8-99d6-368f9a8a92d8" width="600">
- QQ (公式プラットフォーム & OneBot)
- Telegram
- WeChat Work アプリケーション & WeChat Work インテリジェントボット
- WeChat カスタマーサービス & WeChat 公式アカウント
- Feishu (Lark)
- DingTalk
- Slack
- Discord
- Satori
- Misskey
- WhatsApp (近日対応予定)
- LINE (近日対応予定)
_✨ Docker ベースのサンドボックス化されたコードエグゼキューターベータテスト中✨_
**コミュニティメンテナンス**
<img src="https://github.com/user-attachments/assets/0378f407-6079-4f64-ae4c-e97ab20611d2" height=500>
- [KOOK](https://github.com/wuyan1003/astrbot_plugin_kook_adapter)
- [VoceChat](https://github.com/HikariFroya/astrbot_plugin_vocechat)
- [Bilibili ダイレクトメッセージ](https://github.com/Hina-Chat/astrbot_plugin_bilibili_adapter)
- [wxauto](https://github.com/luosheng520qaq/wxauto-repost-onebotv11)
_✨ 多モーダル、ウェブ検索、長文の画像変換設定可能✨_
## サポートされているモデルサービス
<img src="https://github.com/user-attachments/assets/8ec12797-e70f-460a-959e-48eca39ca2bb" height=100>
**大規模言語モデルサービス**
_✨ 自然言語タスク ✨_
- OpenAI および互換サービス
- Anthropic
- Google Gemini
- Moonshot AI
- 智谱 AI
- DeepSeek
- Ollama (セルフホスト)
- LM Studio (セルフホスト)
- [優云智算](https://www.compshare.cn/?ytag=GPU_YY-gh_astrbot&referral_code=FV7DcGowN4hB5UuXKgpE74)
- [302.AI](https://share.302.ai/rr1M3l)
- [小馬算力](https://www.tokenpony.cn/3YPyf)
- [硅基流動](https://docs.siliconflow.cn/cn/usercases/use-siliconcloud-in-astrbot)
- [PPIO 派欧云](https://ppio.com/user/register?invited_by=AIOONE)
- ModelScope
- OneAPI
<img src="https://github.com/user-attachments/assets/e137a9e1-340a-4bf2-bb2b-771132780735" height=150>
<img src="https://github.com/user-attachments/assets/480f5e82-cf6a-4955-a869-0d73137aa6e1" height=150>
**LLMOps プラットフォーム**
_✨ プラグインシステム - 一部のプラグインの展示 ✨_
- Dify
- Alibaba Cloud 百炼アプリケーション
- Coze
<img src="https://github.com/user-attachments/assets/592a8630-14c7-4e06-b496-9c0386e4f36c" width="600">
**音声認識サービス**
_✨ 管理パネル ✨_
- OpenAI Whisper
- SenseVoice
![webchat](https://drive.soulter.top/f/vlsA/ezgif-5-fb044b2542.gif)
**音声合成サービス**
_✨ 内蔵 Web Chat、オンラインでボットと対話 ✨_
- OpenAI TTS
- Gemini TTS
- GPT-Sovits-Inference
- GPT-Sovits
- FishAudio
- Edge TTS
- Alibaba Cloud 百炼 TTS
- Azure TTS
- Minimax TTS
- Volcano Engine TTS
</div>
## ❤️ コントリビューション
Issue や Pull Request は大歓迎です!このプロジェクトに変更を送信してください :)
### コントリビュート方法
Issue を確認したり、PR(プルリクエスト)のレビューを手伝うことで貢献できます。どんな Issue や PR への参加も歓迎され、コミュニティ貢献を促進します。もちろん、これらは提案に過ぎず、どんな方法でも貢献できます。新機能の追加については、まず Issue で議論してください。
### 開発環境
AstrBot はコードのフォーマットとチェックに `ruff` を使用しています。
```bash
git clone https://github.com/AstrBotDevs/AstrBot
pip install pre-commit
pre-commit install
```
## ❤️ Special Thanks
AstrBot への貢献をしていただいたすべてのコントリビューターとプラグイン開発者に特別な感謝を ❤️
<a href="https://github.com/AstrBotDevs/AstrBot/graphs/contributors">
<img src="https://contrib.rocks/image?repo=AstrBotDevs/AstrBot" />
</a>
また、このプロジェクトの誕生は以下のオープンソースプロジェクトの助けなしには実現できませんでした:
- [NapNeko/NapCatQQ](https://github.com/NapNeko/NapCatQQ) - 素晴らしい猫猫フレームワーク
## ⭐ Star History
> [!TIP]
> このプロジェクトがあなたの生活や仕事に役立った場合、またはこのプロジェクトの将来の発展に関心がある場合は、プロジェクトに Star を付けてください。これこのオープンソースプロジェクトを維持するためのモチベーションです <3
> このプロジェクトがあなたの生活や仕事に役立ったり、このプロジェクトの今後の発展に関心がある場合は、プロジェクトに Star をください。これこのオープンソースプロジェクトを維持する原動力です <3
<div align="center">
[![Star History Chart](https://api.star-history.com/svg?repos=soulter/astrbot&type=Date)](https://star-history.com/#soulter/astrbot&Date)
[![Star History Chart](https://api.star-history.com/svg?repos=astrbotdevs/astrbot&type=Date)](https://star-history.com/#astrbotdevs/astrbot&Date)
</div>
## スポンサー
[<img src="https://api.gitsponsors.com/api/badge/img?id=575865240" height="20">](https://api.gitsponsors.com/api/badge/link?p=XEpbdGxlitw/RbcwiTX93UMzNK/jgDYC8NiSzamIPMoKvG2lBFmyXhSS/b0hFoWlBBMX2L5X5CxTDsUdyvcIEHTOfnkXz47UNOZvMwyt5CzbYpq0SEzsSV1OJF1cCo90qC/ZyYKYOWedal3MhZ3ikw==)
## 免責事項
1. このプロジェクトは `AGPL-v3` オープンソースライセンスの下で保護されています。
2. このプロジェクトを使用する際は、現地の法律および規制を遵守してください。
<!-- ## ✨ ATRI [ベータテスト]
この機能はプラグインとしてロードされます。プラグインリポジトリのアドレス:[astrbot_plugin_atri](https://github.com/Soulter/astrbot_plugin_atri)
1. 《ATRI ~ My Dear Moments》の主人公 ATRI のキャラクターセリフを微調整データセットとして使用した `Qwen1.5-7B-Chat Lora` 微調整モデル。
2. 長期記憶
3. ミームの理解と返信
4. TTS
-->
</details>
_私は、高性能ですから!_

View File

@@ -1,20 +1,19 @@
from astrbot.core.config.astrbot_config import AstrBotConfig
from astrbot import logger
from astrbot.core import html_renderer
from astrbot.core import sp
from astrbot.core.star.register import register_llm_tool as llm_tool
from astrbot.core.star.register import register_agent as agent
from astrbot.core.agent.tool import ToolSet, FunctionTool
from astrbot.core import html_renderer, sp
from astrbot.core.agent.tool import FunctionTool, ToolSet
from astrbot.core.agent.tool_executor import BaseFunctionToolExecutor
from astrbot.core.config.astrbot_config import AstrBotConfig
from astrbot.core.star.register import register_agent as agent
from astrbot.core.star.register import register_llm_tool as llm_tool
__all__ = [
"AstrBotConfig",
"logger",
"BaseFunctionToolExecutor",
"FunctionTool",
"ToolSet",
"agent",
"html_renderer",
"llm_tool",
"agent",
"logger",
"sp",
"ToolSet",
"FunctionTool",
"BaseFunctionToolExecutor",
]

View File

@@ -36,7 +36,8 @@ from astrbot.core.star.config import *
# provider
from astrbot.core.provider import Provider, Personality, ProviderMetaData
from astrbot.core.provider import Provider, ProviderMetaData
from astrbot.core.db.po import Personality
# platform
from astrbot.core.platform import (

View File

@@ -1,18 +1,17 @@
from astrbot.core.message.message_event_result import (
MessageEventResult,
MessageChain,
CommandResult,
EventResultType,
MessageChain,
MessageEventResult,
ResultContentType,
)
from astrbot.core.platform import AstrMessageEvent
__all__ = [
"MessageEventResult",
"MessageChain",
"AstrMessageEvent",
"CommandResult",
"EventResultType",
"AstrMessageEvent",
"MessageChain",
"MessageEventResult",
"ResultContentType",
]

View File

@@ -1,51 +1,52 @@
from astrbot.core.star.register import (
register_command as command,
register_command_group as command_group,
register_event_message_type as event_message_type,
register_regex as regex,
register_platform_adapter_type as platform_adapter_type,
register_permission_type as permission_type,
register_custom_filter as custom_filter,
register_on_astrbot_loaded as on_astrbot_loaded,
register_on_platform_loaded as on_platform_loaded,
register_on_llm_request as on_llm_request,
register_on_llm_response as on_llm_response,
register_llm_tool as llm_tool,
register_on_decorating_result as on_decorating_result,
register_after_message_sent as after_message_sent,
)
from astrbot.core.star.filter.event_message_type import (
EventMessageTypeFilter,
EventMessageType,
)
from astrbot.core.star.filter.platform_adapter_type import (
PlatformAdapterTypeFilter,
PlatformAdapterType,
)
from astrbot.core.star.filter.permission import PermissionTypeFilter, PermissionType
from astrbot.core.star.filter.custom_filter import CustomFilter
from astrbot.core.star.filter.event_message_type import (
EventMessageType,
EventMessageTypeFilter,
)
from astrbot.core.star.filter.permission import PermissionType, PermissionTypeFilter
from astrbot.core.star.filter.platform_adapter_type import (
PlatformAdapterType,
PlatformAdapterTypeFilter,
)
from astrbot.core.star.register import register_after_message_sent as after_message_sent
from astrbot.core.star.register import register_command as command
from astrbot.core.star.register import register_command_group as command_group
from astrbot.core.star.register import register_custom_filter as custom_filter
from astrbot.core.star.register import register_event_message_type as event_message_type
from astrbot.core.star.register import register_llm_tool as llm_tool
from astrbot.core.star.register import register_on_astrbot_loaded as on_astrbot_loaded
from astrbot.core.star.register import (
register_on_decorating_result as on_decorating_result,
)
from astrbot.core.star.register import register_on_llm_request as on_llm_request
from astrbot.core.star.register import register_on_llm_response as on_llm_response
from astrbot.core.star.register import register_on_platform_loaded as on_platform_loaded
from astrbot.core.star.register import register_permission_type as permission_type
from astrbot.core.star.register import (
register_platform_adapter_type as platform_adapter_type,
)
from astrbot.core.star.register import register_regex as regex
__all__ = [
"CustomFilter",
"EventMessageType",
"EventMessageTypeFilter",
"PermissionType",
"PermissionTypeFilter",
"PlatformAdapterType",
"PlatformAdapterTypeFilter",
"after_message_sent",
"command",
"command_group",
"event_message_type",
"regex",
"platform_adapter_type",
"permission_type",
"EventMessageTypeFilter",
"EventMessageType",
"PlatformAdapterTypeFilter",
"PlatformAdapterType",
"PermissionTypeFilter",
"CustomFilter",
"custom_filter",
"PermissionType",
"on_astrbot_loaded",
"on_platform_loaded",
"on_llm_request",
"event_message_type",
"llm_tool",
"on_astrbot_loaded",
"on_decorating_result",
"after_message_sent",
"on_llm_request",
"on_llm_response",
"on_platform_loaded",
"permission_type",
"platform_adapter_type",
"regex",
]

View File

@@ -1,23 +1,22 @@
from astrbot.core.message.components import *
from astrbot.core.platform import (
AstrMessageEvent,
Platform,
AstrBotMessage,
AstrMessageEvent,
Group,
MessageMember,
MessageType,
Platform,
PlatformMetadata,
Group,
)
from astrbot.core.platform.register import register_platform_adapter
from astrbot.core.message.components import *
__all__ = [
"AstrMessageEvent",
"Platform",
"AstrBotMessage",
"AstrMessageEvent",
"Group",
"MessageMember",
"MessageType",
"Platform",
"PlatformMetadata",
"register_platform_adapter",
"Group",
]

View File

@@ -1,17 +1,18 @@
from astrbot.core.provider import Provider, STTProvider, Personality
from astrbot.core.db.po import Personality
from astrbot.core.provider import Provider, STTProvider
from astrbot.core.provider.entities import (
LLMResponse,
ProviderMetaData,
ProviderRequest,
ProviderType,
ProviderMetaData,
LLMResponse,
)
__all__ = [
"Provider",
"STTProvider",
"LLMResponse",
"Personality",
"Provider",
"ProviderMetaData",
"ProviderRequest",
"ProviderType",
"ProviderMetaData",
"LLMResponse",
"STTProvider",
]

View File

@@ -1,8 +1,7 @@
from astrbot.core.star import Context, Star, StarTools
from astrbot.core.star.config import *
from astrbot.core.star.register import (
register_star as register, # 注册插件Star
)
from astrbot.core.star import Context, Star, StarTools
from astrbot.core.star.config import *
__all__ = ["register", "Context", "Star", "StarTools"]
__all__ = ["Context", "Star", "StarTools", "register"]

View File

@@ -1,7 +1,7 @@
from astrbot.core.utils.session_waiter import (
SessionWaiter,
SessionController,
SessionWaiter,
session_waiter,
)
__all__ = ["SessionWaiter", "SessionController", "session_waiter"]
__all__ = ["SessionController", "SessionWaiter", "session_waiter"]

View File

@@ -1 +1 @@
__version__ = "3.5.23"
__version__ = "4.7.3"

View File

@@ -1,11 +1,11 @@
"""
AstrBot CLI入口
"""
"""AstrBot CLI入口"""
import sys
import click
import sys
from . import __version__
from .commands import init, run, plug, conf
from .commands import conf, init, plug, run
logo_tmpl = r"""
___ _______.___________..______ .______ ______ .___________.

View File

@@ -1,6 +1,6 @@
from .cmd_init import init
from .cmd_run import run
from .cmd_plug import plug
from .cmd_conf import conf
from .cmd_init import init
from .cmd_plug import plug
from .cmd_run import run
__all__ = ["init", "run", "plug", "conf"]
__all__ = ["conf", "init", "plug", "run"]

View File

@@ -1,9 +1,12 @@
import json
import click
import hashlib
import json
import zoneinfo
from typing import Any, Callable
from ..utils import get_astrbot_root, check_astrbot_root
from collections.abc import Callable
from typing import Any
import click
from ..utils import check_astrbot_root, get_astrbot_root
def _validate_log_level(value: str) -> str:
@@ -11,7 +14,7 @@ def _validate_log_level(value: str) -> str:
value = value.upper()
if value not in ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]:
raise click.ClickException(
"日志级别必须是 DEBUG/INFO/WARNING/ERROR/CRITICAL 之一"
"日志级别必须是 DEBUG/INFO/WARNING/ERROR/CRITICAL 之一",
)
return value
@@ -73,7 +76,7 @@ def _load_config() -> dict[str, Any]:
root = get_astrbot_root()
if not check_astrbot_root(root):
raise click.ClickException(
f"{root}不是有效的 AstrBot 根目录,如需初始化请使用 astrbot init"
f"{root}不是有效的 AstrBot 根目录,如需初始化请使用 astrbot init",
)
config_path = root / "data" / "cmd_config.json"
@@ -88,7 +91,7 @@ def _load_config() -> dict[str, Any]:
try:
return json.loads(config_path.read_text(encoding="utf-8-sig"))
except json.JSONDecodeError as e:
raise click.ClickException(f"配置文件解析失败: {str(e)}")
raise click.ClickException(f"配置文件解析失败: {e!s}")
def _save_config(config: dict[str, Any]) -> None:
@@ -96,7 +99,8 @@ def _save_config(config: dict[str, Any]) -> None:
config_path = get_astrbot_root() / "data" / "cmd_config.json"
config_path.write_text(
json.dumps(config, ensure_ascii=False, indent=2), encoding="utf-8-sig"
json.dumps(config, ensure_ascii=False, indent=2),
encoding="utf-8-sig",
)
@@ -108,7 +112,7 @@ def _set_nested_item(obj: dict[str, Any], path: str, value: Any) -> None:
obj[part] = {}
elif not isinstance(obj[part], dict):
raise click.ClickException(
f"配置路径冲突: {'.'.join(parts[: parts.index(part) + 1])} 不是字典"
f"配置路径冲突: {'.'.join(parts[: parts.index(part) + 1])} 不是字典",
)
obj = obj[part]
obj[parts[-1]] = value
@@ -140,7 +144,6 @@ def conf():
- callback_api_base: 回调接口基址
"""
pass
@conf.command(name="set")
@@ -148,7 +151,7 @@ def conf():
@click.argument("value")
def set_config(key: str, value: str):
"""设置配置项的值"""
if key not in CONFIG_VALIDATORS.keys():
if key not in CONFIG_VALIDATORS:
raise click.ClickException(f"不支持的配置项: {key}")
config = _load_config()
@@ -170,17 +173,17 @@ def set_config(key: str, value: str):
except KeyError:
raise click.ClickException(f"未知的配置项: {key}")
except Exception as e:
raise click.UsageError(f"设置配置失败: {str(e)}")
raise click.UsageError(f"设置配置失败: {e!s}")
@conf.command(name="get")
@click.argument("key", required=False)
def get_config(key: str = None):
def get_config(key: str | None = None):
"""获取配置项的值不提供key则显示所有可配置项"""
config = _load_config()
if key:
if key not in CONFIG_VALIDATORS.keys():
if key not in CONFIG_VALIDATORS:
raise click.ClickException(f"不支持的配置项: {key}")
try:
@@ -191,10 +194,10 @@ def get_config(key: str = None):
except KeyError:
raise click.ClickException(f"未知的配置项: {key}")
except Exception as e:
raise click.UsageError(f"获取配置失败: {str(e)}")
raise click.UsageError(f"获取配置失败: {e!s}")
else:
click.echo("当前配置:")
for key in CONFIG_VALIDATORS.keys():
for key in CONFIG_VALIDATORS:
try:
value = (
"********"

View File

@@ -1,4 +1,5 @@
import asyncio
from pathlib import Path
import click
from filelock import FileLock, Timeout
@@ -6,14 +7,14 @@ from filelock import FileLock, Timeout
from ..utils import check_dashboard, get_astrbot_root
async def initialize_astrbot(astrbot_root) -> None:
async def initialize_astrbot(astrbot_root: Path) -> None:
"""执行 AstrBot 初始化逻辑"""
dot_astrbot = astrbot_root / ".astrbot"
if not dot_astrbot.exists():
click.echo(f"Current Directory: {astrbot_root}")
click.echo(
"如果你确认这是 Astrbot root directory, 你需要在当前目录下创建一个 .astrbot 文件标记该目录为 AstrBot 的数据目录。"
"如果你确认这是 Astrbot root directory, 你需要在当前目录下创建一个 .astrbot 文件标记该目录为 AstrBot 的数据目录。",
)
if click.confirm(
f"请检查当前目录是否正确,确认正确请回车: {astrbot_root}",

View File

@@ -1,31 +1,29 @@
import re
import shutil
from pathlib import Path
import click
import shutil
from ..utils import (
get_git_repo,
build_plug_list,
manage_plugin,
PluginStatus,
build_plug_list,
check_astrbot_root,
get_astrbot_root,
get_git_repo,
manage_plugin,
)
@click.group()
def plug():
"""插件管理"""
pass
def _get_data_path() -> Path:
base = get_astrbot_root()
if not check_astrbot_root(base):
raise click.ClickException(
f"{base}不是有效的 AstrBot 根目录,如需初始化请使用 astrbot init"
f"{base}不是有效的 AstrBot 根目录,如需初始化请使用 astrbot init",
)
return (base / "data").resolve()
@@ -41,7 +39,7 @@ def display_plugins(plugins, title=None, color=None):
desc = p["desc"][:30] + ("..." if len(p["desc"]) > 30 else "")
click.echo(
f"{p['name']:<20} {p['version']:<10} {p['status']:<10} "
f"{p['author']:<15} {desc:<30}"
f"{p['author']:<15} {desc:<30}",
)
@@ -78,7 +76,7 @@ def new(name: str):
f"desc: {desc}\n"
f"version: {version}\n"
f"author: {author}\n"
f"repo: {repo}\n"
f"repo: {repo}\n",
)
# 重写 README.md
@@ -86,7 +84,7 @@ def new(name: str):
f.write(f"# {name}\n\n{desc}\n\n# 支持\n\n[帮助文档](https://astrbot.app)\n")
# 重写 main.py
with open(plug_path / "main.py", "r", encoding="utf-8") as f:
with open(plug_path / "main.py", encoding="utf-8") as f:
content = f.read()
new_content = content.replace(

View File

@@ -1,19 +1,18 @@
import asyncio
import os
import sys
import traceback
from pathlib import Path
import click
import asyncio
import traceback
from filelock import FileLock, Timeout
from ..utils import check_dashboard, check_astrbot_root, get_astrbot_root
from ..utils import check_astrbot_root, check_dashboard, get_astrbot_root
async def run_astrbot(astrbot_root: Path):
"""运行 AstrBot"""
from astrbot.core import logger, LogManager, LogBroker, db_helper
from astrbot.core import LogBroker, LogManager, db_helper, logger
from astrbot.core.initial_loader import InitialLoader
await check_dashboard(astrbot_root / "data")
@@ -38,7 +37,7 @@ def run(reload: bool, port: str) -> None:
if not check_astrbot_root(astrbot_root):
raise click.ClickException(
f"{astrbot_root}不是有效的 AstrBot 根目录,如需初始化请使用 astrbot init"
f"{astrbot_root}不是有效的 AstrBot 根目录,如需初始化请使用 astrbot init",
)
os.environ["ASTRBOT_ROOT"] = str(astrbot_root)

View File

@@ -1,18 +1,18 @@
from .basic import (
get_astrbot_root,
check_astrbot_root,
check_dashboard,
get_astrbot_root,
)
from .plugin import get_git_repo, manage_plugin, build_plug_list, PluginStatus
from .plugin import PluginStatus, build_plug_list, get_git_repo, manage_plugin
from .version_comparator import VersionComparator
__all__ = [
"get_astrbot_root",
"PluginStatus",
"VersionComparator",
"build_plug_list",
"check_astrbot_root",
"check_dashboard",
"get_astrbot_root",
"get_git_repo",
"manage_plugin",
"build_plug_list",
"VersionComparator",
"PluginStatus",
]

View File

@@ -21,8 +21,9 @@ def get_astrbot_root() -> Path:
async def check_dashboard(astrbot_root: Path) -> None:
"""检查是否安装了dashboard"""
from astrbot.core.utils.io import get_dashboard_version, download_dashboard
from astrbot.core.config.default import VERSION
from astrbot.core.utils.io import download_dashboard, get_dashboard_version
from .version_comparator import VersionComparator
try:
@@ -48,19 +49,18 @@ async def check_dashboard(astrbot_root: Path) -> None:
if VersionComparator.compare_version(VERSION, dashboard_version) <= 0:
click.echo("管理面板已是最新版本")
return
else:
try:
version = dashboard_version.split("v")[1]
click.echo(f"管理面板版本: {version}")
await download_dashboard(
path="data/dashboard.zip",
extract_path=str(astrbot_root),
version=f"v{VERSION}",
latest=False,
)
except Exception as e:
click.echo(f"下载管理面板失败: {e}")
return
try:
version = dashboard_version.split("v")[1]
click.echo(f"管理面板版本: {version}")
await download_dashboard(
path="data/dashboard.zip",
extract_path=str(astrbot_root),
version=f"v{VERSION}",
latest=False,
)
except Exception as e:
click.echo(f"下载管理面板失败: {e}")
return
except FileNotFoundError:
click.echo("初始化管理面板目录...")
try:

View File

@@ -1,14 +1,14 @@
import shutil
import tempfile
import httpx
import yaml
from enum import Enum
from io import BytesIO
from pathlib import Path
from zipfile import ZipFile
import click
import httpx
import yaml
from .version_comparator import VersionComparator
@@ -32,7 +32,8 @@ def get_git_repo(url: str, target_path: Path, proxy: str | None = None):
release_url = f"https://api.github.com/repos/{author}/{repo}/releases"
try:
with httpx.Client(
proxy=proxy if proxy else None, follow_redirects=True
proxy=proxy if proxy else None,
follow_redirects=True,
) as client:
resp = client.get(release_url)
resp.raise_for_status()
@@ -55,7 +56,8 @@ def get_git_repo(url: str, target_path: Path, proxy: str | None = None):
# 下载并解压
with httpx.Client(
proxy=proxy if proxy else None, follow_redirects=True
proxy=proxy if proxy else None,
follow_redirects=True,
) as client:
resp = client.get(download_url)
if (
@@ -89,6 +91,7 @@ def load_yaml_metadata(plugin_dir: Path) -> dict:
Returns:
dict: 包含元数据的字典,如果读取失败则返回空字典
"""
yaml_path = plugin_dir / "metadata.yaml"
if yaml_path.exists():
@@ -107,6 +110,7 @@ def build_plug_list(plugins_dir: Path) -> list:
Returns:
list: 包含插件信息的字典列表
"""
# 获取本地插件信息
result = []
@@ -133,7 +137,7 @@ def build_plug_list(plugins_dir: Path) -> list:
"repo": str(metadata.get("repo", "")),
"status": PluginStatus.INSTALLED,
"local_path": str(plugin_dir),
}
},
)
# 获取在线插件列表
@@ -153,7 +157,7 @@ def build_plug_list(plugins_dir: Path) -> list:
"repo": str(plugin_info.get("repo", "")),
"status": PluginStatus.NOT_INSTALLED,
"local_path": None,
}
},
)
except Exception as e:
click.echo(f"获取在线插件列表失败: {e}", err=True)
@@ -168,7 +172,8 @@ def build_plug_list(plugins_dir: Path) -> list:
)
if (
VersionComparator.compare_version(
local_plugin["version"], online_plugin["version"]
local_plugin["version"],
online_plugin["version"],
)
< 0
):
@@ -186,7 +191,10 @@ def build_plug_list(plugins_dir: Path) -> list:
def manage_plugin(
plugin: dict, plugins_dir: Path, is_update: bool = False, proxy: str | None = None
plugin: dict,
plugins_dir: Path,
is_update: bool = False,
proxy: str | None = None,
) -> None:
"""安装或更新插件
@@ -195,6 +203,7 @@ def manage_plugin(
plugins_dir (Path): 插件目录
is_update (bool, optional): 是否为更新操作. 默认为 False
proxy (str, optional): 代理服务器地址
"""
plugin_name = plugin["name"]
repo_url = plugin["repo"]
@@ -212,26 +221,26 @@ def manage_plugin(
raise click.ClickException(f"插件 {plugin_name} 未安装,无法更新")
# 备份现有插件
if is_update and backup_path.exists():
if is_update and backup_path is not None and backup_path.exists():
shutil.rmtree(backup_path)
if is_update:
if is_update and backup_path is not None:
shutil.copytree(target_path, backup_path)
try:
click.echo(
f"正在从 {repo_url} {'更新' if is_update else '下载'}插件 {plugin_name}..."
f"正在从 {repo_url} {'更新' if is_update else '下载'}插件 {plugin_name}...",
)
get_git_repo(repo_url, target_path, proxy)
# 更新成功,删除备份
if is_update and backup_path.exists():
if is_update and backup_path is not None and backup_path.exists():
shutil.rmtree(backup_path)
click.echo(f"插件 {plugin_name} {'更新' if is_update else '安装'}成功")
except Exception as e:
if target_path.exists():
shutil.rmtree(target_path, ignore_errors=True)
if is_update and backup_path.exists():
if is_update and backup_path is not None and backup_path.exists():
shutil.move(backup_path, target_path)
raise click.ClickException(
f"{'更新' if is_update else '安装'}插件 {plugin_name} 时出错: {e}"
f"{'更新' if is_update else '安装'}插件 {plugin_name} 时出错: {e}",
)

View File

@@ -1,6 +1,4 @@
"""
拷贝自 astrbot.core.utils.version_comparator
"""
"""拷贝自 astrbot.core.utils.version_comparator"""
import re
@@ -42,15 +40,15 @@ class VersionComparator:
for i in range(length):
if v1_parts[i] > v2_parts[i]:
return 1
elif v1_parts[i] < v2_parts[i]:
if v1_parts[i] < v2_parts[i]:
return -1
# 比较预发布标签
if v1_prerelease is None and v2_prerelease is not None:
return 1 # 没有预发布标签的版本高于有预发布标签的版本
elif v1_prerelease is not None and v2_prerelease is None:
if v1_prerelease is not None and v2_prerelease is None:
return -1 # 有预发布标签的版本低于没有预发布标签的版本
elif v1_prerelease is not None and v2_prerelease is not None:
if v1_prerelease is not None and v2_prerelease is not None:
len_pre = max(len(v1_prerelease), len(v2_prerelease))
for i in range(len_pre):
p1 = v1_prerelease[i] if i < len(v1_prerelease) else None
@@ -58,21 +56,21 @@ class VersionComparator:
if p1 is None and p2 is not None:
return -1
elif p1 is not None and p2 is None:
if p1 is not None and p2 is None:
return 1
elif isinstance(p1, int) and isinstance(p2, str):
if isinstance(p1, int) and isinstance(p2, str):
return -1
elif isinstance(p1, str) and isinstance(p2, int):
if isinstance(p1, str) and isinstance(p2, int):
return 1
elif isinstance(p1, int) and isinstance(p2, int):
if isinstance(p1, int) and isinstance(p2, int):
if p1 > p2:
return 1
elif p1 < p2:
if p1 < p2:
return -1
elif isinstance(p1, str) and isinstance(p2, str):
if p1 > p2:
return 1
elif p1 < p2:
if p1 < p2:
return -1
return 0 # 预发布标签完全相同

View File

@@ -1,12 +1,14 @@
import os
from .log import LogManager, LogBroker # noqa
from astrbot.core.utils.t2i.renderer import HtmlRenderer
from astrbot.core.utils.shared_preferences import SharedPreferences
from astrbot.core.utils.pip_installer import PipInstaller
from astrbot.core.db.sqlite import SQLiteDatabase
from astrbot.core.config.default import DB_PATH
from astrbot.core.config import AstrBotConfig
from astrbot.core.config.default import DB_PATH
from astrbot.core.db.sqlite import SQLiteDatabase
from astrbot.core.file_token_service import FileTokenService
from astrbot.core.utils.pip_installer import PipInstaller
from astrbot.core.utils.shared_preferences import SharedPreferences
from astrbot.core.utils.t2i.renderer import HtmlRenderer
from .log import LogBroker, LogManager # noqa
from .utils.astrbot_path import get_astrbot_data_path
# 初始化数据存储文件夹

View File

@@ -1,8 +1,9 @@
from dataclasses import dataclass
from .tool import FunctionTool
from typing import Generic
from .run_context import TContext
from .hooks import BaseAgentRunHooks
from .run_context import TContext
from .tool import FunctionTool
@dataclass

View File

@@ -1,14 +1,18 @@
from typing import Generic
from .tool import FunctionTool
from .agent import Agent
from .run_context import TContext
from .tool import FunctionTool
class HandoffTool(FunctionTool, Generic[TContext]):
"""Handoff tool for delegating tasks to another agent."""
def __init__(
self, agent: Agent[TContext], parameters: dict | None = None, **kwargs
self,
agent: Agent[TContext],
parameters: dict | None = None,
**kwargs,
):
self.agent = agent
super().__init__(

View File

@@ -1,12 +1,13 @@
import mcp
from dataclasses import dataclass
from .run_context import ContextWrapper, TContext
from typing import Generic
from astrbot.core.provider.entities import LLMResponse
import mcp
from astrbot.core.agent.tool import FunctionTool
from astrbot.core.provider.entities import LLMResponse
from .run_context import ContextWrapper, TContext
@dataclass
class BaseAgentRunHooks(Generic[TContext]):
async def on_agent_begin(self, run_context: ContextWrapper[TContext]): ...
async def on_tool_start(
@@ -23,5 +24,7 @@ class BaseAgentRunHooks(Generic[TContext]):
tool_result: mcp.types.CallToolResult | None,
): ...
async def on_agent_done(
self, run_context: ContextWrapper[TContext], llm_response: LLMResponse
self,
run_context: ContextWrapper[TContext],
llm_response: LLMResponse,
): ...

View File

@@ -1,28 +1,44 @@
import asyncio
import logging
from datetime import timedelta
from typing import Optional
from contextlib import AsyncExitStack
from datetime import timedelta
from typing import Generic
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from astrbot import logger
from astrbot.core.agent.run_context import ContextWrapper
from astrbot.core.utils.log_pipe import LogPipe
from .run_context import TContext
from .tool import FunctionTool
try:
import anyio
import mcp
from mcp.client.sse import sse_client
except (ModuleNotFoundError, ImportError):
logger.warning("警告: 缺少依赖库 'mcp',将无法使用 MCP 服务。")
logger.warning(
"Warning: Missing 'mcp' dependency, MCP services will be unavailable."
)
try:
from mcp.client.streamable_http import streamablehttp_client
except (ModuleNotFoundError, ImportError):
logger.warning(
"警告: 缺少依赖库 'mcp' 或者 mcp 库版本过低,无法使用 Streamable HTTP 连接方式。"
"Warning: Missing 'mcp' dependency or MCP library version too old, Streamable HTTP connection unavailable.",
)
def _prepare_config(config: dict) -> dict:
"""准备配置,处理嵌套格式"""
if "mcpServers" in config and config["mcpServers"]:
"""Prepare configuration, handle nested format"""
if config.get("mcpServers"):
first_key = next(iter(config["mcpServers"]))
config = config["mcpServers"][first_key]
config.pop("active", None)
@@ -30,7 +46,7 @@ def _prepare_config(config: dict) -> dict:
async def _quick_test_mcp_connection(config: dict) -> tuple[bool, str]:
"""快速测试 MCP 服务器可达性"""
"""Quick test MCP server connectivity"""
import aiohttp
cfg = _prepare_config(config.copy())
@@ -45,7 +61,7 @@ async def _quick_test_mcp_connection(config: dict) -> tuple[bool, str]:
elif "type" in cfg:
transport_type = cfg["type"]
else:
raise Exception("MCP 连接配置缺少 transport type 字段")
raise Exception("MCP connection config missing transport or type field")
async with aiohttp.ClientSession() as session:
if transport_type == "streamable_http":
@@ -71,8 +87,7 @@ async def _quick_test_mcp_connection(config: dict) -> tuple[bool, str]:
) as response:
if response.status == 200:
return True, ""
else:
return False, f"HTTP {response.status}: {response.reason}"
return False, f"HTTP {response.status}: {response.reason}"
else:
async with session.get(
url,
@@ -84,11 +99,10 @@ async def _quick_test_mcp_connection(config: dict) -> tuple[bool, str]:
) as response:
if response.status == 200:
return True, ""
else:
return False, f"HTTP {response.status}: {response.reason}"
return False, f"HTTP {response.status}: {response.reason}"
except asyncio.TimeoutError:
return False, f"连接超时: {timeout}"
return False, f"Connection timeout: {timeout} seconds"
except Exception as e:
return False, f"{e!s}"
@@ -96,8 +110,9 @@ async def _quick_test_mcp_connection(config: dict) -> tuple[bool, str]:
class MCPClient:
def __init__(self):
# Initialize session and client objects
self.session: Optional[mcp.ClientSession] = None
self.session: mcp.ClientSession | None = None
self.exit_stack = AsyncExitStack()
self._old_exit_stacks: list[AsyncExitStack] = [] # Track old stacks for cleanup
self.name: str | None = None
self.active: bool = True
@@ -105,21 +120,32 @@ class MCPClient:
self.server_errlogs: list[str] = []
self.running_event = asyncio.Event()
async def connect_to_server(self, mcp_server_config: dict, name: str):
"""连接到 MCP 服务器
# Store connection config for reconnection
self._mcp_server_config: dict | None = None
self._server_name: str | None = None
self._reconnect_lock = asyncio.Lock() # Lock for thread-safe reconnection
self._reconnecting: bool = False # For logging and debugging
如果 `url` 参数存在:
1. 当 transport 指定为 `streamable_http` 时,使用 Streamable HTTP 连接方式。
1. 当 transport 指定为 `sse` 时,使用 SSE 连接方式。
2. 如果没有指定,默认使用 SSE 的方式连接到 MCP 服务。
async def connect_to_server(self, mcp_server_config: dict, name: str):
"""Connect to MCP server
If `url` parameter exists:
1. When transport is specified as `streamable_http`, use Streamable HTTP connection.
2. When transport is specified as `sse`, use SSE connection.
3. If not specified, default to SSE connection to MCP service.
Args:
mcp_server_config (dict): Configuration for the MCP server. See https://modelcontextprotocol.io/quickstart/server
"""
# Store config for reconnection
self._mcp_server_config = mcp_server_config
self._server_name = name
cfg = _prepare_config(mcp_server_config.copy())
def logging_callback(msg: str):
# 处理 MCP 服务的错误日志
# Handle MCP service error logs
print(f"MCP Server {name} Error: {msg}")
self.server_errlogs.append(msg)
@@ -133,7 +159,7 @@ class MCPClient:
elif "type" in cfg:
transport_type = cfg["type"]
else:
raise Exception("MCP 连接配置缺少 transport type 字段")
raise Exception("MCP connection config missing transport or type field")
if transport_type != "streamable_http":
# SSE transport method
@@ -144,7 +170,7 @@ class MCPClient:
sse_read_timeout=cfg.get("sse_read_timeout", 60 * 5),
)
streams = await self.exit_stack.enter_async_context(
self._streams_context
self._streams_context,
)
# Create a new client session
@@ -154,12 +180,12 @@ class MCPClient:
*streams,
read_timeout_seconds=read_timeout,
logging_callback=logging_callback, # type: ignore
)
),
)
else:
timeout = timedelta(seconds=cfg.get("timeout", 30))
sse_read_timeout = timedelta(
seconds=cfg.get("sse_read_timeout", 60 * 5)
seconds=cfg.get("sse_read_timeout", 60 * 5),
)
self._streams_context = streamablehttp_client(
url=cfg["url"],
@@ -169,7 +195,7 @@ class MCPClient:
terminate_on_close=cfg.get("terminate_on_close", True),
)
read_s, write_s, _ = await self.exit_stack.enter_async_context(
self._streams_context
self._streams_context,
)
# Create a new client session
@@ -180,7 +206,7 @@ class MCPClient:
write_stream=write_s,
read_timeout_seconds=read_timeout,
logging_callback=logging_callback, # type: ignore
)
),
)
else:
@@ -189,7 +215,7 @@ class MCPClient:
)
def callback(msg: str):
# 处理 MCP 服务的错误日志
# Handle MCP service error logs
self.server_errlogs.append(msg)
stdio_transport = await self.exit_stack.enter_async_context(
@@ -206,7 +232,7 @@ class MCPClient:
# Create a new client session
self.session = await self.exit_stack.enter_async_context(
mcp.ClientSession(*stdio_transport)
mcp.ClientSession(*stdio_transport),
)
await self.session.initialize()
@@ -218,7 +244,142 @@ class MCPClient:
self.tools = response.tools
return response
async def _reconnect(self) -> None:
"""Reconnect to the MCP server using the stored configuration.
Uses asyncio.Lock to ensure thread-safe reconnection in concurrent environments.
Raises:
Exception: raised when reconnection fails
"""
async with self._reconnect_lock:
# Check if already reconnecting (useful for logging)
if self._reconnecting:
logger.debug(
f"MCP Client {self._server_name} is already reconnecting, skipping"
)
return
if not self._mcp_server_config or not self._server_name:
raise Exception("Cannot reconnect: missing connection configuration")
self._reconnecting = True
try:
logger.info(
f"Attempting to reconnect to MCP server {self._server_name}..."
)
# Save old exit_stack for later cleanup (don't close it now to avoid cancel scope issues)
if self.exit_stack:
self._old_exit_stacks.append(self.exit_stack)
# Mark old session as invalid
self.session = None
# Create new exit stack for new connection
self.exit_stack = AsyncExitStack()
# Reconnect using stored config
await self.connect_to_server(self._mcp_server_config, self._server_name)
await self.list_tools_and_save()
logger.info(
f"Successfully reconnected to MCP server {self._server_name}"
)
except Exception as e:
logger.error(
f"Failed to reconnect to MCP server {self._server_name}: {e}"
)
raise
finally:
self._reconnecting = False
async def call_tool_with_reconnect(
self,
tool_name: str,
arguments: dict,
read_timeout_seconds: timedelta,
) -> mcp.types.CallToolResult:
"""Call MCP tool with automatic reconnection on failure, max 2 retries.
Args:
tool_name: tool name
arguments: tool arguments
read_timeout_seconds: read timeout
Returns:
MCP tool call result
Raises:
ValueError: MCP session is not available
anyio.ClosedResourceError: raised after reconnection failure
"""
@retry(
retry=retry_if_exception_type(anyio.ClosedResourceError),
stop=stop_after_attempt(2),
wait=wait_exponential(multiplier=1, min=1, max=3),
before_sleep=before_sleep_log(logger, logging.WARNING),
reraise=True,
)
async def _call_with_retry():
if not self.session:
raise ValueError("MCP session is not available for MCP function tools.")
try:
return await self.session.call_tool(
name=tool_name,
arguments=arguments,
read_timeout_seconds=read_timeout_seconds,
)
except anyio.ClosedResourceError:
logger.warning(
f"MCP tool {tool_name} call failed (ClosedResourceError), attempting to reconnect..."
)
# Attempt to reconnect
await self._reconnect()
# Reraise the exception to trigger tenacity retry
raise
return await _call_with_retry()
async def cleanup(self):
"""Clean up resources"""
await self.exit_stack.aclose()
self.running_event.set() # Set the running event to indicate cleanup is done
"""Clean up resources including old exit stacks from reconnections"""
# Close current exit stack
try:
await self.exit_stack.aclose()
except Exception as e:
logger.debug(f"Error closing current exit stack: {e}")
# Don't close old exit stacks as they may be in different task contexts
# They will be garbage collected naturally
# Just clear the list to release references
self._old_exit_stacks.clear()
# Set running_event first to unblock any waiting tasks
self.running_event.set()
class MCPTool(FunctionTool, Generic[TContext]):
"""A function tool that calls an MCP service."""
def __init__(
self, mcp_tool: mcp.Tool, mcp_client: MCPClient, mcp_server_name: str, **kwargs
):
super().__init__(
name=mcp_tool.name,
description=mcp_tool.description or "",
parameters=mcp_tool.inputSchema,
)
self.mcp_tool = mcp_tool
self.mcp_client = mcp_client
self.mcp_server_name = mcp_server_name
async def call(
self, context: ContextWrapper[TContext], **kwargs
) -> mcp.types.CallToolResult:
return await self.mcp_client.call_tool_with_reconnect(
tool_name=self.mcp_tool.name,
arguments=kwargs,
read_timeout_seconds=timedelta(seconds=context.tool_call_timeout),
)

View File

@@ -0,0 +1,192 @@
# Inspired by MoonshotAI/kosong, credits to MoonshotAI/kosong authors for the original implementation.
# License: Apache License 2.0
from typing import Any, ClassVar, Literal, cast
from pydantic import BaseModel, GetCoreSchemaHandler, model_validator
from pydantic_core import core_schema
class ContentPart(BaseModel):
"""A part of the content in a message."""
__content_part_registry: ClassVar[dict[str, type["ContentPart"]]] = {}
type: str
def __init_subclass__(cls, **kwargs: Any) -> None:
super().__init_subclass__(**kwargs)
invalid_subclass_error_msg = f"ContentPart subclass {cls.__name__} must have a `type` field of type `str`"
type_value = getattr(cls, "type", None)
if type_value is None or not isinstance(type_value, str):
raise ValueError(invalid_subclass_error_msg)
cls.__content_part_registry[type_value] = cls
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
# If we're dealing with the base ContentPart class, use custom validation
if cls.__name__ == "ContentPart":
def validate_content_part(value: Any) -> Any:
# if it's already an instance of a ContentPart subclass, return it
if hasattr(value, "__class__") and issubclass(value.__class__, cls):
return value
# if it's a dict with a type field, dispatch to the appropriate subclass
if isinstance(value, dict) and "type" in value:
type_value: Any | None = cast(dict[str, Any], value).get("type")
if not isinstance(type_value, str):
raise ValueError(f"Cannot validate {value} as ContentPart")
target_class = cls.__content_part_registry[type_value]
return target_class.model_validate(value)
raise ValueError(f"Cannot validate {value} as ContentPart")
return core_schema.no_info_plain_validator_function(validate_content_part)
# for subclasses, use the default schema
return handler(source_type)
class TextPart(ContentPart):
"""
>>> TextPart(text="Hello, world!").model_dump()
{'type': 'text', 'text': 'Hello, world!'}
"""
type: str = "text"
text: str
class ImageURLPart(ContentPart):
"""
>>> ImageURLPart(image_url="http://example.com/image.jpg").model_dump()
{'type': 'image_url', 'image_url': 'http://example.com/image.jpg'}
"""
class ImageURL(BaseModel):
url: str
"""The URL of the image, can be data URI scheme like `data:image/png;base64,...`."""
id: str | None = None
"""The ID of the image, to allow LLMs to distinguish different images."""
type: str = "image_url"
image_url: ImageURL
class AudioURLPart(ContentPart):
"""
>>> AudioURLPart(audio_url=AudioURLPart.AudioURL(url="https://example.com/audio.mp3")).model_dump()
{'type': 'audio_url', 'audio_url': {'url': 'https://example.com/audio.mp3', 'id': None}}
"""
class AudioURL(BaseModel):
url: str
"""The URL of the audio, can be data URI scheme like `data:audio/aac;base64,...`."""
id: str | None = None
"""The ID of the audio, to allow LLMs to distinguish different audios."""
type: str = "audio_url"
audio_url: AudioURL
class ToolCall(BaseModel):
"""
A tool call requested by the assistant.
>>> ToolCall(
... id="123",
... function=ToolCall.FunctionBody(
... name="function",
... arguments="{}"
... ),
... ).model_dump()
{'type': 'function', 'id': '123', 'function': {'name': 'function', 'arguments': '{}'}}
"""
class FunctionBody(BaseModel):
name: str
arguments: str | None
type: Literal["function"] = "function"
id: str
"""The ID of the tool call."""
function: FunctionBody
"""The function body of the tool call."""
extra_content: dict[str, Any] | None = None
"""Extra metadata for the tool call."""
def model_dump(self, **kwargs: Any) -> dict[str, Any]:
if self.extra_content is None:
kwargs.setdefault("exclude", set()).add("extra_content")
return super().model_dump(**kwargs)
class ToolCallPart(BaseModel):
"""A part of the tool call."""
arguments_part: str | None = None
"""A part of the arguments of the tool call."""
class Message(BaseModel):
"""A message in a conversation."""
role: Literal[
"system",
"user",
"assistant",
"tool",
]
content: str | list[ContentPart] | None = None
"""The content of the message."""
tool_calls: list[ToolCall] | list[dict] | None = None
"""The tool calls of the message."""
tool_call_id: str | None = None
"""The ID of the tool call."""
@model_validator(mode="after")
def check_content_required(self):
# assistant + tool_calls is not None: allow content to be None
if self.role == "assistant" and self.tool_calls is not None:
return self
# other all cases: content is required
if self.content is None:
raise ValueError(
"content is required unless role='assistant' and tool_calls is not None"
)
return self
class AssistantMessageSegment(Message):
"""A message segment from the assistant."""
role: Literal["assistant"] = "assistant"
class ToolCallMessageSegment(Message):
"""A message segment representing a tool call."""
role: Literal["tool"] = "tool"
class UserMessageSegment(Message):
"""A message segment from the user."""
role: Literal["user"] = "user"
class SystemMessageSegment(Message):
"""A message segment from the system."""
role: Literal["system"] = "system"

View File

@@ -1,5 +1,6 @@
from dataclasses import dataclass
import typing as T
from dataclasses import dataclass
from astrbot.core.message.message_event_result import MessageChain

View File

@@ -1,18 +1,22 @@
from dataclasses import dataclass
from typing import Any, Generic
from pydantic import Field
from pydantic.dataclasses import dataclass
from typing_extensions import TypeVar
from astrbot.core.platform.astr_message_event import AstrMessageEvent
from .message import Message
TContext = TypeVar("TContext", default=Any)
@dataclass
@dataclass(config={"arbitrary_types_allowed": True})
class ContextWrapper(Generic[TContext]):
"""A context for running an agent, which can be used to pass additional data or state."""
context: TContext
event: AstrMessageEvent
messages: list[Message] = Field(default_factory=list)
"""This field stores the llm message context for the agent run, agent runners will maintain this field automatically."""
tool_call_timeout: int = 60 # Default tool call timeout in seconds
NoContext = ContextWrapper[None]

View File

@@ -1,13 +1,14 @@
import abc
import typing as T
from enum import Enum, auto
from ..run_context import ContextWrapper, TContext
from ..response import AgentResponse
from ..hooks import BaseAgentRunHooks
from ..tool_executor import BaseFunctionToolExecutor
from astrbot.core.provider import Provider
from astrbot import logger
from astrbot.core.provider.entities import LLMResponse
from ..hooks import BaseAgentRunHooks
from ..response import AgentResponse
from ..run_context import ContextWrapper, TContext
class AgentState(Enum):
"""Defines the state of the agent."""
@@ -22,37 +23,43 @@ class BaseAgentRunner(T.Generic[TContext]):
@abc.abstractmethod
async def reset(
self,
provider: Provider,
run_context: ContextWrapper[TContext],
tool_executor: BaseFunctionToolExecutor[TContext],
agent_hooks: BaseAgentRunHooks[TContext],
**kwargs: T.Any,
) -> None:
"""
Reset the agent to its initial state.
"""Reset the agent to its initial state.
This method should be called before starting a new run.
"""
...
@abc.abstractmethod
async def step(self) -> T.AsyncGenerator[AgentResponse, None]:
"""
Process a single step of the agent.
"""
"""Process a single step of the agent."""
...
@abc.abstractmethod
async def step_until_done(
self, max_step: int
) -> T.AsyncGenerator[AgentResponse, None]:
"""Process steps until the agent is done."""
...
@abc.abstractmethod
def done(self) -> bool:
"""
Check if the agent has completed its task.
"""Check if the agent has completed its task.
Returns True if the agent is done, False otherwise.
"""
...
@abc.abstractmethod
def get_final_llm_resp(self) -> LLMResponse | None:
"""
Get the final observation from the agent.
"""Get the final observation from the agent.
This method should be called after the agent is done.
"""
...
def _transition_state(self, new_state: AgentState) -> None:
"""Transition the agent state."""
if self._state != new_state:
logger.debug(f"Agent state transition: {self._state} -> {new_state}")
self._state = new_state

View File

@@ -0,0 +1,367 @@
import base64
import json
import sys
import typing as T
import astrbot.core.message.components as Comp
from astrbot import logger
from astrbot.core import sp
from astrbot.core.message.message_event_result import MessageChain
from astrbot.core.provider.entities import (
LLMResponse,
ProviderRequest,
)
from ...hooks import BaseAgentRunHooks
from ...response import AgentResponseData
from ...run_context import ContextWrapper, TContext
from ..base import AgentResponse, AgentState, BaseAgentRunner
from .coze_api_client import CozeAPIClient
if sys.version_info >= (3, 12):
from typing import override
else:
from typing_extensions import override
class CozeAgentRunner(BaseAgentRunner[TContext]):
"""Coze Agent Runner"""
@override
async def reset(
self,
request: ProviderRequest,
run_context: ContextWrapper[TContext],
agent_hooks: BaseAgentRunHooks[TContext],
provider_config: dict,
**kwargs: T.Any,
) -> None:
self.req = request
self.streaming = kwargs.get("streaming", False)
self.final_llm_resp = None
self._state = AgentState.IDLE
self.agent_hooks = agent_hooks
self.run_context = run_context
self.api_key = provider_config.get("coze_api_key", "")
if not self.api_key:
raise Exception("Coze API Key 不能为空。")
self.bot_id = provider_config.get("bot_id", "")
if not self.bot_id:
raise Exception("Coze Bot ID 不能为空。")
self.api_base: str = provider_config.get("coze_api_base", "https://api.coze.cn")
if not isinstance(self.api_base, str) or not self.api_base.startswith(
("http://", "https://"),
):
raise Exception(
"Coze API Base URL 格式不正确,必须以 http:// 或 https:// 开头。",
)
self.timeout = provider_config.get("timeout", 120)
if isinstance(self.timeout, str):
self.timeout = int(self.timeout)
self.auto_save_history = provider_config.get("auto_save_history", True)
# 创建 API 客户端
self.api_client = CozeAPIClient(api_key=self.api_key, api_base=self.api_base)
# 会话相关缓存
self.file_id_cache: dict[str, dict[str, str]] = {}
@override
async def step(self):
"""
执行 Coze Agent 的一个步骤
"""
if not self.req:
raise ValueError("Request is not set. Please call reset() first.")
if self._state == AgentState.IDLE:
try:
await self.agent_hooks.on_agent_begin(self.run_context)
except Exception as e:
logger.error(f"Error in on_agent_begin hook: {e}", exc_info=True)
# 开始处理,转换到运行状态
self._transition_state(AgentState.RUNNING)
try:
# 执行 Coze 请求并处理结果
async for response in self._execute_coze_request():
yield response
except Exception as e:
logger.error(f"Coze 请求失败:{str(e)}")
self._transition_state(AgentState.ERROR)
self.final_llm_resp = LLMResponse(
role="err", completion_text=f"Coze 请求失败:{str(e)}"
)
yield AgentResponse(
type="err",
data=AgentResponseData(
chain=MessageChain().message(f"Coze 请求失败:{str(e)}")
),
)
finally:
await self.api_client.close()
@override
async def step_until_done(
self, max_step: int = 30
) -> T.AsyncGenerator[AgentResponse, None]:
while not self.done():
async for resp in self.step():
yield resp
async def _execute_coze_request(self):
"""执行 Coze 请求的核心逻辑"""
prompt = self.req.prompt or ""
session_id = self.req.session_id or "unknown"
image_urls = self.req.image_urls or []
contexts = self.req.contexts or []
system_prompt = self.req.system_prompt
# 用户ID参数
user_id = session_id
# 获取或创建会话ID
conversation_id = await sp.get_async(
scope="umo",
scope_id=user_id,
key="coze_conversation_id",
default="",
)
# 构建消息
additional_messages = []
if system_prompt:
if not self.auto_save_history or not conversation_id:
additional_messages.append(
{
"role": "system",
"content": system_prompt,
"content_type": "text",
},
)
# 处理历史上下文
if not self.auto_save_history and contexts:
for ctx in contexts:
if isinstance(ctx, dict) and "role" in ctx and "content" in ctx:
# 处理上下文中的图片
content = ctx["content"]
if isinstance(content, list):
# 多模态内容,需要处理图片
processed_content = []
for item in content:
if isinstance(item, dict):
if item.get("type") == "text":
processed_content.append(item)
elif item.get("type") == "image_url":
# 处理图片上传
try:
image_data = item.get("image_url", {})
url = image_data.get("url", "")
if url:
file_id = (
await self._download_and_upload_image(
url, session_id
)
)
processed_content.append(
{
"type": "file",
"file_id": file_id,
"file_url": url,
}
)
except Exception as e:
logger.warning(f"处理上下文图片失败: {e}")
continue
if processed_content:
additional_messages.append(
{
"role": ctx["role"],
"content": processed_content,
"content_type": "object_string",
}
)
else:
# 纯文本内容
additional_messages.append(
{
"role": ctx["role"],
"content": content,
"content_type": "text",
}
)
# 构建当前消息
if prompt or image_urls:
if image_urls:
# 多模态
object_string_content = []
if prompt:
object_string_content.append({"type": "text", "text": prompt})
for url in image_urls:
# the url is a base64 string
try:
image_data = base64.b64decode(url)
file_id = await self.api_client.upload_file(image_data)
object_string_content.append(
{
"type": "image",
"file_id": file_id,
}
)
except Exception as e:
logger.warning(f"处理图片失败 {url}: {e}")
continue
if object_string_content:
content = json.dumps(object_string_content, ensure_ascii=False)
additional_messages.append(
{
"role": "user",
"content": content,
"content_type": "object_string",
}
)
elif prompt:
# 纯文本
additional_messages.append(
{
"role": "user",
"content": prompt,
"content_type": "text",
},
)
# 执行 Coze API 请求
accumulated_content = ""
message_started = False
async for chunk in self.api_client.chat_messages(
bot_id=self.bot_id,
user_id=user_id,
additional_messages=additional_messages,
conversation_id=conversation_id,
auto_save_history=self.auto_save_history,
stream=True,
timeout=self.timeout,
):
event_type = chunk.get("event")
data = chunk.get("data", {})
if event_type == "conversation.chat.created":
if isinstance(data, dict) and "conversation_id" in data:
await sp.put_async(
scope="umo",
scope_id=user_id,
key="coze_conversation_id",
value=data["conversation_id"],
)
if event_type == "conversation.message.delta":
# 增量消息
content = data.get("content", "")
if not content and "delta" in data:
content = data["delta"].get("content", "")
if not content and "text" in data:
content = data.get("text", "")
if content:
accumulated_content += content
message_started = True
# 如果是流式响应,发送增量数据
if self.streaming:
yield AgentResponse(
type="streaming_delta",
data=AgentResponseData(
chain=MessageChain().message(content)
),
)
elif event_type == "conversation.message.completed":
# 消息完成
logger.debug("Coze message completed")
message_started = True
elif event_type == "conversation.chat.completed":
# 对话完成
logger.debug("Coze chat completed")
break
elif event_type == "error":
# 错误处理
error_msg = data.get("msg", "未知错误")
error_code = data.get("code", "UNKNOWN")
logger.error(f"Coze 出现错误: {error_code} - {error_msg}")
raise Exception(f"Coze 出现错误: {error_code} - {error_msg}")
if not message_started and not accumulated_content:
logger.warning("Coze 未返回任何内容")
accumulated_content = ""
# 创建最终响应
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
self.final_llm_resp = LLMResponse(role="assistant", result_chain=chain)
self._transition_state(AgentState.DONE)
try:
await self.agent_hooks.on_agent_done(self.run_context, self.final_llm_resp)
except Exception as e:
logger.error(f"Error in on_agent_done hook: {e}", exc_info=True)
# 返回最终结果
yield AgentResponse(
type="llm_result",
data=AgentResponseData(chain=chain),
)
async def _download_and_upload_image(
self,
image_url: str,
session_id: str | None = None,
) -> str:
"""下载图片并上传到 Coze返回 file_id"""
import hashlib
# 计算哈希实现缓存
cache_key = hashlib.md5(image_url.encode("utf-8")).hexdigest()
if session_id:
if session_id not in self.file_id_cache:
self.file_id_cache[session_id] = {}
if cache_key in self.file_id_cache[session_id]:
file_id = self.file_id_cache[session_id][cache_key]
logger.debug(f"[Coze] 使用缓存的 file_id: {file_id}")
return file_id
try:
image_data = await self.api_client.download_image(image_url)
file_id = await self.api_client.upload_file(image_data)
if session_id:
self.file_id_cache[session_id][cache_key] = file_id
logger.debug(f"[Coze] 图片上传成功并缓存file_id: {file_id}")
return file_id
except Exception as e:
logger.error(f"处理图片失败 {image_url}: {e!s}")
raise Exception(f"处理图片失败: {e!s}")
@override
def done(self) -> bool:
"""检查 Agent 是否已完成工作"""
return self._state in (AgentState.DONE, AgentState.ERROR)
@override
def get_final_llm_resp(self) -> LLMResponse | None:
return self.final_llm_resp

View File

@@ -1,8 +1,11 @@
import json
import asyncio
import aiohttp
import io
from typing import Dict, List, Any, AsyncGenerator
import json
from collections.abc import AsyncGenerator
from typing import Any
import aiohttp
from astrbot.core import logger
@@ -32,7 +35,9 @@ class CozeAPIClient:
"Accept": "text/event-stream",
}
self.session = aiohttp.ClientSession(
headers=headers, timeout=timeout, connector=connector
headers=headers,
timeout=timeout,
connector=connector,
)
return self.session
@@ -46,6 +51,7 @@ class CozeAPIClient:
file_data (bytes): 文件的二进制数据
Returns:
str: 上传成功后返回的 file_id
"""
session = await self._ensure_session()
url = f"{self.api_base}/v1/files/upload"
@@ -64,12 +70,12 @@ class CozeAPIClient:
response_text = await response.text()
logger.debug(
f"文件上传响应状态: {response.status}, 内容: {response_text}"
f"文件上传响应状态: {response.status}, 内容: {response_text}",
)
if response.status != 200:
raise Exception(
f"文件上传失败,状态码: {response.status}, 响应: {response_text}"
f"文件上传失败,状态码: {response.status}, 响应: {response_text}",
)
try:
@@ -88,8 +94,8 @@ class CozeAPIClient:
logger.error("文件上传超时")
raise Exception("文件上传超时")
except Exception as e:
logger.error(f"文件上传失败: {str(e)}")
raise Exception(f"文件上传失败: {str(e)}")
logger.error(f"文件上传失败: {e!s}")
raise Exception(f"文件上传失败: {e!s}")
async def download_image(self, image_url: str) -> bytes:
"""下载图片并返回字节数据
@@ -98,6 +104,7 @@ class CozeAPIClient:
image_url (str): 图片的URL
Returns:
bytes: 图片的二进制数据
"""
session = await self._ensure_session()
@@ -110,19 +117,19 @@ class CozeAPIClient:
return image_data
except Exception as e:
logger.error(f"下载图片失败 {image_url}: {str(e)}")
raise Exception(f"下载图片失败: {str(e)}")
logger.error(f"下载图片失败 {image_url}: {e!s}")
raise Exception(f"下载图片失败: {e!s}")
async def chat_messages(
self,
bot_id: str,
user_id: str,
additional_messages: List[Dict] | None = None,
additional_messages: list[dict] | None = None,
conversation_id: str | None = None,
auto_save_history: bool = True,
stream: bool = True,
timeout: float = 120,
) -> AsyncGenerator[Dict[str, Any], None]:
) -> AsyncGenerator[dict[str, Any], None]:
"""发送聊天消息并返回流式响应
Args:
@@ -133,6 +140,7 @@ class CozeAPIClient:
auto_save_history: 是否自动保存历史
stream: 是否流式响应
timeout: 超时时间
"""
session = await self._ensure_session()
url = f"{self.api_base}/v3/chat"
@@ -198,7 +206,7 @@ class CozeAPIClient:
except asyncio.TimeoutError:
raise Exception(f"Coze API 流式请求超时 ({timeout}秒)")
except Exception as e:
raise Exception(f"Coze API 流式请求失败: {str(e)}")
raise Exception(f"Coze API 流式请求失败: {e!s}")
async def clear_context(self, conversation_id: str):
"""清空会话上下文
@@ -207,6 +215,7 @@ class CozeAPIClient:
conversation_id: 会话ID
Returns:
dict: API响应结果
"""
session = await self._ensure_session()
url = f"{self.api_base}/v3/conversation/message/clear_context"
@@ -230,7 +239,7 @@ class CozeAPIClient:
except asyncio.TimeoutError:
raise Exception("Coze API 请求超时")
except aiohttp.ClientError as e:
raise Exception(f"Coze API 请求失败: {str(e)}")
raise Exception(f"Coze API 请求失败: {e!s}")
async def get_message_list(
self,
@@ -248,6 +257,7 @@ class CozeAPIClient:
offset: 偏移量
Returns:
dict: API响应结果
"""
session = await self._ensure_session()
url = f"{self.api_base}/v3/conversation/message/list"
@@ -264,8 +274,8 @@ class CozeAPIClient:
return await response.json()
except Exception as e:
logger.error(f"获取Coze消息列表失败: {str(e)}")
raise Exception(f"获取Coze消息列表失败: {str(e)}")
logger.error(f"获取Coze消息列表失败: {e!s}")
raise Exception(f"获取Coze消息列表失败: {e!s}")
async def close(self):
"""关闭会话"""
@@ -275,8 +285,8 @@ class CozeAPIClient:
if __name__ == "__main__":
import os
import asyncio
import os
async def test_coze_api_client():
api_key = os.getenv("COZE_API_KEY", "")

View File

@@ -0,0 +1,403 @@
import asyncio
import functools
import queue
import re
import sys
import threading
import typing as T
from dashscope import Application
from dashscope.app.application_response import ApplicationResponse
import astrbot.core.message.components as Comp
from astrbot.core import logger, sp
from astrbot.core.message.message_event_result import MessageChain
from astrbot.core.provider.entities import (
LLMResponse,
ProviderRequest,
)
from ...hooks import BaseAgentRunHooks
from ...response import AgentResponseData
from ...run_context import ContextWrapper, TContext
from ..base import AgentResponse, AgentState, BaseAgentRunner
if sys.version_info >= (3, 12):
from typing import override
else:
from typing_extensions import override
class DashscopeAgentRunner(BaseAgentRunner[TContext]):
"""Dashscope Agent Runner"""
@override
async def reset(
self,
request: ProviderRequest,
run_context: ContextWrapper[TContext],
agent_hooks: BaseAgentRunHooks[TContext],
provider_config: dict,
**kwargs: T.Any,
) -> None:
self.req = request
self.streaming = kwargs.get("streaming", False)
self.final_llm_resp = None
self._state = AgentState.IDLE
self.agent_hooks = agent_hooks
self.run_context = run_context
self.api_key = provider_config.get("dashscope_api_key", "")
if not self.api_key:
raise Exception("阿里云百炼 API Key 不能为空。")
self.app_id = provider_config.get("dashscope_app_id", "")
if not self.app_id:
raise Exception("阿里云百炼 APP ID 不能为空。")
self.dashscope_app_type = provider_config.get("dashscope_app_type", "")
if not self.dashscope_app_type:
raise Exception("阿里云百炼 APP 类型不能为空。")
self.variables: dict = provider_config.get("variables", {}) or {}
self.rag_options: dict = provider_config.get("rag_options", {})
self.output_reference = self.rag_options.get("output_reference", False)
self.rag_options = self.rag_options.copy()
self.rag_options.pop("output_reference", None)
self.timeout = provider_config.get("timeout", 120)
if isinstance(self.timeout, str):
self.timeout = int(self.timeout)
def has_rag_options(self):
"""判断是否有 RAG 选项
Returns:
bool: 是否有 RAG 选项
"""
if self.rag_options and (
len(self.rag_options.get("pipeline_ids", [])) > 0
or len(self.rag_options.get("file_ids", [])) > 0
):
return True
return False
@override
async def step(self):
"""
执行 Dashscope Agent 的一个步骤
"""
if not self.req:
raise ValueError("Request is not set. Please call reset() first.")
if self._state == AgentState.IDLE:
try:
await self.agent_hooks.on_agent_begin(self.run_context)
except Exception as e:
logger.error(f"Error in on_agent_begin hook: {e}", exc_info=True)
# 开始处理,转换到运行状态
self._transition_state(AgentState.RUNNING)
try:
# 执行 Dashscope 请求并处理结果
async for response in self._execute_dashscope_request():
yield response
except Exception as e:
logger.error(f"阿里云百炼请求失败:{str(e)}")
self._transition_state(AgentState.ERROR)
self.final_llm_resp = LLMResponse(
role="err", completion_text=f"阿里云百炼请求失败:{str(e)}"
)
yield AgentResponse(
type="err",
data=AgentResponseData(
chain=MessageChain().message(f"阿里云百炼请求失败:{str(e)}")
),
)
@override
async def step_until_done(
self, max_step: int = 30
) -> T.AsyncGenerator[AgentResponse, None]:
while not self.done():
async for resp in self.step():
yield resp
def _consume_sync_generator(
self, response: T.Any, response_queue: queue.Queue
) -> None:
"""在线程中消费同步generator,将结果放入队列
Args:
response: 同步generator对象
response_queue: 用于传递数据的队列
"""
try:
if self.streaming:
for chunk in response:
response_queue.put(("data", chunk))
else:
response_queue.put(("data", response))
except Exception as e:
response_queue.put(("error", e))
finally:
response_queue.put(("done", None))
async def _process_stream_chunk(
self, chunk: ApplicationResponse, output_text: str
) -> tuple[str, list | None, AgentResponse | None]:
"""处理流式响应的单个chunk
Args:
chunk: Dashscope响应chunk
output_text: 当前累积的输出文本
Returns:
(更新后的output_text, doc_references, AgentResponse或None)
"""
logger.debug(f"dashscope stream chunk: {chunk}")
if chunk.status_code != 200:
logger.error(
f"阿里云百炼请求失败: request_id={chunk.request_id}, code={chunk.status_code}, message={chunk.message}, 请参考文档https://help.aliyun.com/zh/model-studio/developer-reference/error-code",
)
self._transition_state(AgentState.ERROR)
error_msg = (
f"阿里云百炼请求失败: message={chunk.message} code={chunk.status_code}"
)
self.final_llm_resp = LLMResponse(
role="err",
result_chain=MessageChain().message(error_msg),
)
return (
output_text,
None,
AgentResponse(
type="err",
data=AgentResponseData(chain=MessageChain().message(error_msg)),
),
)
chunk_text = chunk.output.get("text", "") or ""
# RAG 引用脚标格式化
chunk_text = re.sub(r"<ref>\[(\d+)\]</ref>", r"[\1]", chunk_text)
response = None
if chunk_text:
output_text += chunk_text
response = AgentResponse(
type="streaming_delta",
data=AgentResponseData(chain=MessageChain().message(chunk_text)),
)
# 获取文档引用
doc_references = chunk.output.get("doc_references", None)
return output_text, doc_references, response
def _format_doc_references(self, doc_references: list) -> str:
"""格式化文档引用为文本
Args:
doc_references: 文档引用列表
Returns:
格式化后的引用文本
"""
ref_parts = []
for ref in doc_references:
ref_title = (
ref.get("title", "") if ref.get("title") else ref.get("doc_name", "")
)
ref_parts.append(f"{ref['index_id']}. {ref_title}\n")
ref_str = "".join(ref_parts)
return f"\n\n回答来源:\n{ref_str}"
async def _build_request_payload(
self, prompt: str, session_id: str, contexts: list, system_prompt: str
) -> dict:
"""构建请求payload
Args:
prompt: 用户输入
session_id: 会话ID
contexts: 上下文列表
system_prompt: 系统提示词
Returns:
请求payload字典
"""
conversation_id = await sp.get_async(
scope="umo",
scope_id=session_id,
key="dashscope_conversation_id",
default="",
)
# 获得会话变量
payload_vars = self.variables.copy()
session_var = await sp.get_async(
scope="umo",
scope_id=session_id,
key="session_variables",
default={},
)
payload_vars.update(session_var)
if (
self.dashscope_app_type in ["agent", "dialog-workflow"]
and not self.has_rag_options()
):
# 支持多轮对话的
p = {
"app_id": self.app_id,
"api_key": self.api_key,
"prompt": prompt,
"biz_params": payload_vars or None,
"stream": self.streaming,
"incremental_output": True,
}
if conversation_id:
p["session_id"] = conversation_id
return p
else:
# 不支持多轮对话的
payload = {
"app_id": self.app_id,
"prompt": prompt,
"api_key": self.api_key,
"biz_params": payload_vars or None,
"stream": self.streaming,
"incremental_output": True,
}
if self.rag_options:
payload["rag_options"] = self.rag_options
return payload
async def _handle_streaming_response(
self, response: T.Any, session_id: str
) -> T.AsyncGenerator[AgentResponse, None]:
"""处理流式响应
Args:
response: Dashscope 流式响应 generator
Yields:
AgentResponse 对象
"""
response_queue = queue.Queue()
consumer_thread = threading.Thread(
target=self._consume_sync_generator,
args=(response, response_queue),
daemon=True,
)
consumer_thread.start()
output_text = ""
doc_references = None
while True:
try:
item_type, item_data = await asyncio.get_event_loop().run_in_executor(
None, response_queue.get, True, 1
)
except queue.Empty:
continue
if item_type == "done":
break
elif item_type == "error":
raise item_data
elif item_type == "data":
chunk = item_data
assert isinstance(chunk, ApplicationResponse)
(
output_text,
chunk_doc_refs,
response,
) = await self._process_stream_chunk(chunk, output_text)
if response:
if response.type == "err":
yield response
return
yield response
if chunk_doc_refs:
doc_references = chunk_doc_refs
if chunk.output.session_id:
await sp.put_async(
scope="umo",
scope_id=session_id,
key="dashscope_conversation_id",
value=chunk.output.session_id,
)
# 添加 RAG 引用
if self.output_reference and doc_references:
ref_text = self._format_doc_references(doc_references)
output_text += ref_text
if self.streaming:
yield AgentResponse(
type="streaming_delta",
data=AgentResponseData(chain=MessageChain().message(ref_text)),
)
# 创建最终响应
chain = MessageChain(chain=[Comp.Plain(output_text)])
self.final_llm_resp = LLMResponse(role="assistant", result_chain=chain)
self._transition_state(AgentState.DONE)
try:
await self.agent_hooks.on_agent_done(self.run_context, self.final_llm_resp)
except Exception as e:
logger.error(f"Error in on_agent_done hook: {e}", exc_info=True)
# 返回最终结果
yield AgentResponse(
type="llm_result",
data=AgentResponseData(chain=chain),
)
async def _execute_dashscope_request(self):
"""执行 Dashscope 请求的核心逻辑"""
prompt = self.req.prompt or ""
session_id = self.req.session_id or "unknown"
image_urls = self.req.image_urls or []
contexts = self.req.contexts or []
system_prompt = self.req.system_prompt
# 检查图片输入
if image_urls:
logger.warning("阿里云百炼暂不支持图片输入,将自动忽略图片内容。")
# 构建请求payload
payload = await self._build_request_payload(
prompt, session_id, contexts, system_prompt
)
if not self.streaming:
payload["incremental_output"] = False
# 发起请求
partial = functools.partial(Application.call, **payload)
response = await asyncio.get_event_loop().run_in_executor(None, partial)
async for resp in self._handle_streaming_response(response, session_id):
yield resp
@override
def done(self) -> bool:
"""检查 Agent 是否已完成工作"""
return self._state in (AgentState.DONE, AgentState.ERROR)
@override
def get_final_llm_resp(self) -> LLMResponse | None:
return self.final_llm_resp

View File

@@ -0,0 +1,336 @@
import base64
import os
import sys
import typing as T
import astrbot.core.message.components as Comp
from astrbot.core import logger, sp
from astrbot.core.message.message_event_result import MessageChain
from astrbot.core.provider.entities import (
LLMResponse,
ProviderRequest,
)
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
from astrbot.core.utils.io import download_file
from ...hooks import BaseAgentRunHooks
from ...response import AgentResponseData
from ...run_context import ContextWrapper, TContext
from ..base import AgentResponse, AgentState, BaseAgentRunner
from .dify_api_client import DifyAPIClient
if sys.version_info >= (3, 12):
from typing import override
else:
from typing_extensions import override
class DifyAgentRunner(BaseAgentRunner[TContext]):
"""Dify Agent Runner"""
@override
async def reset(
self,
request: ProviderRequest,
run_context: ContextWrapper[TContext],
agent_hooks: BaseAgentRunHooks[TContext],
provider_config: dict,
**kwargs: T.Any,
) -> None:
self.req = request
self.streaming = kwargs.get("streaming", False)
self.final_llm_resp = None
self._state = AgentState.IDLE
self.agent_hooks = agent_hooks
self.run_context = run_context
self.api_key = provider_config.get("dify_api_key", "")
self.api_base = provider_config.get("dify_api_base", "https://api.dify.ai/v1")
self.api_type = provider_config.get("dify_api_type", "chat")
self.workflow_output_key = provider_config.get(
"dify_workflow_output_key",
"astrbot_wf_output",
)
self.dify_query_input_key = provider_config.get(
"dify_query_input_key",
"astrbot_text_query",
)
self.variables: dict = provider_config.get("variables", {}) or {}
self.timeout = provider_config.get("timeout", 60)
if isinstance(self.timeout, str):
self.timeout = int(self.timeout)
self.api_client = DifyAPIClient(self.api_key, self.api_base)
@override
async def step(self):
"""
执行 Dify Agent 的一个步骤
"""
if not self.req:
raise ValueError("Request is not set. Please call reset() first.")
if self._state == AgentState.IDLE:
try:
await self.agent_hooks.on_agent_begin(self.run_context)
except Exception as e:
logger.error(f"Error in on_agent_begin hook: {e}", exc_info=True)
# 开始处理,转换到运行状态
self._transition_state(AgentState.RUNNING)
try:
# 执行 Dify 请求并处理结果
async for response in self._execute_dify_request():
yield response
except Exception as e:
logger.error(f"Dify 请求失败:{str(e)}")
self._transition_state(AgentState.ERROR)
self.final_llm_resp = LLMResponse(
role="err", completion_text=f"Dify 请求失败:{str(e)}"
)
yield AgentResponse(
type="err",
data=AgentResponseData(
chain=MessageChain().message(f"Dify 请求失败:{str(e)}")
),
)
finally:
await self.api_client.close()
@override
async def step_until_done(
self, max_step: int = 30
) -> T.AsyncGenerator[AgentResponse, None]:
while not self.done():
async for resp in self.step():
yield resp
async def _execute_dify_request(self):
"""执行 Dify 请求的核心逻辑"""
prompt = self.req.prompt or ""
session_id = self.req.session_id or "unknown"
image_urls = self.req.image_urls or []
system_prompt = self.req.system_prompt
conversation_id = await sp.get_async(
scope="umo",
scope_id=session_id,
key="dify_conversation_id",
default="",
)
result = ""
# 处理图片上传
files_payload = []
for image_url in image_urls:
# image_url is a base64 string
try:
image_data = base64.b64decode(image_url)
file_response = await self.api_client.file_upload(
file_data=image_data,
user=session_id,
mime_type="image/png",
file_name="image.png",
)
logger.debug(f"Dify 上传图片响应:{file_response}")
if "id" not in file_response:
logger.warning(
f"上传图片后得到未知的 Dify 响应:{file_response},图片将忽略。"
)
continue
files_payload.append(
{
"type": "image",
"transfer_method": "local_file",
"upload_file_id": file_response["id"],
}
)
except Exception as e:
logger.warning(f"上传图片失败:{e}")
continue
# 获得会话变量
payload_vars = self.variables.copy()
# 动态变量
session_var = await sp.get_async(
scope="umo",
scope_id=session_id,
key="session_variables",
default={},
)
payload_vars.update(session_var)
payload_vars["system_prompt"] = system_prompt
# 处理不同的 API 类型
match self.api_type:
case "chat" | "agent" | "chatflow":
if not prompt:
prompt = "请描述这张图片。"
async for chunk in self.api_client.chat_messages(
inputs={
**payload_vars,
},
query=prompt,
user=session_id,
conversation_id=conversation_id,
files=files_payload,
timeout=self.timeout,
):
logger.debug(f"dify resp chunk: {chunk}")
if chunk["event"] == "message" or chunk["event"] == "agent_message":
result += chunk["answer"]
if not conversation_id:
await sp.put_async(
scope="umo",
scope_id=session_id,
key="dify_conversation_id",
value=chunk["conversation_id"],
)
conversation_id = chunk["conversation_id"]
# 如果是流式响应,发送增量数据
if self.streaming and chunk["answer"]:
yield AgentResponse(
type="streaming_delta",
data=AgentResponseData(
chain=MessageChain().message(chunk["answer"])
),
)
elif chunk["event"] == "message_end":
logger.debug("Dify message end")
break
elif chunk["event"] == "error":
logger.error(f"Dify 出现错误:{chunk}")
raise Exception(
f"Dify 出现错误 status: {chunk['status']} message: {chunk['message']}"
)
case "workflow":
async for chunk in self.api_client.workflow_run(
inputs={
self.dify_query_input_key: prompt,
"astrbot_session_id": session_id,
**payload_vars,
},
user=session_id,
files=files_payload,
timeout=self.timeout,
):
logger.debug(f"dify workflow resp chunk: {chunk}")
match chunk["event"]:
case "workflow_started":
logger.info(
f"Dify 工作流(ID: {chunk['workflow_run_id']})开始运行。"
)
case "node_finished":
logger.debug(
f"Dify 工作流节点(ID: {chunk['data']['node_id']} Title: {chunk['data'].get('title', '')})运行结束。"
)
case "text_chunk":
if self.streaming and chunk["data"]["text"]:
yield AgentResponse(
type="streaming_delta",
data=AgentResponseData(
chain=MessageChain().message(
chunk["data"]["text"]
)
),
)
case "workflow_finished":
logger.info(
f"Dify 工作流(ID: {chunk['workflow_run_id']})运行结束"
)
logger.debug(f"Dify 工作流结果:{chunk}")
if chunk["data"]["error"]:
logger.error(
f"Dify 工作流出现错误:{chunk['data']['error']}"
)
raise Exception(
f"Dify 工作流出现错误:{chunk['data']['error']}"
)
if self.workflow_output_key not in chunk["data"]["outputs"]:
raise Exception(
f"Dify 工作流的输出不包含指定的键名:{self.workflow_output_key}"
)
result = chunk
case _:
raise Exception(f"未知的 Dify API 类型:{self.api_type}")
if not result:
logger.warning("Dify 请求结果为空,请查看 Debug 日志。")
# 解析结果
chain = await self.parse_dify_result(result)
# 创建最终响应
self.final_llm_resp = LLMResponse(role="assistant", result_chain=chain)
self._transition_state(AgentState.DONE)
try:
await self.agent_hooks.on_agent_done(self.run_context, self.final_llm_resp)
except Exception as e:
logger.error(f"Error in on_agent_done hook: {e}", exc_info=True)
# 返回最终结果
yield AgentResponse(
type="llm_result",
data=AgentResponseData(chain=chain),
)
async def parse_dify_result(self, chunk: dict | str) -> MessageChain:
"""解析 Dify 的响应结果"""
if isinstance(chunk, str):
# Chat
return MessageChain(chain=[Comp.Plain(chunk)])
async def parse_file(item: dict):
match item["type"]:
case "image":
return Comp.Image(file=item["url"], url=item["url"])
case "audio":
# 仅支持 wav
temp_dir = os.path.join(get_astrbot_data_path(), "temp")
path = os.path.join(temp_dir, f"{item['filename']}.wav")
await download_file(item["url"], path)
return Comp.Image(file=item["url"], url=item["url"])
case "video":
return Comp.Video(file=item["url"])
case _:
return Comp.File(name=item["filename"], file=item["url"])
output = chunk["data"]["outputs"][self.workflow_output_key]
chains = []
if isinstance(output, str):
# 纯文本输出
chains.append(Comp.Plain(output))
elif isinstance(output, list):
# 主要适配 Dify 的 HTTP 请求结点的多模态输出
for item in output:
# handle Array[File]
if (
not isinstance(item, dict)
or item.get("dify_model_identity", "") != "__dify__file__"
):
chains.append(Comp.Plain(str(output)))
break
else:
chains.append(Comp.Plain(str(output)))
# scan file
files = chunk["data"].get("files", [])
for item in files:
comp = await parse_file(item)
chains.append(comp)
return MessageChain(chain=chains)
@override
def done(self) -> bool:
"""检查 Agent 是否已完成工作"""
return self._state in (AgentState.DONE, AgentState.ERROR)
@override
def get_final_llm_resp(self) -> LLMResponse | None:
return self.final_llm_resp

View File

@@ -1,8 +1,11 @@
import codecs
import json
from collections.abc import AsyncGenerator
from typing import Any
from aiohttp import ClientResponse, ClientSession, FormData
from astrbot.core import logger
from aiohttp import ClientSession, ClientResponse
from typing import Dict, List, Any, AsyncGenerator
async def _stream_sse(resp: ClientResponse) -> AsyncGenerator[dict, None]:
@@ -25,7 +28,6 @@ async def _stream_sse(resp: ClientResponse) -> AsyncGenerator[dict, None]:
yield json.loads(buffer[5:])
except json.JSONDecodeError:
logger.warning(f"Drop invalid dify json data: {buffer[5:]}")
pass
class DifyAPIClient:
@@ -39,69 +41,119 @@ class DifyAPIClient:
async def chat_messages(
self,
inputs: Dict,
inputs: dict,
query: str,
user: str,
response_mode: str = "streaming",
conversation_id: str = "",
files: List[Dict[str, Any]] = [],
files: list[dict[str, Any]] | None = None,
timeout: float = 60,
) -> AsyncGenerator[Dict[str, Any], None]:
) -> AsyncGenerator[dict[str, Any], None]:
if files is None:
files = []
url = f"{self.api_base}/chat-messages"
payload = locals()
payload.pop("self")
payload.pop("timeout")
logger.info(f"chat_messages payload: {payload}")
async with self.session.post(
url, json=payload, headers=self.headers, timeout=timeout
url,
json=payload,
headers=self.headers,
timeout=timeout,
) as resp:
if resp.status != 200:
text = await resp.text()
raise Exception(
f"Dify /chat-messages 接口请求失败:{resp.status}. {text}"
f"Dify /chat-messages 接口请求失败:{resp.status}. {text}",
)
async for event in _stream_sse(resp):
yield event
async def workflow_run(
self,
inputs: Dict,
inputs: dict,
user: str,
response_mode: str = "streaming",
files: List[Dict[str, Any]] = [],
files: list[dict[str, Any]] | None = None,
timeout: float = 60,
):
if files is None:
files = []
url = f"{self.api_base}/workflows/run"
payload = locals()
payload.pop("self")
payload.pop("timeout")
logger.info(f"workflow_run payload: {payload}")
async with self.session.post(
url, json=payload, headers=self.headers, timeout=timeout
url,
json=payload,
headers=self.headers,
timeout=timeout,
) as resp:
if resp.status != 200:
text = await resp.text()
raise Exception(
f"Dify /workflows/run 接口请求失败:{resp.status}. {text}"
f"Dify /workflows/run 接口请求失败:{resp.status}. {text}",
)
async for event in _stream_sse(resp):
yield event
async def file_upload(
self,
file_path: str,
user: str,
) -> Dict[str, Any]:
file_path: str | None = None,
file_data: bytes | None = None,
file_name: str | None = None,
mime_type: str | None = None,
) -> dict[str, Any]:
"""Upload a file to Dify. Must provide either file_path or file_data.
Args:
user: The user ID.
file_path: The path to the file to upload.
file_data: The file data in bytes.
file_name: Optional file name when using file_data.
Returns:
A dictionary containing the uploaded file information.
"""
url = f"{self.api_base}/files/upload"
with open(file_path, "rb") as f:
payload = {
"user": user,
"file": f,
}
async with self.session.post(
url, data=payload, headers=self.headers
) as resp:
return await resp.json() # {"id": "xxx", ...}
form = FormData()
form.add_field("user", user)
if file_data is not None:
# 使用 bytes 数据
form.add_field(
"file",
file_data,
filename=file_name or "uploaded_file",
content_type=mime_type or "application/octet-stream",
)
elif file_path is not None:
# 使用文件路径
import os
with open(file_path, "rb") as f:
file_content = f.read()
form.add_field(
"file",
file_content,
filename=os.path.basename(file_path),
content_type=mime_type or "application/octet-stream",
)
else:
raise ValueError("file_path 和 file_data 不能同时为 None")
async with self.session.post(
url,
data=form,
headers=self.headers, # 不包含 Content-Type让 aiohttp 自动设置
) as resp:
if resp.status != 200 and resp.status != 201:
text = await resp.text()
raise Exception(f"Dify 文件上传失败:{resp.status}. {text}")
return await resp.json() # {"id": "xxx", ...}
async def close(self):
await self.session.close()
@@ -126,7 +178,11 @@ class DifyAPIClient:
return await resp.json()
async def rename(
self, conversation_id: str, name: str, user: str, auto_generate: bool = False
self,
conversation_id: str,
name: str,
user: str,
auto_generate: bool = False,
):
# /conversations/:conversation_id/name
url = f"{self.api_base}/conversations/{conversation_id}/name"

View File

@@ -1,31 +1,33 @@
import sys
import traceback
import typing as T
from .base import BaseAgentRunner, AgentResponse, AgentState
from ..hooks import BaseAgentRunHooks
from ..tool_executor import BaseFunctionToolExecutor
from ..run_context import ContextWrapper, TContext
from ..response import AgentResponseData
from astrbot.core.provider.provider import Provider
from mcp.types import (
BlobResourceContents,
CallToolResult,
EmbeddedResource,
ImageContent,
TextContent,
TextResourceContents,
)
from astrbot import logger
from astrbot.core.message.message_event_result import (
MessageChain,
)
from astrbot.core.provider.entities import (
ProviderRequest,
LLMResponse,
ToolCallMessageSegment,
AssistantMessageSegment,
ProviderRequest,
ToolCallsResult,
)
from mcp.types import (
TextContent,
ImageContent,
EmbeddedResource,
TextResourceContents,
BlobResourceContents,
CallToolResult,
)
from astrbot import logger
from astrbot.core.provider.provider import Provider
from ..hooks import BaseAgentRunHooks
from ..message import AssistantMessageSegment, Message, ToolCallMessageSegment
from ..response import AgentResponseData
from ..run_context import ContextWrapper, TContext
from ..tool_executor import BaseFunctionToolExecutor
from .base import AgentResponse, AgentState, BaseAgentRunner
if sys.version_info >= (3, 12):
from typing import override
@@ -53,11 +55,19 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
self.agent_hooks = agent_hooks
self.run_context = run_context
def _transition_state(self, new_state: AgentState) -> None:
"""转换 Agent 状态"""
if self._state != new_state:
logger.debug(f"Agent state transition: {self._state} -> {new_state}")
self._state = new_state
messages = []
# append existing messages in the run context
for msg in request.contexts:
messages.append(Message.model_validate(msg))
if request.prompt is not None:
m = await request.assemble_context()
messages.append(Message.model_validate(m))
if request.system_prompt:
messages.insert(
0,
Message(role="system", content=request.system_prompt),
)
self.run_context.messages = messages
async def _iter_llm_responses(self) -> T.AsyncGenerator[LLMResponse, None]:
"""Yields chunks *and* a final LLMResponse."""
@@ -70,8 +80,7 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
@override
async def step(self):
"""
Process a single step of the agent.
"""Process a single step of the agent.
This method should return the result of the step.
"""
if not self.req:
@@ -95,11 +104,20 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
type="streaming_delta",
data=AgentResponseData(chain=llm_response.result_chain),
)
else:
elif llm_response.completion_text:
yield AgentResponse(
type="streaming_delta",
data=AgentResponseData(
chain=MessageChain().message(llm_response.completion_text)
chain=MessageChain().message(llm_response.completion_text),
),
)
elif llm_response.reasoning_content:
yield AgentResponse(
type="streaming_delta",
data=AgentResponseData(
chain=MessageChain(type="reasoning").message(
llm_response.reasoning_content,
),
),
)
continue
@@ -120,8 +138,8 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
type="err",
data=AgentResponseData(
chain=MessageChain().message(
f"LLM 响应错误: {llm_resp.completion_text or '未知错误'}"
)
f"LLM 响应错误: {llm_resp.completion_text or '未知错误'}",
),
),
)
@@ -129,6 +147,13 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
# 如果没有工具调用,转换到完成状态
self.final_llm_resp = llm_resp
self._transition_state(AgentState.DONE)
# record the final assistant message
self.run_context.messages.append(
Message(
role="assistant",
content=llm_resp.completion_text or "",
),
)
try:
await self.agent_hooks.on_agent_done(self.run_context, llm_resp)
except Exception as e:
@@ -144,7 +169,7 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
yield AgentResponse(
type="llm_result",
data=AgentResponseData(
chain=MessageChain().message(llm_resp.completion_text)
chain=MessageChain().message(llm_resp.completion_text),
),
)
@@ -155,13 +180,16 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
yield AgentResponse(
type="tool_call",
data=AgentResponseData(
chain=MessageChain().message(f"🔨 调用工具: {tool_call_name}")
chain=MessageChain(type="tool_call").message(
f"🔨 调用工具: {tool_call_name}"
),
),
)
async for result in self._handle_function_tools(self.req, llm_resp):
if isinstance(result, list):
tool_call_result_blocks = result
elif isinstance(result, MessageChain):
result.type = "tool_call_result"
yield AgentResponse(
type="tool_call_result",
data=AgentResponseData(chain=result),
@@ -169,14 +197,28 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
# 将结果添加到上下文中
tool_calls_result = ToolCallsResult(
tool_calls_info=AssistantMessageSegment(
role="assistant",
tool_calls=llm_resp.to_openai_tool_calls(),
tool_calls=llm_resp.to_openai_to_calls_model(),
content=llm_resp.completion_text,
),
tool_calls_result=tool_call_result_blocks,
)
# record the assistant message with tool calls
self.run_context.messages.extend(
tool_calls_result.to_openai_messages_model()
)
self.req.append_tool_calls_result(tool_calls_result)
async def step_until_done(
self, max_step: int
) -> T.AsyncGenerator[AgentResponse, None]:
"""Process steps until the agent is done."""
step_count = 0
while not self.done() and step_count < max_step:
step_count += 1
async for resp in self.step():
yield resp
async def _handle_function_tools(
self,
req: ProviderRequest,
@@ -205,13 +247,43 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
role="tool",
tool_call_id=func_tool_id,
content=f"error: 未找到工具 {func_tool_name}",
)
),
)
continue
valid_params = {} # 参数过滤:只传递函数实际需要的参数
# 获取实际的 handler 函数
if func_tool.handler:
logger.debug(
f"工具 {func_tool_name} 期望的参数: {func_tool.parameters}",
)
if func_tool.parameters and func_tool.parameters.get("properties"):
expected_params = set(func_tool.parameters["properties"].keys())
valid_params = {
k: v
for k, v in func_tool_args.items()
if k in expected_params
}
# 记录被忽略的参数
ignored_params = set(func_tool_args.keys()) - set(
valid_params.keys(),
)
if ignored_params:
logger.warning(
f"工具 {func_tool_name} 忽略非期望参数: {ignored_params}",
)
else:
# 如果没有 handler如 MCP 工具),使用所有参数
valid_params = func_tool_args
try:
await self.agent_hooks.on_tool_start(
self.run_context, func_tool, func_tool_args
self.run_context,
func_tool,
valid_params,
)
except Exception as e:
logger.error(f"Error in on_tool_start hook: {e}", exc_info=True)
@@ -219,7 +291,7 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
executor = self.tool_executor.execute(
tool=func_tool,
run_context=self.run_context,
**func_tool_args,
**valid_params, # 只传递有效的参数
)
_final_resp: CallToolResult | None = None
@@ -233,7 +305,7 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
role="tool",
tool_call_id=func_tool_id,
content=res.content[0].text,
)
),
)
yield MessageChain().message(res.content[0].text)
elif isinstance(res.content[0], ImageContent):
@@ -242,10 +314,10 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
role="tool",
tool_call_id=func_tool_id,
content="返回了图片(已直接发送给用户)",
)
),
)
yield MessageChain(type="tool_direct_result").base64_image(
res.content[0].data
res.content[0].data,
)
elif isinstance(res.content[0], EmbeddedResource):
resource = res.content[0].resource
@@ -255,7 +327,7 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
role="tool",
tool_call_id=func_tool_id,
content=resource.text,
)
),
)
yield MessageChain().message(resource.text)
elif (
@@ -268,10 +340,10 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
role="tool",
tool_call_id=func_tool_id,
content="返回了图片(已直接发送给用户)",
)
),
)
yield MessageChain(
type="tool_direct_result"
type="tool_direct_result",
).base64_image(resource.blob)
else:
tool_call_result_blocks.append(
@@ -279,41 +351,41 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
role="tool",
tool_call_id=func_tool_id,
content="返回的数据类型不受支持",
)
),
)
yield MessageChain().message("返回的数据类型不受支持。")
elif resp is None:
# Tool 直接请求发送消息给用户
# 这里我们将直接结束 Agent Loop。
# 发送消息逻辑在 ToolExecutor 中处理了。
logger.warning(
f"{func_tool_name} 没有没有返回值或者将结果直接发送给用户,此工具调用不会被记录到历史中。"
)
self._transition_state(AgentState.DONE)
if res := self.run_context.event.get_result():
if res.chain:
yield MessageChain(
chain=res.chain, type="tool_direct_result"
)
else:
# 不应该出现其他类型
logger.warning(
f"Tool 返回了不支持的类型: {type(resp)},将忽略。"
f"Tool 返回了不支持的类型: {type(resp)},将忽略。",
)
try:
await self.agent_hooks.on_tool_end(
self.run_context, func_tool, func_tool_args, _final_resp
self.run_context,
func_tool,
func_tool_args,
_final_resp,
)
except Exception as e:
logger.error(f"Error in on_tool_end hook: {e}", exc_info=True)
self.run_context.event.clear_result()
except Exception as e:
logger.warning(traceback.format_exc())
tool_call_result_blocks.append(
ToolCallMessageSegment(
role="tool",
tool_call_id=func_tool_id,
content=f"error: {str(e)}",
)
content=f"error: {e!s}",
),
)
# 处理函数调用响应

View File

@@ -1,58 +1,77 @@
from dataclasses import dataclass
from collections.abc import Awaitable, Callable
from typing import Any, Generic
import jsonschema
import mcp
from deprecated import deprecated
from typing import Awaitable, Callable, Literal, Any, Optional
from .mcp_client import MCPClient
from pydantic import Field, model_validator
from pydantic.dataclasses import dataclass
from .run_context import ContextWrapper, TContext
ParametersType = dict[str, Any]
ToolExecResult = str | mcp.types.CallToolResult
@dataclass
class FunctionTool:
"""A class representing a function tool that can be used in function calling."""
class ToolSchema:
"""A class representing the schema of a tool for function calling."""
name: str
parameters: dict | None = None
description: str | None = None
handler: Callable[..., Awaitable[Any]] | None = None
"""处理函数, 当 origin 为 mcp 时,这个为空"""
handler_module_path: str | None = None
"""处理函数的模块路径,当 origin 为 mcp 时,这个为空
"""The name of the tool."""
必须要保留这个字段, handler 在初始化会被 functools.partial 包装,导致 handler 的 __module__ 为 functools
description: str
"""The description of the tool."""
parameters: ParametersType
"""The parameters of the tool, in JSON Schema format."""
@model_validator(mode="after")
def validate_parameters(self) -> "ToolSchema":
jsonschema.validate(
self.parameters, jsonschema.Draft202012Validator.META_SCHEMA
)
return self
@dataclass
class FunctionTool(ToolSchema, Generic[TContext]):
"""A callable tool, for function calling."""
handler: Callable[..., Awaitable[Any]] | None = None
"""a callable that implements the tool's functionality. It should be an async function."""
handler_module_path: str | None = None
"""
The module path of the handler function. This is empty when the origin is mcp.
This field must be retained, as the handler will be wrapped in functools.partial during initialization,
causing the handler's __module__ to be functools
"""
active: bool = True
"""是否激活"""
origin: Literal["local", "mcp"] = "local"
"""函数工具的来源, local 为本地函数工具, mcp 为 MCP 服务"""
# MCP 相关字段
mcp_server_name: str | None = None
"""MCP 服务名称,当 origin 为 mcp 时有效"""
mcp_client: MCPClient | None = None
"""MCP 客户端,当 origin 为 mcp 时有效"""
"""
Whether the tool is active. This field is a special field for AstrBot.
You can ignore it when integrating with other frameworks.
"""
def __repr__(self):
return f"FuncTool(name={self.name}, parameters={self.parameters}, description={self.description}, active={self.active}, origin={self.origin})"
return f"FuncTool(name={self.name}, parameters={self.parameters}, description={self.description})"
def __dict__(self) -> dict[str, Any]:
"""将 FunctionTool 转换为字典格式"""
return {
"name": self.name,
"parameters": self.parameters,
"description": self.description,
"active": self.active,
"origin": self.origin,
"mcp_server_name": self.mcp_server_name,
}
async def call(self, context: ContextWrapper[TContext], **kwargs) -> ToolExecResult:
"""Run the tool with the given arguments. The handler field has priority."""
raise NotImplementedError(
"FunctionTool.call() must be implemented by subclasses or set a handler."
)
@dataclass
class ToolSet:
"""A set of function tools that can be used in function calling.
This class provides methods to add, remove, and retrieve tools, as well as
convert the tools to different API formats (OpenAI, Anthropic, Google GenAI)."""
convert the tools to different API formats (OpenAI, Anthropic, Google GenAI).
"""
def __init__(self, tools: list[FunctionTool] | None = None):
self.tools: list[FunctionTool] = tools or []
tools: list[FunctionTool] = Field(default_factory=list)
def empty(self) -> bool:
"""Check if the tool set is empty."""
@@ -71,7 +90,7 @@ class ToolSet:
"""Remove a tool by its name."""
self.tools = [tool for tool in self.tools if tool.name != name]
def get_tool(self, name: str) -> Optional[FunctionTool]:
def get_tool(self, name: str) -> FunctionTool | None:
"""Get a tool by its name."""
for tool in self.tools:
if tool.name == name:
@@ -132,10 +151,8 @@ class ToolSet:
}
if (
tool.parameters
and tool.parameters.get("properties")
or not omit_empty_parameter_field
):
tool.parameters and tool.parameters.get("properties")
) or not omit_empty_parameter_field:
func_def["function"]["parameters"] = tool.parameters
result.append(func_def)
@@ -185,7 +202,8 @@ class ToolSet:
if "type" in schema and schema["type"] in supported_types:
result["type"] = schema["type"]
if "format" in schema and schema["format"] in supported_formats.get(
result["type"], set()
result["type"],
set(),
):
result["format"] = schema["format"]
else:
@@ -222,7 +240,7 @@ class ToolSet:
tools = []
for tool in self.tools:
d = {
d: dict[str, Any] = {
"name": tool.name,
"description": tool.description,
}

View File

@@ -1,11 +1,17 @@
from collections.abc import AsyncGenerator
from typing import Any, Generic
import mcp
from typing import Any, Generic, AsyncGenerator
from .run_context import TContext, ContextWrapper
from .run_context import ContextWrapper, TContext
from .tool import FunctionTool
class BaseFunctionToolExecutor(Generic[TContext]):
@classmethod
async def execute(
cls, tool: FunctionTool, run_context: ContextWrapper[TContext], **tool_args
cls,
tool: FunctionTool,
run_context: ContextWrapper[TContext],
**tool_args,
) -> AsyncGenerator[Any | mcp.types.CallToolResult, None]: ...

View File

@@ -1,12 +1,19 @@
from dataclasses import dataclass
from astrbot.core.provider import Provider
from astrbot.core.provider.entities import ProviderRequest
from pydantic import Field
from pydantic.dataclasses import dataclass
from astrbot.core.agent.run_context import ContextWrapper
from astrbot.core.platform.astr_message_event import AstrMessageEvent
from astrbot.core.star.context import Context
@dataclass
@dataclass(config={"arbitrary_types_allowed": True})
class AstrAgentContext:
provider: Provider
first_provider_request: ProviderRequest
curr_provider_request: ProviderRequest
streaming: bool
tool_call_timeout: int = 60 # Default tool call timeout in seconds
context: Context
"""The star context instance"""
event: AstrMessageEvent
"""The message event associated with the agent context."""
extra: dict[str, str] = Field(default_factory=dict)
"""Customized extra data."""
AgentContextWrapper = ContextWrapper[AstrAgentContext]

View File

@@ -0,0 +1,36 @@
from typing import Any
from mcp.types import CallToolResult
from astrbot.core.agent.hooks import BaseAgentRunHooks
from astrbot.core.agent.run_context import ContextWrapper
from astrbot.core.agent.tool import FunctionTool
from astrbot.core.astr_agent_context import AstrAgentContext
from astrbot.core.pipeline.context_utils import call_event_hook
from astrbot.core.star.star_handler import EventType
class MainAgentHooks(BaseAgentRunHooks[AstrAgentContext]):
async def on_agent_done(self, run_context, llm_response):
# 执行事件钩子
await call_event_hook(
run_context.context.event,
EventType.OnLLMResponseEvent,
llm_response,
)
async def on_tool_end(
self,
run_context: ContextWrapper[AstrAgentContext],
tool: FunctionTool[Any],
tool_args: dict | None,
tool_result: CallToolResult | None,
):
run_context.context.event.clear_result()
class EmptyAgentHooks(BaseAgentRunHooks[AstrAgentContext]):
pass
MAIN_AGENT_HOOKS = MainAgentHooks()

View File

@@ -0,0 +1,80 @@
import traceback
from collections.abc import AsyncGenerator
from astrbot.core import logger
from astrbot.core.agent.runners.tool_loop_agent_runner import ToolLoopAgentRunner
from astrbot.core.astr_agent_context import AstrAgentContext
from astrbot.core.message.message_event_result import (
MessageChain,
MessageEventResult,
ResultContentType,
)
AgentRunner = ToolLoopAgentRunner[AstrAgentContext]
async def run_agent(
agent_runner: AgentRunner,
max_step: int = 30,
show_tool_use: bool = True,
stream_to_general: bool = False,
show_reasoning: bool = False,
) -> AsyncGenerator[MessageChain | None, None]:
step_idx = 0
astr_event = agent_runner.run_context.context.event
while step_idx < max_step:
step_idx += 1
try:
async for resp in agent_runner.step():
if astr_event.is_stopped():
return
if resp.type == "tool_call_result":
msg_chain = resp.data["chain"]
if msg_chain.type == "tool_direct_result":
# tool_direct_result 用于标记 llm tool 需要直接发送给用户的内容
await astr_event.send(resp.data["chain"])
continue
# 对于其他情况,暂时先不处理
continue
elif resp.type == "tool_call":
if agent_runner.streaming:
# 用来标记流式响应需要分节
yield MessageChain(chain=[], type="break")
if show_tool_use:
await astr_event.send(resp.data["chain"])
continue
if stream_to_general and resp.type == "streaming_delta":
continue
if stream_to_general or not agent_runner.streaming:
content_typ = (
ResultContentType.LLM_RESULT
if resp.type == "llm_result"
else ResultContentType.GENERAL_RESULT
)
astr_event.set_result(
MessageEventResult(
chain=resp.data["chain"].chain,
result_content_type=content_typ,
),
)
yield
astr_event.clear_result()
elif resp.type == "streaming_delta":
chain = resp.data["chain"]
if chain.type == "reasoning" and not show_reasoning:
# display the reasoning content only when configured
continue
yield resp.data["chain"] # MessageChain
if agent_runner.done():
break
except Exception as e:
logger.error(traceback.format_exc())
err_msg = f"\n\nAstrBot 请求失败。\n错误类型: {type(e).__name__}\n错误信息: {e!s}\n\n请在控制台查看和分享错误详情。\n"
if agent_runner.streaming:
yield MessageChain().message(err_msg)
else:
astr_event.set_result(MessageEventResult().message(err_msg))
return

View File

@@ -0,0 +1,246 @@
import asyncio
import inspect
import traceback
import typing as T
import mcp
from astrbot import logger
from astrbot.core.agent.handoff import HandoffTool
from astrbot.core.agent.mcp_client import MCPTool
from astrbot.core.agent.run_context import ContextWrapper
from astrbot.core.agent.tool import FunctionTool, ToolSet
from astrbot.core.agent.tool_executor import BaseFunctionToolExecutor
from astrbot.core.astr_agent_context import AstrAgentContext
from astrbot.core.message.message_event_result import (
CommandResult,
MessageChain,
MessageEventResult,
)
from astrbot.core.provider.register import llm_tools
class FunctionToolExecutor(BaseFunctionToolExecutor[AstrAgentContext]):
@classmethod
async def execute(cls, tool, run_context, **tool_args):
"""执行函数调用。
Args:
event (AstrMessageEvent): 事件对象, 当 origin 为 local 时必须提供。
**kwargs: 函数调用的参数。
Returns:
AsyncGenerator[None | mcp.types.CallToolResult, None]
"""
if isinstance(tool, HandoffTool):
async for r in cls._execute_handoff(tool, run_context, **tool_args):
yield r
return
elif isinstance(tool, MCPTool):
async for r in cls._execute_mcp(tool, run_context, **tool_args):
yield r
return
else:
async for r in cls._execute_local(tool, run_context, **tool_args):
yield r
return
@classmethod
async def _execute_handoff(
cls,
tool: HandoffTool,
run_context: ContextWrapper[AstrAgentContext],
**tool_args,
):
input_ = tool_args.get("input")
# make toolset for the agent
tools = tool.agent.tools
if tools:
toolset = ToolSet()
for t in tools:
if isinstance(t, str):
_t = llm_tools.get_func(t)
if _t:
toolset.add_tool(_t)
elif isinstance(t, FunctionTool):
toolset.add_tool(t)
else:
toolset = None
ctx = run_context.context.context
event = run_context.context.event
umo = event.unified_msg_origin
prov_id = await ctx.get_current_chat_provider_id(umo)
llm_resp = await ctx.tool_loop_agent(
event=event,
chat_provider_id=prov_id,
prompt=input_,
system_prompt=tool.agent.instructions,
tools=toolset,
max_steps=30,
run_hooks=tool.agent.run_hooks,
)
yield mcp.types.CallToolResult(
content=[mcp.types.TextContent(type="text", text=llm_resp.completion_text)]
)
@classmethod
async def _execute_local(
cls,
tool: FunctionTool,
run_context: ContextWrapper[AstrAgentContext],
**tool_args,
):
event = run_context.context.event
if not event:
raise ValueError("Event must be provided for local function tools.")
is_override_call = False
for ty in type(tool).mro():
if "call" in ty.__dict__ and ty.__dict__["call"] is not FunctionTool.call:
is_override_call = True
break
# 检查 tool 下有没有 run 方法
if not tool.handler and not hasattr(tool, "run") and not is_override_call:
raise ValueError("Tool must have a valid handler or override 'run' method.")
awaitable = None
method_name = ""
if tool.handler:
awaitable = tool.handler
method_name = "decorator_handler"
elif is_override_call:
awaitable = tool.call
method_name = "call"
elif hasattr(tool, "run"):
awaitable = getattr(tool, "run")
method_name = "run"
if awaitable is None:
raise ValueError("Tool must have a valid handler or override 'run' method.")
wrapper = call_local_llm_tool(
context=run_context,
handler=awaitable,
method_name=method_name,
**tool_args,
)
while True:
try:
resp = await asyncio.wait_for(
anext(wrapper),
timeout=run_context.tool_call_timeout,
)
if resp is not None:
if isinstance(resp, mcp.types.CallToolResult):
yield resp
else:
text_content = mcp.types.TextContent(
type="text",
text=str(resp),
)
yield mcp.types.CallToolResult(content=[text_content])
else:
# NOTE: Tool 在这里直接请求发送消息给用户
# TODO: 是否需要判断 event.get_result() 是否为空?
# 如果为空,则说明没有发送消息给用户,并且返回值为空,将返回一个特殊的 TextContent,其内容如"工具没有返回内容"
if res := run_context.context.event.get_result():
if res.chain:
try:
await event.send(
MessageChain(
chain=res.chain,
type="tool_direct_result",
)
)
except Exception as e:
logger.error(
f"Tool 直接发送消息失败: {e}",
exc_info=True,
)
yield None
except asyncio.TimeoutError:
raise Exception(
f"tool {tool.name} execution timeout after {run_context.tool_call_timeout} seconds.",
)
except StopAsyncIteration:
break
@classmethod
async def _execute_mcp(
cls,
tool: FunctionTool,
run_context: ContextWrapper[AstrAgentContext],
**tool_args,
):
res = await tool.call(run_context, **tool_args)
if not res:
return
yield res
async def call_local_llm_tool(
context: ContextWrapper[AstrAgentContext],
handler: T.Callable[..., T.Awaitable[T.Any]],
method_name: str,
*args,
**kwargs,
) -> T.AsyncGenerator[T.Any, None]:
"""执行本地 LLM 工具的处理函数并处理其返回结果"""
ready_to_call = None # 一个协程或者异步生成器
trace_ = None
event = context.context.event
try:
if method_name == "run" or method_name == "decorator_handler":
ready_to_call = handler(event, *args, **kwargs)
elif method_name == "call":
ready_to_call = handler(context, *args, **kwargs)
else:
raise ValueError(f"未知的方法名: {method_name}")
except ValueError as e:
logger.error(f"调用本地 LLM 工具时出错: {e}", exc_info=True)
except TypeError:
logger.error("处理函数参数不匹配,请检查 handler 的定义。", exc_info=True)
except Exception as e:
trace_ = traceback.format_exc()
logger.error(f"调用本地 LLM 工具时出错: {e}\n{trace_}")
if not ready_to_call:
return
if inspect.isasyncgen(ready_to_call):
_has_yielded = False
try:
async for ret in ready_to_call:
# 这里逐步执行异步生成器, 对于每个 yield 返回的 ret, 执行下面的代码
# 返回值只能是 MessageEventResult 或者 None无返回值
_has_yielded = True
if isinstance(ret, (MessageEventResult, CommandResult)):
# 如果返回值是 MessageEventResult, 设置结果并继续
event.set_result(ret)
yield
else:
# 如果返回值是 None, 则不设置结果并继续
# 继续执行后续阶段
yield ret
if not _has_yielded:
# 如果这个异步生成器没有执行到 yield 分支
yield
except Exception as e:
logger.error(f"Previous Error: {trace_}")
raise e
elif inspect.iscoroutine(ready_to_call):
# 如果只是一个协程, 直接执行
ret = await ready_to_call
if isinstance(ret, (MessageEventResult, CommandResult)):
event.set_result(ret)
yield
else:
yield ret

View File

@@ -1,12 +1,14 @@
import os
import uuid
from typing import TypedDict, TypeVar
from astrbot.core import AstrBotConfig, logger
from astrbot.core.utils.shared_preferences import SharedPreferences
from astrbot.core.config.astrbot_config import ASTRBOT_CONFIG_PATH
from astrbot.core.config.default import DEFAULT_CONFIG
from astrbot.core.platform.message_session import MessageSession
from astrbot.core.umop_config_router import UmopConfigRouter
from astrbot.core.utils.astrbot_path import get_astrbot_config_path
from typing import TypeVar, TypedDict
from astrbot.core.utils.shared_preferences import SharedPreferences
_VT = TypeVar("_VT")
@@ -15,14 +17,12 @@ class ConfInfo(TypedDict):
"""Configuration information for a specific session or platform."""
id: str # UUID of the configuration or "default"
umop: list[str] # Unified Message Origin Pattern
name: str
path: str # File name to the configuration file
DEFAULT_CONFIG_CONF_INFO = ConfInfo(
id="default",
umop=["::"],
name="default",
path=ASTRBOT_CONFIG_PATH,
)
@@ -31,8 +31,14 @@ DEFAULT_CONFIG_CONF_INFO = ConfInfo(
class AstrBotConfigManager:
"""A class to manage the system configuration of AstrBot, aka ACM"""
def __init__(self, default_config: AstrBotConfig, sp: SharedPreferences):
def __init__(
self,
default_config: AstrBotConfig,
ucr: UmopConfigRouter,
sp: SharedPreferences,
):
self.sp = sp
self.ucr = ucr
self.confs: dict[str, AstrBotConfig] = {}
"""uuid / "default" -> AstrBotConfig"""
self.confs["default"] = default_config
@@ -43,7 +49,10 @@ class AstrBotConfigManager:
"""获取所有的 abconf 数据"""
if self.abconf_data is None:
self.abconf_data = self.sp.get(
"abconf_mapping", {}, scope="global", scope_id="global"
"abconf_mapping",
{},
scope="global",
scope_id="global",
)
return self.abconf_data
@@ -59,28 +68,20 @@ class AstrBotConfigManager:
self.confs[uuid_] = conf
else:
logger.warning(
f"Config file {conf_path} for UUID {uuid_} does not exist, skipping."
f"Config file {conf_path} for UUID {uuid_} does not exist, skipping.",
)
continue
def _is_umo_match(self, p1: str, p2: str) -> bool:
"""判断 p2 umo 是否逻辑包含于 p1 umo"""
p1_ls = p1.split(":")
p2_ls = p2.split(":")
if len(p1_ls) != 3 or len(p2_ls) != 3:
return False # 非法格式
return all(p == "" or p == "*" or p == t for p, t in zip(p1_ls, p2_ls))
def _load_conf_mapping(self, umo: str | MessageSession) -> ConfInfo:
"""获取指定 umo 的配置文件 uuid, 如果不存在则返回默认配置(返回 "default")
Returns:
ConfInfo: 包含配置文件的 uuid, 路径和名称等信息, 是一个 dict 类型
"""
# uuid -> { "umop": list, "path": str, "name": str }
# uuid -> { "path": str, "name": str }
abconf_data = self._get_abconf_data()
if isinstance(umo, MessageSession):
umo = str(umo)
else:
@@ -89,10 +90,13 @@ class AstrBotConfigManager:
except Exception:
return DEFAULT_CONFIG_CONF_INFO
for uuid_, meta in abconf_data.items():
for pattern in meta["umop"]:
if self._is_umo_match(pattern, umo):
return ConfInfo(**meta, id=uuid_)
conf_id = self.ucr.get_conf_id_for_umop(umo)
if conf_id:
meta = abconf_data.get(conf_id)
if meta and isinstance(meta, dict):
# the bind relation between umo and conf is defined in ucr now, so we remove "umop" here
meta.pop("umop", None)
return ConfInfo(**meta, id=conf_id)
return DEFAULT_CONFIG_CONF_INFO
@@ -100,23 +104,17 @@ class AstrBotConfigManager:
self,
abconf_path: str,
abconf_id: str,
umo_parts: list[str] | list[MessageSession],
abconf_name: str | None = None,
) -> None:
"""保存配置文件的映射关系"""
for part in umo_parts:
if isinstance(part, MessageSession):
part = str(part)
elif not isinstance(part, str):
raise ValueError(
"umo_parts must be a list of strings or MessageSession instances"
)
abconf_data = self.sp.get(
"abconf_mapping", {}, scope="global", scope_id="global"
"abconf_mapping",
{},
scope="global",
scope_id="global",
)
random_word = abconf_name or uuid.uuid4().hex[:8]
abconf_data[abconf_id] = {
"umop": umo_parts,
"path": abconf_path,
"name": random_word,
}
@@ -153,29 +151,26 @@ class AstrBotConfigManager:
def get_conf_list(self) -> list[ConfInfo]:
"""获取所有配置文件的元数据列表"""
conf_list = []
conf_list.append(DEFAULT_CONFIG_CONF_INFO)
abconf_mapping = self._get_abconf_data()
for uuid_, meta in abconf_mapping.items():
if not isinstance(meta, dict):
continue
meta.pop("umop", None)
conf_list.append(ConfInfo(**meta, id=uuid_))
conf_list.append(DEFAULT_CONFIG_CONF_INFO)
return conf_list
def create_conf(
self,
umo_parts: list[str] | list[MessageSession],
config: dict = DEFAULT_CONFIG,
name: str | None = None,
) -> str:
"""
umo 由三个部分组成 [platform_id]:[message_type]:[session_id]。
umo_parts 可以是 "::" (代表所有), 可以是 "[platform_id]::" (代表指定平台下的所有类型消息和会话)。
"""
conf_uuid = str(uuid.uuid4())
conf_file_name = f"abconf_{conf_uuid}.json"
conf_path = os.path.join(get_astrbot_config_path(), conf_file_name)
conf = AstrBotConfig(config_path=conf_path, default_config=config)
conf.save_config()
self._save_conf_mapping(conf_file_name, conf_uuid, umo_parts, abconf_name=name)
self._save_conf_mapping(conf_file_name, conf_uuid, abconf_name=name)
self.confs[conf_uuid] = conf
return conf_uuid
@@ -190,13 +185,17 @@ class AstrBotConfigManager:
Raises:
ValueError: 如果试图删除默认配置文件
"""
if conf_id == "default":
raise ValueError("不能删除默认配置文件")
# 从映射中移除
abconf_data = self.sp.get(
"abconf_mapping", {}, scope="global", scope_id="global"
"abconf_mapping",
{},
scope="global",
scope_id="global",
)
if conf_id not in abconf_data:
logger.warning(f"配置文件 {conf_id} 不存在于映射中")
@@ -204,7 +203,8 @@ class AstrBotConfigManager:
# 获取配置文件路径
conf_path = os.path.join(
get_astrbot_config_path(), abconf_data[conf_id]["path"]
get_astrbot_config_path(),
abconf_data[conf_id]["path"],
)
# 删除配置文件
@@ -228,24 +228,25 @@ class AstrBotConfigManager:
logger.info(f"成功删除配置文件 {conf_id}")
return True
def update_conf_info(
self, conf_id: str, name: str | None = None, umo_parts: list[str] | None = None
) -> bool:
def update_conf_info(self, conf_id: str, name: str | None = None) -> bool:
"""更新配置文件信息
Args:
conf_id: 配置文件的 UUID
name: 新的配置文件名称 (可选)
umo_parts: 新的 UMO 部分列表 (可选)
Returns:
bool: 更新是否成功
"""
if conf_id == "default":
raise ValueError("不能更新默认配置文件的信息")
abconf_data = self.sp.get(
"abconf_mapping", {}, scope="global", scope_id="global"
"abconf_mapping",
{},
scope="global",
scope_id="global",
)
if conf_id not in abconf_data:
logger.warning(f"配置文件 {conf_id} 不存在于映射中")
@@ -255,18 +256,6 @@ class AstrBotConfigManager:
if name is not None:
abconf_data[conf_id]["name"] = name
# 更新 UMO 部分
if umo_parts is not None:
# 验证 UMO 部分格式
for part in umo_parts:
if isinstance(part, MessageSession):
part = str(part)
elif not isinstance(part, str):
raise ValueError(
"umo_parts must be a list of strings or MessageSession instances"
)
abconf_data[conf_id]["umop"] = umo_parts
# 保存更新
self.sp.put("abconf_mapping", abconf_data, scope="global", scope_id="global")
self.abconf_data = abconf_data
@@ -274,7 +263,10 @@ class AstrBotConfigManager:
return True
def g(
self, umo: str | None = None, key: str | None = None, default: _VT = None
self,
umo: str | None = None,
key: str | None = None,
default: _VT = None,
) -> _VT:
"""获取配置项。umo 为 None 时使用默认配置"""
if umo is None:

View File

@@ -1,9 +1,9 @@
from .default import DEFAULT_CONFIG, VERSION, DB_PATH
from .astrbot_config import *
from .default import DB_PATH, DEFAULT_CONFIG, VERSION
__all__ = [
"DB_PATH",
"DEFAULT_CONFIG",
"VERSION",
"DB_PATH",
"AstrBotConfig",
]

View File

@@ -1,11 +1,12 @@
import os
import enum
import json
import logging
import enum
from .default import DEFAULT_CONFIG, DEFAULT_VALUE_MAP
from typing import Dict
import os
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
from .default import DEFAULT_CONFIG, DEFAULT_VALUE_MAP
ASTRBOT_CONFIG_PATH = os.path.join(get_astrbot_data_path(), "cmd_config.json")
logger = logging.getLogger("astrbot")
@@ -27,7 +28,7 @@ class AstrBotConfig(dict):
self,
config_path: str = ASTRBOT_CONFIG_PATH,
default_config: dict = DEFAULT_CONFIG,
schema: dict = None,
schema: dict | None = None,
):
super().__init__()
@@ -45,7 +46,7 @@ class AstrBotConfig(dict):
json.dump(default_config, f, indent=4, ensure_ascii=False)
object.__setattr__(self, "first_deploy", True) # 标记第一次部署
with open(config_path, "r", encoding="utf-8-sig") as f:
with open(config_path, encoding="utf-8-sig") as f:
conf_str = f.read()
conf = json.loads(conf_str)
@@ -65,7 +66,7 @@ class AstrBotConfig(dict):
for k, v in schema.items():
if v["type"] not in DEFAULT_VALUE_MAP:
raise TypeError(
f"不受支持的配置类型 {v['type']}。支持的类型有:{DEFAULT_VALUE_MAP.keys()}"
f"不受支持的配置类型 {v['type']}。支持的类型有:{DEFAULT_VALUE_MAP.keys()}",
)
if "default" in v:
default = v["default"]
@@ -82,7 +83,7 @@ class AstrBotConfig(dict):
return conf
def check_config_integrity(self, refer_conf: Dict, conf: Dict, path=""):
def check_config_integrity(self, refer_conf: dict, conf: dict, path=""):
"""检查配置完整性,如果有新的配置项或顺序不一致则返回 True"""
has_new = False
@@ -97,27 +98,28 @@ class AstrBotConfig(dict):
logger.info(f"检查到配置项 {path_} 不存在,已插入默认值 {value}")
new_conf[key] = value
has_new = True
else:
if conf[key] is None:
# 配置项为 None使用默认值
elif conf[key] is None:
# 配置项为 None使用默认值
new_conf[key] = value
has_new = True
elif isinstance(value, dict):
# 递归检查子配置项
if not isinstance(conf[key], dict):
# 类型不匹配,使用默认值
new_conf[key] = value
has_new = True
elif isinstance(value, dict):
# 递归检查子配置项
if not isinstance(conf[key], dict):
# 类型不匹配,使用默认值
new_conf[key] = value
has_new = True
else:
# 递归检查并同步顺序
child_has_new = self.check_config_integrity(
value, conf[key], path + "." + key if path else key
)
new_conf[key] = conf[key]
has_new |= child_has_new
else:
# 直接使用现有配置
# 递归检查并同步顺序
child_has_new = self.check_config_integrity(
value,
conf[key],
path + "." + key if path else key,
)
new_conf[key] = conf[key]
has_new |= child_has_new
else:
# 直接使用现有配置
new_conf[key] = conf[key]
# 检查是否存在参考配置中没有的配置项
for key in list(conf.keys()):
@@ -140,7 +142,7 @@ class AstrBotConfig(dict):
return has_new
def save_config(self, replace_config: Dict = None):
def save_config(self, replace_config: dict | None = None):
"""将配置写入文件
如果传入 replace_config则将配置替换为 replace_config

View File

@@ -1,12 +1,10 @@
"""
如需修改配置,请在 `data/cmd_config.json` 中修改或者在管理面板中可视化修改。
"""
"""如需修改配置,请在 `data/cmd_config.json` 中修改或者在管理面板中可视化修改。"""
import os
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
VERSION = "4.3.5"
VERSION = "4.7.3"
DB_PATH = os.path.join(get_astrbot_data_path(), "data_v4.db")
# 默认配置
@@ -70,7 +68,12 @@ DEFAULT_CONFIG = {
"dequeue_context_length": 1,
"streaming_response": False,
"show_tool_use_status": False,
"streaming_segmented": False,
"agent_runner_type": "local",
"dify_agent_runner_provider_id": "",
"coze_agent_runner_provider_id": "",
"dashscope_agent_runner_provider_id": "",
"unsupported_streaming_strategy": "realtime_segmenting",
"reachability_check": False,
"max_agent_step": 30,
"tool_call_timeout": 60,
},
@@ -88,6 +91,7 @@ DEFAULT_CONFIG = {
"group_icl_enable": False,
"group_message_max_cnt": 300,
"image_caption": False,
"image_caption_provider_id": "",
"active_reply": {
"enable": False,
"method": "possibility_reply",
@@ -134,12 +138,25 @@ DEFAULT_CONFIG = {
"persona": [], # deprecated
"timezone": "Asia/Shanghai",
"callback_api_base": "",
"default_kb_collection": "", # 默认知识库名称
"default_kb_collection": "", # 默认知识库名称, 已经过时
"plugin_set": ["*"], # "*" 表示使用所有可用的插件, 空列表表示不使用任何插件
"kb_names": [], # 默认知识库名称列表
"kb_fusion_top_k": 20, # 知识库检索融合阶段返回结果数量
"kb_final_top_k": 5, # 知识库检索最终返回结果数量
"kb_agentic_mode": False,
}
# 配置项的中文描述、值类型
"""
AstrBot v3 时代的配置元数据,目前仅承担以下功能:
1. 保存配置时,配置项的类型验证
2. WebUI 展示提供商和平台适配器模版
WebUI 的配置文件在 `CONFIG_METADATA_3` 中。
未来将会逐步淘汰此配置元数据。
"""
CONFIG_METADATA_2 = {
"platform_group": {
"metadata": {
@@ -162,10 +179,11 @@ CONFIG_METADATA_2 = {
"enable": False,
"appid": "",
"secret": "",
"is_sandbox": False,
"callback_server_host": "0.0.0.0",
"port": 6196,
},
"QQ 个人号(aiocqhttp)": {
"QQ 个人号(OneBot v11)": {
"id": "default",
"type": "aiocqhttp",
"enable": False,
@@ -173,7 +191,7 @@ CONFIG_METADATA_2 = {
"ws_reverse_port": 6199,
"ws_reverse_token": "",
},
"微信个人号(WeChatPadPro)": {
"WeChatPadPro": {
"id": "wechatpadpro",
"type": "wechatpadpro",
"enable": False,
@@ -268,6 +286,14 @@ CONFIG_METADATA_2 = {
"misskey_default_visibility": "public",
"misskey_local_only": False,
"misskey_enable_chat": True,
# download / security options
"misskey_allow_insecure_downloads": False,
"misskey_download_timeout": 15,
"misskey_download_chunk_size": 65536,
"misskey_max_download_bytes": None,
"misskey_enable_file_upload": True,
"misskey_upload_concurrency": 3,
"misskey_upload_folder": "",
},
"Slack": {
"id": "slack",
@@ -292,8 +318,30 @@ CONFIG_METADATA_2 = {
"satori_heartbeat_interval": 10,
"satori_reconnect_delay": 5,
},
# "WebChat": {
# "id": "webchat",
# "type": "webchat",
# "enable": False,
# "webchat_link_path": "",
# "webchat_present_type": "fullscreen",
# },
},
"items": {
# "webchat_link_path": {
# "description": "链接路径",
# "_special": "webchat_link_path",
# "type": "string",
# },
# "webchat_present_type": {
# "_special": "webchat_present_type",
# "description": "展现形式",
# "type": "string",
# "options": ["fullscreen", "embedded"],
# },
"is_sandbox": {
"description": "沙箱模式",
"type": "bool",
},
"satori_api_base_url": {
"description": "Satori API 终结点",
"type": "string",
@@ -396,6 +444,41 @@ CONFIG_METADATA_2 = {
"type": "bool",
"hint": "启用后,机器人将会监听和响应私信聊天消息",
},
"misskey_enable_file_upload": {
"description": "启用文件上传到 Misskey",
"type": "bool",
"hint": "启用后,适配器会尝试将消息链中的文件上传到 Misskey。URL 文件会先尝试服务器端上传,异步上传失败时会回退到下载后本地上传。",
},
"misskey_allow_insecure_downloads": {
"description": "允许不安全下载(禁用 SSL 验证)",
"type": "bool",
"hint": "当远端服务器存在证书问题导致无法正常下载时,自动禁用 SSL 验证作为回退方案。适用于某些图床的证书配置问题。启用有安全风险,仅在必要时使用。",
},
"misskey_download_timeout": {
"description": "远端下载超时时间(秒)",
"type": "int",
"hint": "下载远程文件时的超时时间(秒),用于异步上传回退到本地上传的场景。",
},
"misskey_download_chunk_size": {
"description": "流式下载分块大小(字节)",
"type": "int",
"hint": "流式下载和计算 MD5 时使用的每次读取字节数,过小会增加开销,过大会占用内存。",
},
"misskey_max_download_bytes": {
"description": "最大允许下载字节数(超出则中止)",
"type": "int",
"hint": "如果希望限制下载文件的最大大小以防止 OOM请填写最大字节数留空或 null 表示不限制。",
},
"misskey_upload_concurrency": {
"description": "并发上传限制",
"type": "int",
"hint": "同时进行的文件上传任务上限(整数,默认 3",
},
"misskey_upload_folder": {
"description": "上传到网盘的目标文件夹 ID",
"type": "string",
"hint": "可选:填写 Misskey 网盘中目标文件夹的 ID上传的文件将放置到该文件夹内。留空则使用账号网盘根目录。",
},
"telegram_command_register": {
"description": "Telegram 命令注册",
"type": "bool",
@@ -447,19 +530,18 @@ CONFIG_METADATA_2 = {
"hint": "启用后,机器人可以接收到频道的私聊消息。",
},
"ws_reverse_host": {
"description": "反向 Websocket 主机地址(AstrBot 为服务器端)",
"description": "反向 Websocket 主机",
"type": "string",
"hint": "aiocqhttp 适配器的反向 Websocket 服务器 IP 地址,不包含端口号",
"hint": "AstrBot 将作为服务器端",
},
"ws_reverse_port": {
"description": "反向 Websocket 端口",
"type": "int",
"hint": "aiocqhttp 适配器的反向 Websocket 端口。",
},
"ws_reverse_token": {
"description": "反向 Websocket Token",
"type": "string",
"hint": "aiocqhttp 适配器的反向 Websocket Token。未设置则不启用 Token 验证。",
"hint": "反向 Websocket Token。未设置则不启用 Token 验证。",
},
"wecom_ai_bot_name": {
"description": "企业微信智能机器人的名字",
@@ -567,7 +649,7 @@ CONFIG_METADATA_2 = {
},
"words_count_threshold": {
"type": "int",
"hint": "超过这个字数的消息会被分段回复。默认为 150",
"hint": "分段回复的字数上限。只有字数小于此值的消息会被分段,超过此值的长消息将直接发送(不分段)。默认为 150",
},
"regex": {
"type": "string",
@@ -674,6 +756,7 @@ CONFIG_METADATA_2 = {
"api_base": "https://api.openai.com/v1",
"timeout": 120,
"model_config": {"model": "gpt-4o-mini", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
"hint": "也兼容所有与 OpenAI API 兼容的服务。",
@@ -689,6 +772,7 @@ CONFIG_METADATA_2 = {
"api_base": "",
"timeout": 120,
"model_config": {"model": "gpt-4o-mini", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -702,7 +786,9 @@ CONFIG_METADATA_2 = {
"api_base": "https://api.x.ai/v1",
"timeout": 120,
"model_config": {"model": "grok-2-latest", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"xai_native_search": False,
"modalities": ["text", "image", "tool_use"],
},
"Anthropic": {
@@ -732,6 +818,7 @@ CONFIG_METADATA_2 = {
"key": ["ollama"], # ollama 的 key 默认是 ollama
"api_base": "http://localhost:11434/v1",
"model_config": {"model": "llama3.1-8b", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -746,6 +833,7 @@ CONFIG_METADATA_2 = {
"model_config": {
"model": "llama-3.1-8b",
},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -762,6 +850,7 @@ CONFIG_METADATA_2 = {
"model": "gemini-1.5-flash",
"temperature": 0.4,
},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -803,6 +892,24 @@ CONFIG_METADATA_2 = {
"api_base": "https://api.deepseek.com/v1",
"timeout": 120,
"model_config": {"model": "deepseek-chat", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "tool_use"],
},
"Groq": {
"id": "groq_default",
"provider": "groq",
"type": "groq_chat_completion",
"provider_type": "chat_completion",
"enable": True,
"key": [],
"api_base": "https://api.groq.com/openai/v1",
"timeout": 120,
"model_config": {
"model": "openai/gpt-oss-20b",
"temperature": 0.4,
},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "tool_use"],
},
@@ -816,6 +923,7 @@ CONFIG_METADATA_2 = {
"api_base": "https://api.302.ai/v1",
"timeout": 120,
"model_config": {"model": "gpt-4.1-mini", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -832,6 +940,7 @@ CONFIG_METADATA_2 = {
"model": "deepseek-ai/DeepSeek-V3",
"temperature": 0.4,
},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -848,6 +957,7 @@ CONFIG_METADATA_2 = {
"model": "deepseek/deepseek-r1",
"temperature": 0.4,
},
"custom_headers": {},
"custom_extra_body": {},
},
"小马算力": {
@@ -863,6 +973,7 @@ CONFIG_METADATA_2 = {
"model": "kimi-k2-instruct-0905",
"temperature": 0.7,
},
"custom_headers": {},
"custom_extra_body": {},
},
"优云智算": {
@@ -877,6 +988,7 @@ CONFIG_METADATA_2 = {
"model_config": {
"model": "moonshotai/Kimi-K2-Instruct",
},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -890,6 +1002,7 @@ CONFIG_METADATA_2 = {
"timeout": 120,
"api_base": "https://api.moonshot.cn/v1",
"model_config": {"model": "moonshot-v1-8k", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -905,13 +1018,15 @@ CONFIG_METADATA_2 = {
"model_config": {
"model": "glm-4-flash",
},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
"Dify": {
"id": "dify_app_default",
"provider": "dify",
"type": "dify",
"provider_type": "chat_completion",
"provider_type": "agent_runner",
"enable": True,
"dify_api_type": "chat",
"dify_api_key": "",
@@ -925,20 +1040,20 @@ CONFIG_METADATA_2 = {
"Coze": {
"id": "coze",
"provider": "coze",
"provider_type": "chat_completion",
"provider_type": "agent_runner",
"type": "coze",
"enable": True,
"coze_api_key": "",
"bot_id": "",
"coze_api_base": "https://api.coze.cn",
"timeout": 60,
"auto_save_history": True,
# "auto_save_history": True,
},
"阿里云百炼应用": {
"id": "dashscope",
"provider": "dashscope",
"type": "dashscope",
"provider_type": "chat_completion",
"provider_type": "agent_runner",
"enable": True,
"dashscope_app_type": "agent",
"dashscope_api_key": "",
@@ -961,6 +1076,7 @@ CONFIG_METADATA_2 = {
"timeout": 120,
"api_base": "https://api-inference.modelscope.cn/v1",
"model_config": {"model": "Qwen/Qwen3-32B", "temperature": 0.4},
"custom_headers": {},
"custom_extra_body": {},
"modalities": ["text", "image", "tool_use"],
},
@@ -973,6 +1089,7 @@ CONFIG_METADATA_2 = {
"key": [],
"api_base": "https://api.fastgpt.in/api/v1",
"timeout": 60,
"custom_headers": {},
"custom_extra_body": {},
},
"Whisper(API)": {
@@ -985,7 +1102,7 @@ CONFIG_METADATA_2 = {
"api_base": "",
"model": "whisper-1",
},
"Whisper(本地加载)": {
"Whisper(Local)": {
"hint": "启用前请 pip 安装 openai-whisper 库N卡用户大约下载 2GB主要是 torch 和 cudaCPU 用户大约下载 1 GB并且安装 ffmpeg。否则将无法正常转文字。",
"provider": "openai",
"type": "openai_whisper_selfhost",
@@ -994,7 +1111,7 @@ CONFIG_METADATA_2 = {
"id": "whisper_selfhost",
"model": "tiny",
},
"SenseVoice(本地加载)": {
"SenseVoice(Local)": {
"hint": "启用前请 pip 安装 funasr、funasr_onnx、torchaudio、torch、modelscope、jieba 库默认使用CPU大约下载 1 GB并且安装 ffmpeg。否则将无法正常转文字。",
"type": "sensevoice_stt_selfhost",
"provider": "sensevoice",
@@ -1029,7 +1146,7 @@ CONFIG_METADATA_2 = {
"pitch": "+0Hz",
"timeout": 20,
},
"GSV TTS(本地加载)": {
"GSV TTS(Local)": {
"id": "gsv_tts",
"enable": False,
"provider": "gpt_sovits",
@@ -1194,8 +1311,51 @@ CONFIG_METADATA_2 = {
"rerank_model": "BAAI/bge-reranker-base",
"timeout": 20,
},
"Xinference Rerank": {
"id": "xinference_rerank",
"type": "xinference_rerank",
"provider": "xinference",
"provider_type": "rerank",
"enable": True,
"rerank_api_key": "",
"rerank_api_base": "http://127.0.0.1:9997",
"rerank_model": "BAAI/bge-reranker-base",
"timeout": 20,
"launch_model_if_not_running": False,
},
"阿里云百炼重排序": {
"id": "bailian_rerank",
"type": "bailian_rerank",
"provider": "bailian",
"provider_type": "rerank",
"enable": True,
"rerank_api_key": "",
"rerank_api_base": "https://dashscope.aliyuncs.com/api/v1/services/rerank/text-rerank/text-rerank",
"rerank_model": "qwen3-rerank",
"timeout": 30,
"return_documents": False,
"instruct": "",
},
"Xinference STT": {
"id": "xinference_stt",
"type": "xinference_stt",
"provider": "xinference",
"provider_type": "speech_to_text",
"enable": False,
"api_key": "",
"api_base": "http://127.0.0.1:9997",
"model": "whisper-large-v3",
"timeout": 180,
"launch_model_if_not_running": False,
},
},
"items": {
"xai_native_search": {
"description": "启用原生搜索功能",
"type": "bool",
"hint": "启用后,将通过 xAI 的 Chat Completions 原生 Live Search 进行联网检索(按需计费)。仅对 xAI 提供商生效。",
"condition": {"provider": "xai"},
},
"rerank_api_base": {
"description": "重排序模型 API Base URL",
"type": "string",
@@ -1210,6 +1370,21 @@ CONFIG_METADATA_2 = {
"description": "重排序模型名称",
"type": "string",
},
"return_documents": {
"description": "是否在排序结果中返回文档原文",
"type": "bool",
"hint": "默认值false以减少网络传输开销。",
},
"instruct": {
"description": "自定义排序任务类型说明",
"type": "string",
"hint": "仅在使用 qwen3-rerank 模型时生效。建议使用英文撰写。",
},
"launch_model_if_not_running": {
"description": "模型未运行时自动启动",
"type": "bool",
"hint": "如果模型当前未在 Xinference 服务中运行,是否尝试自动启动它。在生产环境中建议关闭。",
},
"modalities": {
"description": "模型能力",
"type": "list",
@@ -1219,6 +1394,12 @@ CONFIG_METADATA_2 = {
"render_type": "checkbox",
"hint": "模型支持的模态。如所填写的模型不支持图像,请取消勾选图像。",
},
"custom_headers": {
"description": "自定义添加请求头",
"type": "dict",
"items": {},
"hint": "此处添加的键值对将被合并到 OpenAI SDK 的 default_headers 中,用于自定义 HTTP 请求头。值必须为字符串。",
},
"custom_extra_body": {
"description": "自定义请求体参数",
"type": "dict",
@@ -1353,6 +1534,7 @@ CONFIG_METADATA_2 = {
"description": "嵌入维度",
"type": "int",
"hint": "嵌入向量的维度。根据模型不同,可能需要调整,请参考具体模型的文档。此配置项请务必填写正确,否则将导致向量数据库无法正常工作。",
"_special": "get_embedding_dim",
},
"embedding_model": {
"description": "嵌入模型",
@@ -1740,7 +1922,6 @@ CONFIG_METADATA_2 = {
"enable": {
"description": "启用",
"type": "bool",
"hint": "是否启用。",
},
"key": {
"description": "API Key",
@@ -1867,15 +2048,25 @@ CONFIG_METADATA_2 = {
"show_tool_use_status": {
"type": "bool",
},
"streaming_segmented": {
"type": "bool",
"unsupported_streaming_strategy": {
"type": "string",
},
"agent_runner_type": {
"type": "string",
},
"dify_agent_runner_provider_id": {
"type": "string",
},
"coze_agent_runner_provider_id": {
"type": "string",
},
"dashscope_agent_runner_provider_id": {
"type": "string",
},
"max_agent_step": {
"description": "工具调用轮数上限",
"type": "int",
},
"tool_call_timeout": {
"description": "工具调用超时时间(秒)",
"type": "int",
},
},
@@ -1920,6 +2111,9 @@ CONFIG_METADATA_2 = {
"image_caption": {
"type": "bool",
},
"image_caption_provider_id": {
"type": "string",
},
"image_caption_prompt": {
"type": "string",
},
@@ -2000,39 +2194,96 @@ CONFIG_METADATA_2 = {
"default_kb_collection": {
"type": "string",
},
"kb_names": {"type": "list", "items": {"type": "string"}},
"kb_fusion_top_k": {"type": "int", "default": 20},
"kb_final_top_k": {"type": "int", "default": 5},
"kb_agentic_mode": {"type": "bool"},
},
},
}
"""
v4.7.0 之后name, description, hint 等字段已经实现 i18n 国际化。国际化资源文件位于:
- dashboard/src/i18n/locales/en-US/features/config-metadata.json
- dashboard/src/i18n/locales/zh-CN/features/config-metadata.json
如果在此文件中添加了新的配置字段,请务必同步更新上述两个国际化资源文件。
"""
CONFIG_METADATA_3 = {
"ai_group": {
"name": "AI 配置",
"metadata": {
"ai": {
"description": "模型",
"agent_runner": {
"description": "Agent 执行方式",
"hint": "选择 AI 对话的执行器,默认为 AstrBot 内置 Agent 执行器,可使用 AstrBot 内的知识库、人格、工具调用功能。如果不打算接入 Dify 或 Coze 等第三方 Agent 执行器,不需要修改此节。",
"type": "object",
"items": {
"provider_settings.enable": {
"description": "启用大语言模型聊天",
"description": "启用",
"type": "bool",
"hint": "AI 对话总开关",
},
"provider_settings.agent_runner_type": {
"description": "执行器",
"type": "string",
"options": ["local", "dify", "coze", "dashscope"],
"labels": ["内置 Agent", "Dify", "Coze", "阿里云百炼应用"],
"condition": {
"provider_settings.enable": True,
},
},
"provider_settings.coze_agent_runner_provider_id": {
"description": "Coze Agent 执行器提供商 ID",
"type": "string",
"_special": "select_agent_runner_provider:coze",
"condition": {
"provider_settings.agent_runner_type": "coze",
"provider_settings.enable": True,
},
},
"provider_settings.dify_agent_runner_provider_id": {
"description": "Dify Agent 执行器提供商 ID",
"type": "string",
"_special": "select_agent_runner_provider:dify",
"condition": {
"provider_settings.agent_runner_type": "dify",
"provider_settings.enable": True,
},
},
"provider_settings.dashscope_agent_runner_provider_id": {
"description": "阿里云百炼应用 Agent 执行器提供商 ID",
"type": "string",
"_special": "select_agent_runner_provider:dashscope",
"condition": {
"provider_settings.agent_runner_type": "dashscope",
"provider_settings.enable": True,
},
},
},
},
"ai": {
"description": "模型",
"hint": "当使用非内置 Agent 执行器时,默认聊天模型和默认图片转述模型可能会无效,但某些插件会依赖此配置项来调用 AI 能力。",
"type": "object",
"items": {
"provider_settings.default_provider_id": {
"description": "默认聊天模型",
"type": "string",
"_special": "select_provider",
"hint": "留空时使用第一个模型",
"hint": "留空时使用第一个模型",
},
"provider_settings.default_image_caption_provider_id": {
"description": "默认图片转述模型",
"type": "string",
"_special": "select_provider",
"hint": "留空代表不使用可用于不支持视觉模态的聊天模型",
"hint": "留空代表不使用可用于非多模态模型",
},
"provider_stt_settings.enable": {
"description": "启用语音转文本",
"type": "bool",
"hint": "STT 总开关",
"hint": "STT 总开关",
},
"provider_stt_settings.provider_id": {
"description": "默认语音转文本模型",
@@ -2046,12 +2297,11 @@ CONFIG_METADATA_3 = {
"provider_tts_settings.enable": {
"description": "启用文本转语音",
"type": "bool",
"hint": "TTS 总开关。当关闭时,会话启用 TTS 也不会生效。",
"hint": "TTS 总开关",
},
"provider_tts_settings.provider_id": {
"description": "默认文本转语音模型",
"type": "string",
"hint": "用户也可使用 /provider 单独选择会话的 TTS 模型。",
"_special": "select_provider_tts",
"condition": {
"provider_tts_settings.enable": True,
@@ -2062,6 +2312,9 @@ CONFIG_METADATA_3 = {
"type": "text",
},
},
"condition": {
"provider_settings.enable": True,
},
},
"persona": {
"description": "人格",
@@ -2073,16 +2326,41 @@ CONFIG_METADATA_3 = {
"_special": "select_persona",
},
},
"condition": {
"provider_settings.agent_runner_type": "local",
"provider_settings.enable": True,
},
},
"knowledgebase": {
"description": "知识库",
"type": "object",
"items": {
"default_kb_collection": {
"description": "默认使用的知识库",
"type": "string",
"kb_names": {
"description": "知识库列表",
"type": "list",
"items": {"type": "string"},
"_special": "select_knowledgebase",
"hint": "支持多选",
},
"kb_fusion_top_k": {
"description": "融合检索结果数",
"type": "int",
"hint": "多个知识库检索结果融合后的返回结果数量",
},
"kb_final_top_k": {
"description": "最终返回结果数",
"type": "int",
"hint": "从知识库中检索到的结果数量,越大可能获得越多相关信息,但也可能引入噪音。建议根据实际需求调整",
},
"kb_agentic_mode": {
"description": "Agentic 知识库检索",
"type": "bool",
"hint": "启用后,知识库检索将作为 LLM Tool由模型自主决定何时调用知识库进行查询。需要模型支持函数调用能力。",
},
},
"condition": {
"provider_settings.agent_runner_type": "local",
"provider_settings.enable": True,
},
},
"websearch": {
@@ -2120,6 +2398,10 @@ CONFIG_METADATA_3 = {
"type": "bool",
},
},
"condition": {
"provider_settings.agent_runner_type": "local",
"provider_settings.enable": True,
},
},
"others": {
"description": "其他配置",
@@ -2128,54 +2410,83 @@ CONFIG_METADATA_3 = {
"provider_settings.display_reasoning_text": {
"description": "显示思考内容",
"type": "bool",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.identifier": {
"description": "用户识别",
"type": "bool",
"hint": "启用后,会在提示词前包含用户 ID 信息。",
},
"provider_settings.group_name_display": {
"description": "显示群名称",
"type": "bool",
"hint": "启用后,在支持的平台(aiocqhttp)上会在 prompt 中包含群名称信息。",
"hint": "启用后,在支持的平台(OneBot v11)上会在提示词前包含群名称信息。",
},
"provider_settings.datetime_system_prompt": {
"description": "现实世界时间感知",
"type": "bool",
"hint": "启用后,会在系统提示词中附带当前时间信息。",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.show_tool_use_status": {
"description": "输出函数调用状态",
"type": "bool",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.max_agent_step": {
"description": "工具调用轮数上限",
"type": "int",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.tool_call_timeout": {
"description": "工具调用超时时间(秒)",
"type": "int",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.streaming_response": {
"description": "流式回复",
"description": "流式输出",
"type": "bool",
},
"provider_settings.streaming_segmented": {
"description": "不支持流式回复的平台采取分段输出",
"type": "bool",
"provider_settings.unsupported_streaming_strategy": {
"description": "不支持流式回复的平台",
"type": "string",
"options": ["realtime_segmenting", "turn_off"],
"hint": "选择在不支持流式回复的平台上的处理方式。实时分段回复会在系统接收流式响应检测到诸如标点符号等分段点时,立即发送当前已接收的内容",
"labels": ["实时分段回复", "关闭流式回复"],
"condition": {
"provider_settings.streaming_response": True,
},
},
"provider_settings.max_context_length": {
"description": "最多携带对话轮数",
"type": "int",
"hint": "超出这个数量时丢弃最旧的部分,一轮聊天记为 1 条-1 为不限制",
"hint": "超出这个数量时丢弃最旧的部分,一轮聊天记为 1 条-1 为不限制",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.dequeue_context_length": {
"description": "丢弃对话轮数",
"type": "int",
"hint": "超出最多携带对话轮数时, 一次丢弃的聊天轮数",
"hint": "超出最多携带对话轮数时, 一次丢弃的聊天轮数",
"condition": {
"provider_settings.agent_runner_type": "local",
},
},
"provider_settings.wake_prefix": {
"description": "LLM 聊天额外唤醒前缀 ",
"type": "string",
"hint": "例子: 如果唤醒前缀为 `/`, 额外聊天唤醒前缀为 `chat`,则需要 `/chat` 才会触发 LLM 请求。默认为空。",
"hint": "如果唤醒前缀为 /, 额外聊天唤醒前缀为 chat则需要 /chat 才会触发 LLM 请求",
},
"provider_settings.prompt_prefix": {
"description": "用户提示词",
@@ -2186,6 +2497,14 @@ CONFIG_METADATA_3 = {
"description": "开启 TTS 时同时输出语音和文字内容",
"type": "bool",
},
"provider_settings.reachability_check": {
"description": "提供商可达性检测",
"type": "bool",
"hint": "/provider 命令列出模型时是否并发检测连通性。开启后会主动调用模型测试连通性,可能产生额外 token 消耗。",
},
},
"condition": {
"provider_settings.enable": True,
},
},
},
@@ -2476,7 +2795,16 @@ CONFIG_METADATA_3 = {
"provider_ltm_settings.image_caption": {
"description": "自动理解图片",
"type": "bool",
"hint": "需要设置默认图片转述模型。",
"hint": "需要设置群聊图片转述模型。",
},
"provider_ltm_settings.image_caption_provider_id": {
"description": "群聊图片转述模型",
"type": "string",
"_special": "select_provider",
"hint": "用于群聊上下文感知的图片理解,与默认图片转述模型分开配置。",
"condition": {
"provider_ltm_settings.image_caption": True,
},
},
"provider_ltm_settings.active_reply.enable": {
"description": "主动回复",
@@ -2587,9 +2915,9 @@ CONFIG_METADATA_3_SYSTEM = {
"items": {"type": "string"},
},
},
}
},
},
}
},
}

View File

@@ -0,0 +1,110 @@
"""
配置元数据国际化工具
提供配置元数据的国际化键转换功能
"""
from typing import Any
class ConfigMetadataI18n:
"""配置元数据国际化转换器"""
@staticmethod
def _get_i18n_key(group: str, section: str, field: str, attr: str) -> str:
"""
生成国际化键
Args:
group: 配置组,如 'ai_group', 'platform_group'
section: 配置节,如 'agent_runner', 'general'
field: 字段名,如 'enable', 'default_provider'
attr: 属性类型,如 'description', 'hint', 'labels'
Returns:
国际化键,格式如: 'ai_group.agent_runner.enable.description'
"""
if field:
return f"{group}.{section}.{field}.{attr}"
else:
return f"{group}.{section}.{attr}"
@staticmethod
def convert_to_i18n_keys(metadata: dict[str, Any]) -> dict[str, Any]:
"""
将配置元数据转换为使用国际化键
Args:
metadata: 原始配置元数据字典
Returns:
使用国际化键的配置元数据字典
"""
result = {}
for group_key, group_data in metadata.items():
group_result = {
"name": f"{group_key}.name",
"metadata": {},
}
for section_key, section_data in group_data.get("metadata", {}).items():
section_result = {
"description": f"{group_key}.{section_key}.description",
"type": section_data.get("type"),
}
# 复制其他属性
for key in ["items", "condition", "_special", "invisible"]:
if key in section_data:
section_result[key] = section_data[key]
# 处理 hint
if "hint" in section_data:
section_result["hint"] = f"{group_key}.{section_key}.hint"
# 处理 items 中的字段
if "items" in section_data and isinstance(section_data["items"], dict):
items_result = {}
for field_key, field_data in section_data["items"].items():
# 处理嵌套的点号字段名(如 provider_settings.enable
field_name = field_key
field_result = {}
# 复制基本属性
for attr in [
"type",
"condition",
"_special",
"invisible",
"options",
]:
if attr in field_data:
field_result[attr] = field_data[attr]
# 转换文本属性为国际化键
if "description" in field_data:
field_result["description"] = (
f"{group_key}.{section_key}.{field_name}.description"
)
if "hint" in field_data:
field_result["hint"] = (
f"{group_key}.{section_key}.{field_name}.hint"
)
if "labels" in field_data:
field_result["labels"] = (
f"{group_key}.{section_key}.{field_name}.labels"
)
items_result[field_key] = field_result
section_result["items"] = items_result
group_result["metadata"][section_key] = section_result
result[group_key] = group_result
return result

View File

@@ -1,13 +1,14 @@
"""
AstrBot 会话-对话管理器, 维护两个本地存储, 其中一个是 json 格式的shared_preferences, 另外一个是数据库
"""AstrBot 会话-对话管理器, 维护两个本地存储, 其中一个是 json 格式的shared_preferences, 另外一个是数据库.
在 AstrBot 中, 会话和对话是独立的, 会话用于标记对话窗口, 例如群聊"123456789"可以建立一个会话,
在一个会话中可以建立多个对话, 并且支持对话的切换和删除
"""
import json
from collections.abc import Awaitable, Callable
from astrbot.core import sp
from typing import Dict, List
from astrbot.core.agent.message import AssistantMessageSegment, UserMessageSegment
from astrbot.core.db import BaseDatabase
from astrbot.core.db.po import Conversation, ConversationV2
@@ -16,10 +17,45 @@ class ConversationManager:
"""负责管理会话与 LLM 的对话,某个会话当前正在用哪个对话。"""
def __init__(self, db_helper: BaseDatabase):
self.session_conversations: Dict[str, str] = {}
self.session_conversations: dict[str, str] = {}
self.db = db_helper
self.save_interval = 60 # 每 60 秒保存一次
# 会话删除回调函数列表(用于级联清理,如知识库配置)
self._on_session_deleted_callbacks: list[Callable[[str], Awaitable[None]]] = []
def register_on_session_deleted(
self,
callback: Callable[[str], Awaitable[None]],
) -> None:
"""注册会话删除回调函数.
其他模块可以注册回调来响应会话删除事件,实现级联清理。
例如:知识库模块可以注册回调来清理会话的知识库配置。
Args:
callback: 回调函数接收会话ID (unified_msg_origin) 作为参数
"""
self._on_session_deleted_callbacks.append(callback)
async def _trigger_session_deleted(self, unified_msg_origin: str) -> None:
"""触发会话删除回调.
Args:
unified_msg_origin: 会话ID
"""
for callback in self._on_session_deleted_callbacks:
try:
await callback(unified_msg_origin)
except Exception as e:
from astrbot.core import logger
logger.error(
f"会话删除回调执行失败 (session: {unified_msg_origin}): {e}",
)
def _convert_conv_from_v2_to_v1(self, conv_v2: ConversationV2) -> Conversation:
"""将 ConversationV2 对象转换为 Conversation 对象"""
created_at = int(conv_v2.created_at.timestamp())
@@ -43,12 +79,13 @@ class ConversationManager:
title: str | None = None,
persona_id: str | None = None,
) -> str:
"""新建对话,并将当前会话的对话转移到新对话
"""新建对话,并将当前会话的对话转移到新对话.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
Returns:
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
"""
if not platform_id:
# 如果没有提供 platform_id则从 unified_msg_origin 中解析
@@ -74,18 +111,22 @@ class ConversationManager:
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
"""
self.session_conversations[unified_msg_origin] = conversation_id
await sp.session_put(unified_msg_origin, "sel_conv_id", conversation_id)
async def delete_conversation(
self, unified_msg_origin: str, conversation_id: str | None = None
self,
unified_msg_origin: str,
conversation_id: str | None = None,
):
"""删除会话的对话,当 conversation_id 为 None 时删除会话当前的对话
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
"""
if not conversation_id:
conversation_id = self.session_conversations.get(unified_msg_origin)
@@ -101,11 +142,15 @@ class ConversationManager:
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
"""
await self.db.delete_conversations_by_user_id(user_id=unified_msg_origin)
self.session_conversations.pop(unified_msg_origin, None)
await sp.session_remove(unified_msg_origin, "sel_conv_id")
# 触发会话删除回调(级联清理)
await self._trigger_session_deleted(unified_msg_origin)
async def get_curr_conversation_id(self, unified_msg_origin: str) -> str | None:
"""获取会话当前的对话 ID
@@ -113,6 +158,7 @@ class ConversationManager:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
Returns:
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
"""
ret = self.session_conversations.get(unified_msg_origin, None)
if not ret:
@@ -127,13 +173,15 @@ class ConversationManager:
conversation_id: str,
create_if_not_exists: bool = False,
) -> Conversation | None:
"""获取会话的对话
"""获取会话的对话.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
create_if_not_exists (bool): 如果对话不存在,是否创建一个新的对话
Returns:
conversation (Conversation): 对话对象
"""
conv = await self.db.get_conversation_by_id(cid=conversation_id)
if not conv and create_if_not_exists:
@@ -146,18 +194,22 @@ class ConversationManager:
return conv_res
async def get_conversations(
self, unified_msg_origin: str | None = None, platform_id: str | None = None
) -> List[Conversation]:
"""获取对话列表
self,
unified_msg_origin: str | None = None,
platform_id: str | None = None,
) -> list[Conversation]:
"""获取对话列表.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id可选
platform_id (str): 平台 ID, 可选参数, 用于过滤对话
Returns:
conversations (List[Conversation]): 对话对象列表
"""
convs = await self.db.get_conversations(
user_id=unified_msg_origin, platform_id=platform_id
user_id=unified_msg_origin,
platform_id=platform_id,
)
convs_res = []
for conv in convs:
@@ -173,7 +225,7 @@ class ConversationManager:
search_query: str = "",
**kwargs,
) -> tuple[list[Conversation], int]:
"""获取过滤后的对话列表
"""获取过滤后的对话列表.
Args:
page (int): 页码, 默认为 1
@@ -182,6 +234,7 @@ class ConversationManager:
search_query (str): 搜索查询字符串, 可选
Returns:
conversations (list[Conversation]): 对话对象列表
"""
convs, cnt = await self.db.get_filtered_conversations(
page=page,
@@ -203,13 +256,14 @@ class ConversationManager:
history: list[dict] | None = None,
title: str | None = None,
persona_id: str | None = None,
):
"""更新会话的对话
) -> None:
"""更新会话的对话.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
history (List[Dict]): 对话历史记录, 是一个字典列表, 每个字典包含 role 和 content 字段
"""
if not conversation_id:
# 如果没有提供 conversation_id则获取当前的
@@ -223,16 +277,20 @@ class ConversationManager:
)
async def update_conversation_title(
self, unified_msg_origin: str, title: str, conversation_id: str | None = None
):
"""更新会话的对话标题
self,
unified_msg_origin: str,
title: str,
conversation_id: str | None = None,
) -> None:
"""更新会话的对话标题.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
title (str): 对话标题
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
Deprecated:
Use `update_conversation` with `title` parameter instead.
"""
await self.update_conversation(
unified_msg_origin=unified_msg_origin,
@@ -245,15 +303,16 @@ class ConversationManager:
unified_msg_origin: str,
persona_id: str,
conversation_id: str | None = None,
):
"""更新会话的对话 Persona ID
) -> None:
"""更新会话的对话 Persona ID.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
persona_id (str): 对话 Persona ID
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
Deprecated:
Use `update_conversation` with `persona_id` parameter instead.
"""
await self.update_conversation(
unified_msg_origin=unified_msg_origin,
@@ -261,40 +320,85 @@ class ConversationManager:
persona_id=persona_id,
)
async def add_message_pair(
self,
cid: str,
user_message: UserMessageSegment | dict,
assistant_message: AssistantMessageSegment | dict,
) -> None:
"""Add a user-assistant message pair to the conversation history.
Args:
cid (str): Conversation ID
user_message (UserMessageSegment | dict): OpenAI-format user message object or dict
assistant_message (AssistantMessageSegment | dict): OpenAI-format assistant message object or dict
Raises:
Exception: If the conversation with the given ID is not found
"""
conv = await self.db.get_conversation_by_id(cid=cid)
if not conv:
raise Exception(f"Conversation with id {cid} not found")
history = conv.content or []
if isinstance(user_message, UserMessageSegment):
user_msg_dict = user_message.model_dump()
else:
user_msg_dict = user_message
if isinstance(assistant_message, AssistantMessageSegment):
assistant_msg_dict = assistant_message.model_dump()
else:
assistant_msg_dict = assistant_message
history.append(user_msg_dict)
history.append(assistant_msg_dict)
await self.db.update_conversation(
cid=cid,
content=history,
)
async def get_human_readable_context(
self, unified_msg_origin, conversation_id, page=1, page_size=10
):
"""获取人类可读的上下文
self,
unified_msg_origin: str,
conversation_id: str,
page: int = 1,
page_size: int = 10,
) -> tuple[list[str], int]:
"""获取人类可读的上下文.
Args:
unified_msg_origin (str): 统一的消息来源字符串。格式为 platform_name:message_type:session_id
conversation_id (str): 对话 ID, 是 uuid 格式的字符串
page (int): 页码
page_size (int): 每页大小
"""
conversation = await self.get_conversation(unified_msg_origin, conversation_id)
if not conversation:
return [], 0
history = json.loads(conversation.history)
contexts = []
temp_contexts = []
# contexts_groups 存放按顺序的段落(每个段落是一个 str 列表),
# 之后会被展平成一个扁平的 str 列表返回。
contexts_groups: list[list[str]] = []
temp_contexts: list[str] = []
for record in history:
if record["role"] == "user":
temp_contexts.append(f"User: {record['content']}")
elif record["role"] == "assistant":
if "content" in record and record["content"]:
if record.get("content"):
temp_contexts.append(f"Assistant: {record['content']}")
elif "tool_calls" in record:
tool_calls_str = json.dumps(
record["tool_calls"], ensure_ascii=False
record["tool_calls"],
ensure_ascii=False,
)
temp_contexts.append(f"Assistant: [函数调用] {tool_calls_str}")
else:
temp_contexts.append("Assistant: [未知的内容]")
contexts.insert(0, temp_contexts)
contexts_groups.insert(0, temp_contexts)
temp_contexts = []
# 展平 contexts 列表
contexts = [item for sublist in contexts for item in sublist]
# 展平分组后的 contexts 列表为单层字符串列表
contexts = [item for sublist in contexts_groups for item in sublist]
# 计算分页
paged_contexts = contexts[(page - 1) * page_size : page * page_size]

View File

@@ -1,5 +1,5 @@
"""
Astrbot 核心生命周期管理类, 负责管理 AstrBot 的启动、停止、重启等操作。
"""Astrbot 核心生命周期管理类, 负责管理 AstrBot 的启动、停止、重启等操作.
该类负责初始化各个组件, 包括 ProviderManager、PlatformManager、ConversationManager、PluginManager、PipelineScheduler、EventBus等。
该类还负责加载和执行插件, 以及处理事件总线的分发。
@@ -9,42 +9,45 @@ Astrbot 核心生命周期管理类, 负责管理 AstrBot 的启动、停止、
3. 执行启动完成事件钩子
"""
import traceback
import asyncio
import time
import threading
import os
from .event_bus import EventBus
from . import astrbot_config, html_renderer
import threading
import time
import traceback
from asyncio import Queue
from typing import List
from astrbot.core.pipeline.scheduler import PipelineScheduler, PipelineContext
from astrbot.core.star import PluginManager
from astrbot.core.platform.manager import PlatformManager
from astrbot.core.star.context import Context
from astrbot.core.persona_mgr import PersonaManager
from astrbot.core.provider.manager import ProviderManager
from astrbot.api import logger, sp
from astrbot.core import LogBroker
from astrbot.core.db import BaseDatabase
from astrbot.core.updator import AstrBotUpdator
from astrbot.core import logger, sp
from astrbot.core.astrbot_config_mgr import AstrBotConfigManager
from astrbot.core.config.default import VERSION
from astrbot.core.conversation_mgr import ConversationManager
from astrbot.core.db import BaseDatabase
from astrbot.core.knowledge_base.kb_mgr import KnowledgeBaseManager
from astrbot.core.persona_mgr import PersonaManager
from astrbot.core.pipeline.scheduler import PipelineContext, PipelineScheduler
from astrbot.core.platform.manager import PlatformManager
from astrbot.core.platform_message_history_mgr import PlatformMessageHistoryManager
from astrbot.core.astrbot_config_mgr import AstrBotConfigManager
from astrbot.core.star.star_handler import star_handlers_registry, EventType
from astrbot.core.star.star_handler import star_map
from astrbot.core.provider.manager import ProviderManager
from astrbot.core.star import PluginManager
from astrbot.core.star.context import Context
from astrbot.core.star.star_handler import EventType, star_handlers_registry, star_map
from astrbot.core.umop_config_router import UmopConfigRouter
from astrbot.core.updator import AstrBotUpdator
from astrbot.core.utils.migra_helper import migra
from . import astrbot_config, html_renderer
from .event_bus import EventBus
class AstrBotCoreLifecycle:
"""
AstrBot 核心生命周期管理类, 负责管理 AstrBot 的启动、停止、重启等操作。
"""AstrBot 核心生命周期管理类, 负责管理 AstrBot 的启动、停止、重启等操作.
该类负责初始化各个组件, 包括 ProviderManager、PlatformManager、ConversationManager、PluginManager、PipelineScheduler、
EventBus 等。
该类还负责加载和执行插件, 以及处理事件总线的分发。
"""
def __init__(self, log_broker: LogBroker, db: BaseDatabase):
def __init__(self, log_broker: LogBroker, db: BaseDatabase) -> None:
self.log_broker = log_broker # 初始化日志代理
self.astrbot_config = astrbot_config # 初始化配置
self.db = db # 初始化数据库
@@ -68,11 +71,11 @@ class AstrBotCoreLifecycle:
del os.environ["no_proxy"]
logger.debug("HTTP proxy cleared")
async def initialize(self):
"""
初始化 AstrBot 核心生命周期管理类, 负责初始化各个组件, 包括 ProviderManager、PlatformManager、ConversationManager、PluginManager、PipelineScheduler、EventBus、AstrBotUpdator等。
"""
async def initialize(self) -> None:
"""初始化 AstrBot 核心生命周期管理类.
负责初始化各个组件, 包括 ProviderManager、PlatformManager、ConversationManager、PluginManager、PipelineScheduler、EventBus、AstrBotUpdator等。
"""
# 初始化日志代理
logger.info("AstrBot v" + VERSION)
if os.environ.get("TESTING", ""):
@@ -84,11 +87,28 @@ class AstrBotCoreLifecycle:
await html_renderer.initialize()
# 初始化 UMOP 配置路由器
self.umop_config_router = UmopConfigRouter(sp=sp)
# 初始化 AstrBot 配置管理器
self.astrbot_config_mgr = AstrBotConfigManager(
default_config=self.astrbot_config, sp=sp
default_config=self.astrbot_config,
ucr=self.umop_config_router,
sp=sp,
)
# apply migration
try:
await migra(
self.db,
self.astrbot_config_mgr,
self.umop_config_router,
self.astrbot_config_mgr,
)
except Exception as e:
logger.error(f"AstrBot migration failed: {e!s}")
logger.error(traceback.format_exc())
# 初始化事件队列
self.event_queue = Queue()
@@ -98,7 +118,9 @@ class AstrBotCoreLifecycle:
# 初始化供应商管理器
self.provider_manager = ProviderManager(
self.astrbot_config_mgr, self.db, self.persona_mgr
self.astrbot_config_mgr,
self.db,
self.persona_mgr,
)
# 初始化平台管理器
@@ -110,6 +132,9 @@ class AstrBotCoreLifecycle:
# 初始化平台消息历史管理器
self.platform_message_history_manager = PlatformMessageHistoryManager(self.db)
# 初始化知识库管理器
self.kb_manager = KnowledgeBaseManager(self.provider_manager)
# 初始化提供给插件的上下文
self.star_context = Context(
self.event_queue,
@@ -121,6 +146,7 @@ class AstrBotCoreLifecycle:
self.platform_message_history_manager,
self.persona_mgr,
self.astrbot_config_mgr,
self.kb_manager,
)
# 初始化插件管理器
@@ -132,8 +158,9 @@ class AstrBotCoreLifecycle:
# 根据配置实例化各个 Provider
await self.provider_manager.initialize()
# 初始化消息事件流水线调度器
await self.kb_manager.initialize()
# 初始化消息事件流水线调度器
self.pipeline_scheduler_mapping = await self.load_pipeline_scheduler()
# 初始化更新器
@@ -141,14 +168,16 @@ class AstrBotCoreLifecycle:
# 初始化事件总线
self.event_bus = EventBus(
self.event_queue, self.pipeline_scheduler_mapping, self.astrbot_config_mgr
self.event_queue,
self.pipeline_scheduler_mapping,
self.astrbot_config_mgr,
)
# 记录启动时间
self.start_time = int(time.time())
# 初始化当前任务列表
self.curr_tasks: List[asyncio.Task] = []
self.curr_tasks: list[asyncio.Task] = []
# 根据配置实例化各个平台适配器
await self.platform_manager.initialize()
@@ -156,13 +185,13 @@ class AstrBotCoreLifecycle:
# 初始化关闭控制面板的事件
self.dashboard_shutdown_event = asyncio.Event()
def _load(self):
"""加载事件总线和任务并初始化"""
def _load(self) -> None:
"""加载事件总线和任务并初始化."""
# 创建一个异步任务来执行事件总线的 dispatch() 方法
# dispatch是一个无限循环的协程, 从事件队列中获取事件并处理
event_bus_task = asyncio.create_task(
self.event_bus.dispatch(), name="event_bus"
self.event_bus.dispatch(),
name="event_bus",
)
# 把插件中注册的所有协程函数注册到事件总线中并执行
@@ -173,16 +202,17 @@ class AstrBotCoreLifecycle:
tasks_ = [event_bus_task, *extra_tasks]
for task in tasks_:
self.curr_tasks.append(
asyncio.create_task(self._task_wrapper(task), name=task.get_name())
asyncio.create_task(self._task_wrapper(task), name=task.get_name()),
)
self.start_time = int(time.time())
async def _task_wrapper(self, task: asyncio.Task):
"""异步任务包装器, 用于处理异步任务执行中出现的各种异常
async def _task_wrapper(self, task: asyncio.Task) -> None:
"""异步任务包装器, 用于处理异步任务执行中出现的各种异常.
Args:
task (asyncio.Task): 要执行的异步任务
"""
try:
await task
@@ -195,19 +225,22 @@ class AstrBotCoreLifecycle:
logger.error(f"| {line}")
logger.error("-------")
async def start(self):
"""启动 AstrBot 核心生命周期管理类, 用load加载事件总线和任务并初始化, 执行启动完成事件钩子"""
async def start(self) -> None:
"""启动 AstrBot 核心生命周期管理类.
用load加载事件总线和任务并初始化, 执行启动完成事件钩子
"""
self._load()
logger.info("AstrBot 启动完成。")
# 执行启动完成事件钩子
handlers = star_handlers_registry.get_handlers_by_event_type(
EventType.OnAstrBotLoadedEvent
EventType.OnAstrBotLoadedEvent,
)
for handler in handlers:
try:
logger.info(
f"hook(on_astrbot_loaded) -> {star_map[handler.handler_module_path].name} - {handler.handler_name}"
f"hook(on_astrbot_loaded) -> {star_map[handler.handler_module_path].name} - {handler.handler_name}",
)
await handler.handler()
except BaseException:
@@ -216,8 +249,8 @@ class AstrBotCoreLifecycle:
# 同时运行curr_tasks中的所有任务
await asyncio.gather(*self.curr_tasks, return_exceptions=True)
async def stop(self):
"""停止 AstrBot 核心生命周期管理类, 取消所有当前任务并终止各个管理器"""
async def stop(self) -> None:
"""停止 AstrBot 核心生命周期管理类, 取消所有当前任务并终止各个管理器."""
# 请求停止所有正在运行的异步任务
for task in self.curr_tasks:
task.cancel()
@@ -228,11 +261,12 @@ class AstrBotCoreLifecycle:
except Exception as e:
logger.warning(traceback.format_exc())
logger.warning(
f"插件 {plugin.name} 未被正常终止 {e!s}, 可能会导致资源泄露等问题。"
f"插件 {plugin.name} 未被正常终止 {e!s}, 可能会导致资源泄露等问题。",
)
await self.provider_manager.terminate()
await self.platform_manager.terminate()
await self.kb_manager.terminate()
self.dashboard_shutdown_event.set()
# 再次遍历curr_tasks等待每个任务真正结束
@@ -244,16 +278,19 @@ class AstrBotCoreLifecycle:
except Exception as e:
logger.error(f"任务 {task.get_name()} 发生错误: {e}")
async def restart(self):
async def restart(self) -> None:
"""重启 AstrBot 核心生命周期管理类, 终止各个管理器并重新加载平台实例"""
await self.provider_manager.terminate()
await self.platform_manager.terminate()
await self.kb_manager.terminate()
self.dashboard_shutdown_event.set()
threading.Thread(
target=self.astrbot_updator._reboot, name="restart", daemon=True
target=self.astrbot_updator._reboot,
name="restart",
daemon=True,
).start()
def load_platform(self) -> List[asyncio.Task]:
def load_platform(self) -> list[asyncio.Task]:
"""加载平台实例并返回所有平台实例的异步任务列表"""
tasks = []
platform_insts = self.platform_manager.get_insts()
@@ -262,36 +299,38 @@ class AstrBotCoreLifecycle:
asyncio.create_task(
platform_inst.run(),
name=f"{platform_inst.meta().id}({platform_inst.meta().name})",
)
),
)
return tasks
async def load_pipeline_scheduler(self) -> dict[str, PipelineScheduler]:
"""加载消息事件流水线调度器
"""加载消息事件流水线调度器.
Returns:
dict[str, PipelineScheduler]: 平台 ID 到流水线调度器的映射
"""
mapping = {}
for conf_id, ab_config in self.astrbot_config_mgr.confs.items():
scheduler = PipelineScheduler(
PipelineContext(ab_config, self.plugin_manager, conf_id)
PipelineContext(ab_config, self.plugin_manager, conf_id),
)
await scheduler.initialize()
mapping[conf_id] = scheduler
return mapping
async def reload_pipeline_scheduler(self, conf_id: str):
"""重新加载消息事件流水线调度器
async def reload_pipeline_scheduler(self, conf_id: str) -> None:
"""重新加载消息事件流水线调度器.
Returns:
dict[str, PipelineScheduler]: 平台 ID 到流水线调度器的映射
"""
ab_config = self.astrbot_config_mgr.confs.get(conf_id)
if not ab_config:
raise ValueError(f"配置文件 {conf_id} 不存在")
scheduler = PipelineScheduler(
PipelineContext(ab_config, self.plugin_manager, conf_id)
PipelineContext(ab_config, self.plugin_manager, conf_id),
)
await scheduler.initialize()
self.pipeline_scheduler_mapping[conf_id] = scheduler

View File

@@ -1,27 +1,28 @@
import abc
import datetime
import typing as T
from deprecated import deprecated
from dataclasses import dataclass
from astrbot.core.db.po import (
Stats,
PlatformStat,
ConversationV2,
PlatformMessageHistory,
Attachment,
Persona,
Preference,
)
from contextlib import asynccontextmanager
from dataclasses import dataclass
from deprecated import deprecated
from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine
from sqlalchemy.orm import sessionmaker
from astrbot.core.db.po import (
Attachment,
ConversationV2,
Persona,
PlatformMessageHistory,
PlatformSession,
PlatformStat,
Preference,
Stats,
)
@dataclass
class BaseDatabase(abc.ABC):
"""
数据库基类
"""
"""数据库基类"""
DATABASE_URL = ""
@@ -32,12 +33,13 @@ class BaseDatabase(abc.ABC):
future=True,
)
self.AsyncSessionLocal = sessionmaker(
self.engine, class_=AsyncSession, expire_on_commit=False
self.engine,
class_=AsyncSession,
expire_on_commit=False,
)
async def initialize(self):
"""初始化数据库连接"""
pass
@asynccontextmanager
async def get_db(self) -> T.AsyncGenerator[AsyncSession, None]:
@@ -91,7 +93,9 @@ class BaseDatabase(abc.ABC):
@abc.abstractmethod
async def get_conversations(
self, user_id: str | None = None, platform_id: str | None = None
self,
user_id: str | None = None,
platform_id: str | None = None,
) -> list[ConversationV2]:
"""Get all conversations for a specific user and platform_id(optional).
@@ -106,7 +110,9 @@ class BaseDatabase(abc.ABC):
@abc.abstractmethod
async def get_all_conversations(
self, page: int = 1, page_size: int = 20
self,
page: int = 1,
page_size: int = 20,
) -> list[ConversationV2]:
"""Get all conversations with pagination."""
...
@@ -173,9 +179,12 @@ class BaseDatabase(abc.ABC):
@abc.abstractmethod
async def delete_platform_message_offset(
self, platform_id: str, user_id: str, offset_sec: int = 86400
self,
platform_id: str,
user_id: str,
offset_sec: int = 86400,
) -> None:
"""Delete platform message history records older than the specified offset."""
"""Delete platform message history records newer than the specified offset."""
...
@abc.abstractmethod
@@ -243,7 +252,11 @@ class BaseDatabase(abc.ABC):
@abc.abstractmethod
async def insert_preference_or_update(
self, scope: str, scope_id: str, key: str, value: dict
self,
scope: str,
scope_id: str,
key: str,
value: dict,
) -> Preference:
"""Insert a new preference record."""
...
@@ -255,7 +268,10 @@ class BaseDatabase(abc.ABC):
@abc.abstractmethod
async def get_preferences(
self, scope: str, scope_id: str | None = None, key: str | None = None
self,
scope: str,
scope_id: str | None = None,
key: str | None = None,
) -> list[Preference]:
"""Get all preferences for a specific scope ID or key."""
...
@@ -298,3 +314,51 @@ class BaseDatabase(abc.ABC):
) -> tuple[list[dict], int]:
"""Get paginated session conversations with joined conversation and persona details, support search and platform filter."""
...
# ====
# Platform Session Management
# ====
@abc.abstractmethod
async def create_platform_session(
self,
creator: str,
platform_id: str = "webchat",
session_id: str | None = None,
display_name: str | None = None,
is_group: int = 0,
) -> PlatformSession:
"""Create a new Platform session."""
...
@abc.abstractmethod
async def get_platform_session_by_id(
self, session_id: str
) -> PlatformSession | None:
"""Get a Platform session by its ID."""
...
@abc.abstractmethod
async def get_platform_sessions_by_creator(
self,
creator: str,
platform_id: str | None = None,
page: int = 1,
page_size: int = 20,
) -> list[PlatformSession]:
"""Get all Platform sessions for a specific creator (username) and optionally platform."""
...
@abc.abstractmethod
async def update_platform_session(
self,
session_id: str,
display_name: str | None = None,
) -> None:
"""Update a Platform session's updated_at timestamp and optionally display_name."""
...
@abc.abstractmethod
async def delete_platform_session(self, session_id: str) -> None:
"""Delete a Platform session by its ID."""
...

View File

@@ -1,27 +1,33 @@
import os
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
from astrbot.core.db import BaseDatabase
from astrbot.core.config import AstrBotConfig
from astrbot.api import logger, sp
from astrbot.core.config import AstrBotConfig
from astrbot.core.db import BaseDatabase
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
from .migra_3_to_4 import (
migration_conversation_table,
migration_platform_table,
migration_webchat_data,
migration_persona_data,
migration_platform_table,
migration_preferences,
migration_webchat_data,
)
async def check_migration_needed_v4(db_helper: BaseDatabase) -> bool:
"""
检查是否需要进行数据库迁移
"""检查是否需要进行数据库迁移
如果存在 data_v3.db 并且 preference 中没有 migration_done_v4则需要进行迁移。
"""
data_v3_exists = os.path.exists(get_astrbot_data_path())
if not data_v3_exists:
# 仅当 data 目录下存在旧版本数据data_v3.db 文件)时才考虑迁移
data_dir = get_astrbot_data_path()
data_v3_db = os.path.join(data_dir, "data_v3.db")
if not os.path.exists(data_v3_db):
return False
migration_done = await db_helper.get_preference(
"global", "global", "migration_done_v4"
"global",
"global",
"migration_done_v4",
)
if migration_done:
return False
@@ -32,9 +38,8 @@ async def do_migration_v4(
db_helper: BaseDatabase,
platform_id_map: dict[str, dict[str, str]],
astrbot_config: AstrBotConfig,
):
"""
执行数据库迁移
) -> None:
"""执行数据库迁移
迁移旧的 webchat_conversation 表到新的 conversation 表。
迁移旧的 platform 到新的 platform_stats 表。
"""

View File

@@ -1,15 +1,18 @@
import json
import datetime
from .. import BaseDatabase
from .sqlite_v3 import SQLiteDatabase as SQLiteV3DatabaseV3
from .shared_preferences_v3 import sp as sp_v3
from astrbot.core.config.default import DB_PATH
import json
from sqlalchemy import text
from sqlalchemy.ext.asyncio import AsyncSession
from astrbot.api import logger, sp
from astrbot.core.config import AstrBotConfig
from astrbot.core.platform.astr_message_event import MessageSesion
from sqlalchemy.ext.asyncio import AsyncSession
from astrbot.core.config.default import DB_PATH
from astrbot.core.db.po import ConversationV2, PlatformMessageHistory
from sqlalchemy import text
from astrbot.core.platform.astr_message_event import MessageSesion
from .. import BaseDatabase
from .shared_preferences_v3 import sp as sp_v3
from .sqlite_v3 import SQLiteDatabase as SQLiteV3DatabaseV3
"""
1. 迁移旧的 webchat_conversation 表到新的 conversation 表。
@@ -18,7 +21,8 @@ from sqlalchemy import text
def get_platform_id(
platform_id_map: dict[str, dict[str, str]], old_platform_name: str
platform_id_map: dict[str, dict[str, str]],
old_platform_name: str,
) -> str:
return platform_id_map.get(
old_platform_name,
@@ -27,7 +31,8 @@ def get_platform_id(
def get_platform_type(
platform_id_map: dict[str, dict[str, str]], old_platform_name: str
platform_id_map: dict[str, dict[str, str]],
old_platform_name: str,
) -> str:
return platform_id_map.get(
old_platform_name,
@@ -36,13 +41,15 @@ def get_platform_type(
async def migration_conversation_table(
db_helper: BaseDatabase, platform_id_map: dict[str, dict[str, str]]
db_helper: BaseDatabase,
platform_id_map: dict[str, dict[str, str]],
):
db_helper_v3 = SQLiteV3DatabaseV3(
db_path=DB_PATH.replace("data_v4.db", "data_v3.db")
db_path=DB_PATH.replace("data_v4.db", "data_v3.db"),
)
conversations, total_cnt = db_helper_v3.get_all_conversations(
page=1, page_size=10000000
page=1,
page_size=10000000,
)
logger.info(f"迁移 {total_cnt} 条旧的会话数据到新的表中...")
@@ -61,13 +68,14 @@ async def migration_conversation_table(
)
if not conv:
logger.info(
f"未找到该条旧会话对应的具体数据: {conversation}, 跳过。"
f"未找到该条旧会话对应的具体数据: {conversation}, 跳过。",
)
if ":" not in conv.user_id:
continue
session = MessageSesion.from_str(session_str=conv.user_id)
platform_id = get_platform_id(
platform_id_map, session.platform_name
platform_id_map,
session.platform_name,
)
session.platform_id = platform_id # 更新平台名称为新的 ID
conv_v2 = ConversationV2(
@@ -90,10 +98,11 @@ async def migration_conversation_table(
async def migration_platform_table(
db_helper: BaseDatabase, platform_id_map: dict[str, dict[str, str]]
db_helper: BaseDatabase,
platform_id_map: dict[str, dict[str, str]],
):
db_helper_v3 = SQLiteV3DatabaseV3(
db_path=DB_PATH.replace("data_v4.db", "data_v3.db")
db_path=DB_PATH.replace("data_v4.db", "data_v3.db"),
)
secs_from_2023_4_10_to_now = (
datetime.datetime.now(datetime.timezone.utc)
@@ -134,10 +143,12 @@ async def migration_platform_table(
if cnt == 0:
continue
platform_id = get_platform_id(
platform_id_map, platform_stats_v3[idx].name
platform_id_map,
platform_stats_v3[idx].name,
)
platform_type = get_platform_type(
platform_id_map, platform_stats_v3[idx].name
platform_id_map,
platform_stats_v3[idx].name,
)
try:
await dbsession.execute(
@@ -149,7 +160,8 @@ async def migration_platform_table(
"""),
{
"timestamp": datetime.datetime.fromtimestamp(
bucket_end, tz=datetime.timezone.utc
bucket_end,
tz=datetime.timezone.utc,
),
"platform_id": platform_id,
"platform_type": platform_type,
@@ -165,14 +177,16 @@ async def migration_platform_table(
async def migration_webchat_data(
db_helper: BaseDatabase, platform_id_map: dict[str, dict[str, str]]
db_helper: BaseDatabase,
platform_id_map: dict[str, dict[str, str]],
):
"""迁移 WebChat 的历史记录到新的 PlatformMessageHistory 表中"""
db_helper_v3 = SQLiteV3DatabaseV3(
db_path=DB_PATH.replace("data_v4.db", "data_v3.db")
db_path=DB_PATH.replace("data_v4.db", "data_v3.db"),
)
conversations, total_cnt = db_helper_v3.get_all_conversations(
page=1, page_size=10000000
page=1,
page_size=10000000,
)
logger.info(f"迁移 {total_cnt} 条旧的 WebChat 会话数据到新的表中...")
@@ -191,7 +205,7 @@ async def migration_webchat_data(
)
if not conv:
logger.info(
f"未找到该条旧会话对应的具体数据: {conversation}, 跳过。"
f"未找到该条旧会话对应的具体数据: {conversation}, 跳过。",
)
if ":" in conv.user_id:
continue
@@ -218,10 +232,10 @@ async def migration_webchat_data(
async def migration_persona_data(
db_helper: BaseDatabase, astrbot_config: AstrBotConfig
db_helper: BaseDatabase,
astrbot_config: AstrBotConfig,
):
"""
迁移 Persona 数据到新的表中。
"""迁移 Persona 数据到新的表中。
旧的 Persona 数据存储在 preference 中,新的 Persona 数据存储在 persona 表中。
"""
v3_persona_config: list[dict] = astrbot_config.get("persona", [])
@@ -236,14 +250,15 @@ async def migration_persona_data(
try:
begin_dialogs = persona.get("begin_dialogs", [])
mood_imitation_dialogs = persona.get("mood_imitation_dialogs", [])
mood_prompt = ""
parts = []
user_turn = True
for mood_dialog in mood_imitation_dialogs:
if user_turn:
mood_prompt += f"A: {mood_dialog}\n"
parts.append(f"A: {mood_dialog}\n")
else:
mood_prompt += f"B: {mood_dialog}\n"
parts.append(f"B: {mood_dialog}\n")
user_turn = not user_turn
mood_prompt = "".join(parts)
system_prompt = persona.get("prompt", "")
if mood_prompt:
system_prompt += f"Here are few shots of dialogs, you need to imitate the tone of 'B' in the following dialogs to respond:\n {mood_prompt}"
@@ -253,14 +268,15 @@ async def migration_persona_data(
begin_dialogs=begin_dialogs,
)
logger.info(
f"迁移 Persona {persona['name']}({persona_new.system_prompt[:30]}...) 到新表成功。"
f"迁移 Persona {persona['name']}({persona_new.system_prompt[:30]}...) 到新表成功。",
)
except Exception as e:
logger.error(f"解析 Persona 配置失败:{e}")
async def migration_preferences(
db_helper: BaseDatabase, platform_id_map: dict[str, dict[str, str]]
db_helper: BaseDatabase,
platform_id_map: dict[str, dict[str, str]],
):
# 1. global scope migration
keys = [
@@ -329,10 +345,13 @@ async def migration_preferences(
for provider_type, provider_id in perf.items():
await sp.put_async(
"umo", str(session), f"provider_perf_{provider_type}", provider_id
"umo",
str(session),
f"provider_perf_{provider_type}",
provider_id,
)
logger.info(
f"迁移会话 {umo} 的提供商偏好到新表成功,平台 ID: {platform_id}"
f"迁移会话 {umo} 的提供商偏好到新表成功,平台 ID: {platform_id}",
)
except Exception as e:
logger.error(f"迁移会话 {umo} 的提供商偏好失败: {e}", exc_info=True)

View File

@@ -0,0 +1,44 @@
from astrbot.api import logger, sp
from astrbot.core.astrbot_config_mgr import AstrBotConfigManager
from astrbot.core.umop_config_router import UmopConfigRouter
async def migrate_45_to_46(acm: AstrBotConfigManager, ucr: UmopConfigRouter):
abconf_data = acm.abconf_data
if not isinstance(abconf_data, dict):
# should be unreachable
logger.warning(
f"migrate_45_to_46: abconf_data is not a dict (type={type(abconf_data)}). Value: {abconf_data!r}",
)
return
# 如果任何一项带有 umop则说明需要迁移
need_migration = False
for conf_id, conf_info in abconf_data.items():
if isinstance(conf_info, dict) and "umop" in conf_info:
need_migration = True
break
if not need_migration:
return
logger.info("Starting migration from version 4.5 to 4.6")
# extract umo->conf_id mapping
umo_to_conf_id = {}
for conf_id, conf_info in abconf_data.items():
if isinstance(conf_info, dict) and "umop" in conf_info:
umop_ls = conf_info.pop("umop")
if not isinstance(umop_ls, list):
continue
for umo in umop_ls:
if isinstance(umo, str) and umo not in umo_to_conf_id:
umo_to_conf_id[umo] = conf_id
# update the abconf data
await sp.global_put("abconf_mapping", abconf_data)
# update the umop config router
await ucr.update_routing_data(umo_to_conf_id)
logger.info("Migration from version 45 to 46 completed successfully")

View File

@@ -0,0 +1,131 @@
"""Migration script for WebChat sessions.
This migration creates PlatformSession from existing platform_message_history records.
Changes:
- Creates platform_sessions table
- Adds platform_id field (default: 'webchat')
- Adds display_name field
- Session_id format: {platform_id}_{uuid}
"""
from sqlalchemy import func, select
from sqlmodel import col
from astrbot.api import logger, sp
from astrbot.core.db import BaseDatabase
from astrbot.core.db.po import ConversationV2, PlatformMessageHistory, PlatformSession
async def migrate_webchat_session(db_helper: BaseDatabase):
"""Create PlatformSession records from platform_message_history.
This migration extracts all unique user_ids from platform_message_history
where platform_id='webchat' and creates corresponding PlatformSession records.
"""
# 检查是否已经完成迁移
migration_done = await db_helper.get_preference(
"global", "global", "migration_done_webchat_session_1"
)
if migration_done:
return
logger.info("开始执行数据库迁移WebChat 会话迁移)...")
try:
async with db_helper.get_db() as session:
# 从 platform_message_history 创建 PlatformSession
query = (
select(
col(PlatformMessageHistory.user_id),
col(PlatformMessageHistory.sender_name),
func.min(PlatformMessageHistory.created_at).label("earliest"),
func.max(PlatformMessageHistory.updated_at).label("latest"),
)
.where(col(PlatformMessageHistory.platform_id) == "webchat")
.where(col(PlatformMessageHistory.sender_id) != "bot")
.group_by(col(PlatformMessageHistory.user_id))
)
result = await session.execute(query)
webchat_users = result.all()
if not webchat_users:
logger.info("没有找到需要迁移的 WebChat 数据")
await sp.put_async(
"global", "global", "migration_done_webchat_session_1", True
)
return
logger.info(f"找到 {len(webchat_users)} 个 WebChat 会话需要迁移")
# 检查已存在的会话
existing_query = select(col(PlatformSession.session_id))
existing_result = await session.execute(existing_query)
existing_session_ids = {row[0] for row in existing_result.fetchall()}
# 查询 Conversations 表中的 title用于设置 display_name
# 对于每个 user_id对应的 conversation user_id 格式为: webchat:FriendMessage:webchat!astrbot!{user_id}
user_ids_to_query = [
f"webchat:FriendMessage:webchat!astrbot!{user_id}"
for user_id, _, _, _ in webchat_users
]
conv_query = select(
col(ConversationV2.user_id), col(ConversationV2.title)
).where(col(ConversationV2.user_id).in_(user_ids_to_query))
conv_result = await session.execute(conv_query)
# 创建 user_id -> title 的映射字典
title_map = {
user_id.replace("webchat:FriendMessage:webchat!astrbot!", ""): title
for user_id, title in conv_result.fetchall()
}
# 批量创建 PlatformSession 记录
sessions_to_add = []
skipped_count = 0
for user_id, sender_name, created_at, updated_at in webchat_users:
# user_id 就是 webchat_conv_id (session_id)
session_id = user_id
# sender_name 通常是 username但可能为 None
creator = sender_name if sender_name else "guest"
# 检查是否已经存在该会话
if session_id in existing_session_ids:
logger.debug(f"会话 {session_id} 已存在,跳过")
skipped_count += 1
continue
# 从 Conversations 表中获取 display_name
display_name = title_map.get(user_id)
# 创建新的 PlatformSession保留原有的时间戳
new_session = PlatformSession(
session_id=session_id,
platform_id="webchat",
creator=creator,
is_group=0,
created_at=created_at,
updated_at=updated_at,
display_name=display_name,
)
sessions_to_add.append(new_session)
# 批量插入
if sessions_to_add:
session.add_all(sessions_to_add)
await session.commit()
logger.info(
f"WebChat 会话迁移完成!成功迁移: {len(sessions_to_add)}, 跳过: {skipped_count}",
)
else:
logger.info("没有新会话需要迁移")
# 标记迁移完成
await sp.put_async("global", "global", "migration_done_webchat_session_1", True)
except Exception as e:
logger.error(f"迁移过程中发生错误: {e}", exc_info=True)
raise

View File

@@ -1,6 +1,7 @@
import json
import os
from typing import TypeVar
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
_VT = TypeVar("_VT")
@@ -16,7 +17,7 @@ class SharedPreferences:
def _load_preferences(self):
if os.path.exists(self.path):
try:
with open(self.path, "r") as f:
with open(self.path) as f:
return json.load(f)
except json.JSONDecodeError:
os.remove(self.path)

View File

@@ -1,8 +1,9 @@
import sqlite3
import time
from astrbot.core.db.po import Platform, Stats
from typing import Tuple, List, Dict, Any
from dataclasses import dataclass
from typing import Any
from astrbot.core.db.po import Platform, Stats
@dataclass
@@ -94,7 +95,7 @@ class SQLiteDatabase:
c.execute(
"""
PRAGMA table_info(webchat_conversation)
"""
""",
)
res = c.fetchall()
has_title = False
@@ -108,14 +109,14 @@ class SQLiteDatabase:
c.execute(
"""
ALTER TABLE webchat_conversation ADD COLUMN title TEXT;
"""
""",
)
self.conn.commit()
if not has_persona_id:
c.execute(
"""
ALTER TABLE webchat_conversation ADD COLUMN persona_id TEXT;
"""
""",
)
self.conn.commit()
@@ -126,7 +127,7 @@ class SQLiteDatabase:
conn.text_factory = str
return conn
def _exec_sql(self, sql: str, params: Tuple = None):
def _exec_sql(self, sql: str, params: tuple = None):
conn = self.conn
try:
c = self.conn.cursor()
@@ -174,7 +175,7 @@ class SQLiteDatabase:
"""
SELECT * FROM platform
"""
+ where_clause
+ where_clause,
)
platform = []
@@ -194,7 +195,7 @@ class SQLiteDatabase:
c.execute(
"""
SELECT SUM(count) FROM platform
"""
""",
)
res = c.fetchone()
c.close()
@@ -214,7 +215,7 @@ class SQLiteDatabase:
SELECT name, SUM(count), timestamp FROM platform
"""
+ where_clause
+ " GROUP BY name"
+ " GROUP BY name",
)
platform = []
@@ -242,7 +243,7 @@ class SQLiteDatabase:
c.close()
if not res:
return
return None
return Conversation(*res)
@@ -257,7 +258,7 @@ class SQLiteDatabase:
(user_id, cid, history, updated_at, created_at),
)
def get_conversations(self, user_id: str) -> Tuple:
def get_conversations(self, user_id: str) -> tuple:
try:
c = self.conn.cursor()
except sqlite3.ProgrammingError:
@@ -280,7 +281,7 @@ class SQLiteDatabase:
title = row[3]
persona_id = row[4]
conversations.append(
Conversation("", cid, "[]", created_at, updated_at, title, persona_id)
Conversation("", cid, "[]", created_at, updated_at, title, persona_id),
)
return conversations
@@ -319,8 +320,10 @@ class SQLiteDatabase:
)
def get_all_conversations(
self, page: int = 1, page_size: int = 20
) -> Tuple[List[Dict[str, Any]], int]:
self,
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""获取所有对话,支持分页,按更新时间降序排序"""
try:
c = self.conn.cursor()
@@ -366,7 +369,7 @@ class SQLiteDatabase:
"persona_id": persona_id or "",
"created_at": created_at or 0,
"updated_at": updated_at or 0,
}
},
)
return conversations, total_count
@@ -381,12 +384,12 @@ class SQLiteDatabase:
self,
page: int = 1,
page_size: int = 20,
platforms: List[str] = None,
message_types: List[str] = None,
search_query: str = None,
exclude_ids: List[str] = None,
exclude_platforms: List[str] = None,
) -> Tuple[List[Dict[str, Any]], int]:
platforms: list[str] | None = None,
message_types: list[str] | None = None,
search_query: str | None = None,
exclude_ids: list[str] | None = None,
exclude_platforms: list[str] | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""获取筛选后的对话列表"""
try:
c = self.conn.cursor()
@@ -422,7 +425,7 @@ class SQLiteDatabase:
if search_query:
search_query = search_query.encode("unicode_escape").decode("utf-8")
where_clauses.append(
"(title LIKE ? OR user_id LIKE ? OR cid LIKE ? OR history LIKE ?)"
"(title LIKE ? OR user_id LIKE ? OR cid LIKE ? OR history LIKE ?)",
)
search_param = f"%{search_query}%"
params.extend([search_param, search_param, search_param, search_param])
@@ -482,7 +485,7 @@ class SQLiteDatabase:
"persona_id": persona_id or "",
"created_at": created_at or 0,
"updated_at": updated_at or 0,
}
},
)
return conversations, total_count

View File

@@ -1,15 +1,9 @@
import uuid
from datetime import datetime, timezone
from dataclasses import dataclass, field
from sqlmodel import (
SQLModel,
Text,
JSON,
UniqueConstraint,
Field,
)
from typing import Optional, TypedDict
from datetime import datetime, timezone
from typing import TypedDict
from sqlmodel import JSON, Field, SQLModel, Text, UniqueConstraint
class PlatformStat(SQLModel, table=True):
@@ -18,7 +12,7 @@ class PlatformStat(SQLModel, table=True):
Note: In astrbot v4, we moved `platform` table to here.
"""
__tablename__ = "platform_stats"
__tablename__ = "platform_stats" # type: ignore
id: int = Field(primary_key=True, sa_column_kwargs={"autoincrement": True})
timestamp: datetime = Field(nullable=False)
@@ -37,10 +31,11 @@ class PlatformStat(SQLModel, table=True):
class ConversationV2(SQLModel, table=True):
__tablename__ = "conversations"
__tablename__ = "conversations" # type: ignore
inner_conversation_id: int = Field(
primary_key=True, sa_column_kwargs={"autoincrement": True}
primary_key=True,
sa_column_kwargs={"autoincrement": True},
)
conversation_id: str = Field(
max_length=36,
@@ -50,14 +45,14 @@ class ConversationV2(SQLModel, table=True):
)
platform_id: str = Field(nullable=False)
user_id: str = Field(nullable=False)
content: Optional[list] = Field(default=None, sa_type=JSON)
content: list | None = Field(default=None, sa_type=JSON)
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
updated_at: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
sa_column_kwargs={"onupdate": datetime.now(timezone.utc)},
)
title: Optional[str] = Field(default=None, max_length=255)
persona_id: Optional[str] = Field(default=None)
title: str | None = Field(default=None, max_length=255)
persona_id: str | None = Field(default=None)
__table_args__ = (
UniqueConstraint(
@@ -73,16 +68,18 @@ class Persona(SQLModel, table=True):
It can be used to customize the behavior of LLMs.
"""
__tablename__ = "personas"
__tablename__ = "personas" # type: ignore
id: int | None = Field(
primary_key=True, sa_column_kwargs={"autoincrement": True}, default=None
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
persona_id: str = Field(max_length=255, nullable=False)
system_prompt: str = Field(sa_type=Text, nullable=False)
begin_dialogs: Optional[list] = Field(default=None, sa_type=JSON)
begin_dialogs: list | None = Field(default=None, sa_type=JSON)
"""a list of strings, each representing a dialog to start with"""
tools: Optional[list] = Field(default=None, sa_type=JSON)
tools: list | None = Field(default=None, sa_type=JSON)
"""None means use ALL tools for default, empty list means no tools, otherwise a list of tool names."""
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
updated_at: datetime = Field(
@@ -101,10 +98,12 @@ class Persona(SQLModel, table=True):
class Preference(SQLModel, table=True):
"""This class represents preferences for bots."""
__tablename__ = "preferences"
__tablename__ = "preferences" # type: ignore
id: int | None = Field(
default=None, primary_key=True, sa_column_kwargs={"autoincrement": True}
default=None,
primary_key=True,
sa_column_kwargs={"autoincrement": True},
)
scope: str = Field(nullable=False)
"""Scope of the preference, such as 'global', 'umo', 'plugin'."""
@@ -135,16 +134,18 @@ class PlatformMessageHistory(SQLModel, table=True):
or platform-specific messages.
"""
__tablename__ = "platform_message_history"
__tablename__ = "platform_message_history" # type: ignore
id: int | None = Field(
primary_key=True, sa_column_kwargs={"autoincrement": True}, default=None
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
platform_id: str = Field(nullable=False)
user_id: str = Field(nullable=False) # An id of group, user in platform
sender_id: Optional[str] = Field(default=None) # ID of the sender in the platform
sender_name: Optional[str] = Field(
default=None
sender_id: str | None = Field(default=None) # ID of the sender in the platform
sender_name: str | None = Field(
default=None,
) # Name of the sender in the platform
content: dict = Field(sa_type=JSON, nullable=False) # a message chain list
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
@@ -154,16 +155,60 @@ class PlatformMessageHistory(SQLModel, table=True):
)
class PlatformSession(SQLModel, table=True):
"""Platform session table for managing user sessions across different platforms.
A session represents a chat window for a specific user on a specific platform.
Each session can have multiple conversations (对话) associated with it.
"""
__tablename__ = "platform_sessions" # type: ignore
inner_id: int | None = Field(
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
session_id: str = Field(
max_length=100,
nullable=False,
unique=True,
default_factory=lambda: str(uuid.uuid4()),
)
platform_id: str = Field(default="webchat", nullable=False)
"""Platform identifier (e.g., 'webchat', 'qq', 'discord')"""
creator: str = Field(nullable=False)
"""Username of the session creator"""
display_name: str | None = Field(default=None, max_length=255)
"""Display name for the session"""
is_group: int = Field(default=0, nullable=False)
"""0 for private chat, 1 for group chat (not implemented yet)"""
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
updated_at: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
sa_column_kwargs={"onupdate": datetime.now(timezone.utc)},
)
__table_args__ = (
UniqueConstraint(
"session_id",
name="uix_platform_session_id",
),
)
class Attachment(SQLModel, table=True):
"""This class represents attachments for messages in AstrBot.
Attachments can be images, files, or other media types.
"""
__tablename__ = "attachments"
__tablename__ = "attachments" # type: ignore
inner_attachment_id: int | None = Field(
primary_key=True, sa_column_kwargs={"autoincrement": True}, default=None
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
attachment_id: str = Field(
max_length=36,

View File

@@ -1,22 +1,28 @@
import asyncio
import typing as T
import threading
from datetime import datetime, timedelta
import typing as T
from datetime import datetime, timedelta, timezone
from sqlalchemy.ext.asyncio import AsyncSession
from sqlmodel import col, delete, desc, func, or_, select, text, update
from astrbot.core.db import BaseDatabase
from astrbot.core.db.po import (
ConversationV2,
PlatformStat,
PlatformMessageHistory,
Attachment,
ConversationV2,
Persona,
PlatformMessageHistory,
PlatformSession,
PlatformStat,
Preference,
Stats as DeprecatedStats,
Platform as DeprecatedPlatformStat,
SQLModel,
)
from sqlmodel import select, update, delete, text, func, or_, desc, col
from sqlalchemy.ext.asyncio import AsyncSession
from astrbot.core.db.po import (
Platform as DeprecatedPlatformStat,
)
from astrbot.core.db.po import (
Stats as DeprecatedStats,
)
NOT_GIVEN = T.TypeVar("NOT_GIVEN")
@@ -57,7 +63,9 @@ class SQLiteDatabase(BaseDatabase):
async with session.begin():
if timestamp is None:
timestamp = datetime.now().replace(
minute=0, second=0, microsecond=0
minute=0,
second=0,
microsecond=0,
)
current_hour = timestamp
await session.execute(
@@ -81,13 +89,13 @@ class SQLiteDatabase(BaseDatabase):
session: AsyncSession
result = await session.execute(
select(func.count(col(PlatformStat.platform_id))).select_from(
PlatformStat
)
PlatformStat,
),
)
count = result.scalar_one_or_none()
return count if count is not None else 0
async def get_platform_stats(self, offset_sec: int = 86400) -> T.List[PlatformStat]:
async def get_platform_stats(self, offset_sec: int = 86400) -> list[PlatformStat]:
"""Get platform statistics within the specified offset in seconds and group by platform_id."""
async with self.get_db() as session:
session: AsyncSession
@@ -138,7 +146,7 @@ class SQLiteDatabase(BaseDatabase):
select(ConversationV2)
.order_by(desc(ConversationV2.created_at))
.offset(offset)
.limit(page_size)
.limit(page_size),
)
return result.scalars().all()
@@ -157,7 +165,7 @@ class SQLiteDatabase(BaseDatabase):
if platform_ids:
base_query = base_query.where(
col(ConversationV2.platform_id).in_(platform_ids)
col(ConversationV2.platform_id).in_(platform_ids),
)
if search_query:
search_query = search_query.encode("unicode_escape").decode("utf-8")
@@ -167,16 +175,16 @@ class SQLiteDatabase(BaseDatabase):
col(ConversationV2.content).ilike(f"%{search_query}%"),
col(ConversationV2.user_id).ilike(f"%{search_query}%"),
col(ConversationV2.conversation_id).ilike(f"%{search_query}%"),
)
),
)
if "message_types" in kwargs and len(kwargs["message_types"]) > 0:
for msg_type in kwargs["message_types"]:
base_query = base_query.where(
col(ConversationV2.user_id).ilike(f"%:{msg_type}:%")
col(ConversationV2.user_id).ilike(f"%:{msg_type}:%"),
)
if "platforms" in kwargs and len(kwargs["platforms"]) > 0:
base_query = base_query.where(
col(ConversationV2.platform_id).in_(kwargs["platforms"])
col(ConversationV2.platform_id).in_(kwargs["platforms"]),
)
# Get total count matching the filters
@@ -233,7 +241,7 @@ class SQLiteDatabase(BaseDatabase):
session: AsyncSession
async with session.begin():
query = update(ConversationV2).where(
col(ConversationV2.conversation_id) == cid
col(ConversationV2.conversation_id) == cid,
)
values = {}
if title is not None:
@@ -243,7 +251,7 @@ class SQLiteDatabase(BaseDatabase):
if content is not None:
values["content"] = content
if not values:
return
return None
query = query.values(**values)
await session.execute(query)
return await self.get_conversation_by_id(cid)
@@ -254,8 +262,8 @@ class SQLiteDatabase(BaseDatabase):
async with session.begin():
await session.execute(
delete(ConversationV2).where(
col(ConversationV2.conversation_id) == cid
)
col(ConversationV2.conversation_id) == cid,
),
)
async def delete_conversations_by_user_id(self, user_id: str) -> None:
@@ -263,7 +271,9 @@ class SQLiteDatabase(BaseDatabase):
session: AsyncSession
async with session.begin():
await session.execute(
delete(ConversationV2).where(col(ConversationV2.user_id) == user_id)
delete(ConversationV2).where(
col(ConversationV2.user_id) == user_id
),
)
async def get_session_conversations(
@@ -282,7 +292,7 @@ class SQLiteDatabase(BaseDatabase):
select(
col(Preference.scope_id).label("session_id"),
func.json_extract(Preference.value, "$.val").label(
"conversation_id"
"conversation_id",
), # type: ignore
col(ConversationV2.persona_id).label("persona_id"),
col(ConversationV2.title).label("title"),
@@ -295,7 +305,8 @@ class SQLiteDatabase(BaseDatabase):
== ConversationV2.conversation_id,
)
.outerjoin(
Persona, col(ConversationV2.persona_id) == Persona.persona_id
Persona,
col(ConversationV2.persona_id) == Persona.persona_id,
)
.where(Preference.scope == "umo", Preference.key == "sel_conv_id")
)
@@ -308,14 +319,14 @@ class SQLiteDatabase(BaseDatabase):
col(Preference.scope_id).ilike(search_pattern),
col(ConversationV2.title).ilike(search_pattern),
col(Persona.persona_id).ilike(search_pattern),
)
),
)
# 平台筛选
if platform:
platform_pattern = f"{platform}:%"
base_query = base_query.where(
col(Preference.scope_id).like(platform_pattern)
col(Preference.scope_id).like(platform_pattern),
)
# 排序
@@ -336,7 +347,8 @@ class SQLiteDatabase(BaseDatabase):
== ConversationV2.conversation_id,
)
.outerjoin(
Persona, col(ConversationV2.persona_id) == Persona.persona_id
Persona,
col(ConversationV2.persona_id) == Persona.persona_id,
)
.where(Preference.scope == "umo", Preference.key == "sel_conv_id")
)
@@ -349,13 +361,13 @@ class SQLiteDatabase(BaseDatabase):
col(Preference.scope_id).ilike(search_pattern),
col(ConversationV2.title).ilike(search_pattern),
col(Persona.persona_id).ilike(search_pattern),
)
),
)
if platform:
platform_pattern = f"{platform}:%"
count_base_query = count_base_query.where(
col(Preference.scope_id).like(platform_pattern)
col(Preference.scope_id).like(platform_pattern),
)
total_result = await session.execute(count_base_query)
@@ -396,9 +408,12 @@ class SQLiteDatabase(BaseDatabase):
return new_history
async def delete_platform_message_offset(
self, platform_id, user_id, offset_sec=86400
self,
platform_id,
user_id,
offset_sec=86400,
):
"""Delete platform message history records older than the specified offset."""
"""Delete platform message history records newer than the specified offset."""
async with self.get_db() as session:
session: AsyncSession
async with session.begin():
@@ -408,12 +423,16 @@ class SQLiteDatabase(BaseDatabase):
delete(PlatformMessageHistory).where(
col(PlatformMessageHistory.platform_id) == platform_id,
col(PlatformMessageHistory.user_id) == user_id,
col(PlatformMessageHistory.created_at) < cutoff_time,
)
col(PlatformMessageHistory.created_at) >= cutoff_time,
),
)
async def get_platform_message_history(
self, platform_id, user_id, page=1, page_size=20
self,
platform_id,
user_id,
page=1,
page_size=20,
):
"""Get platform message history records."""
async with self.get_db() as session:
@@ -452,7 +471,11 @@ class SQLiteDatabase(BaseDatabase):
return result.scalar_one_or_none()
async def insert_persona(
self, persona_id, system_prompt, begin_dialogs=None, tools=None
self,
persona_id,
system_prompt,
begin_dialogs=None,
tools=None,
):
"""Insert a new persona record."""
async with self.get_db() as session:
@@ -484,7 +507,11 @@ class SQLiteDatabase(BaseDatabase):
return result.scalars().all()
async def update_persona(
self, persona_id, system_prompt=None, begin_dialogs=None, tools=NOT_GIVEN
self,
persona_id,
system_prompt=None,
begin_dialogs=None,
tools=NOT_GIVEN,
):
"""Update a persona's system prompt or begin dialogs."""
async with self.get_db() as session:
@@ -499,7 +526,7 @@ class SQLiteDatabase(BaseDatabase):
if tools is not NOT_GIVEN:
values["tools"] = tools
if not values:
return
return None
query = query.values(**values)
await session.execute(query)
return await self.get_persona_by_id(persona_id)
@@ -510,7 +537,7 @@ class SQLiteDatabase(BaseDatabase):
session: AsyncSession
async with session.begin():
await session.execute(
delete(Persona).where(col(Persona.persona_id) == persona_id)
delete(Persona).where(col(Persona.persona_id) == persona_id),
)
async def insert_preference_or_update(self, scope, scope_id, key, value):
@@ -529,7 +556,10 @@ class SQLiteDatabase(BaseDatabase):
existing_preference.value = value
else:
new_preference = Preference(
scope=scope, scope_id=scope_id, key=key, value=value
scope=scope,
scope_id=scope_id,
key=key,
value=value,
)
session.add(new_preference)
return existing_preference or new_preference
@@ -568,7 +598,7 @@ class SQLiteDatabase(BaseDatabase):
col(Preference.scope) == scope,
col(Preference.scope_id) == scope_id,
col(Preference.key) == key,
)
),
)
await session.commit()
@@ -581,7 +611,7 @@ class SQLiteDatabase(BaseDatabase):
delete(Preference).where(
col(Preference.scope) == scope,
col(Preference.scope_id) == scope_id,
)
),
)
await session.commit()
@@ -598,7 +628,7 @@ class SQLiteDatabase(BaseDatabase):
now = datetime.now()
start_time = now - timedelta(seconds=offset_sec)
result = await session.execute(
select(PlatformStat).where(PlatformStat.timestamp >= start_time)
select(PlatformStat).where(PlatformStat.timestamp >= start_time),
)
all_datas = result.scalars().all()
deprecated_stats = DeprecatedStats()
@@ -608,7 +638,7 @@ class SQLiteDatabase(BaseDatabase):
name=data.platform_id,
count=data.count,
timestamp=int(data.timestamp.timestamp()),
)
),
)
return deprecated_stats
@@ -630,7 +660,7 @@ class SQLiteDatabase(BaseDatabase):
async with self.get_db() as session:
session: AsyncSession
result = await session.execute(
select(func.sum(PlatformStat.count)).select_from(PlatformStat)
select(func.sum(PlatformStat.count)).select_from(PlatformStat),
)
total_count = result.scalar_one_or_none()
return total_count if total_count is not None else 0
@@ -656,7 +686,7 @@ class SQLiteDatabase(BaseDatabase):
result = await session.execute(
select(PlatformStat.platform_id, func.sum(PlatformStat.count))
.where(PlatformStat.timestamp >= start_time)
.group_by(PlatformStat.platform_id)
.group_by(PlatformStat.platform_id),
)
grouped_stats = result.all()
deprecated_stats = DeprecatedStats()
@@ -666,7 +696,7 @@ class SQLiteDatabase(BaseDatabase):
name=platform_id,
count=count,
timestamp=int(start_time.timestamp()),
)
),
)
return deprecated_stats
@@ -680,3 +710,101 @@ class SQLiteDatabase(BaseDatabase):
t.start()
t.join()
return result
# ====
# Platform Session Management
# ====
async def create_platform_session(
self,
creator: str,
platform_id: str = "webchat",
session_id: str | None = None,
display_name: str | None = None,
is_group: int = 0,
) -> PlatformSession:
"""Create a new Platform session."""
kwargs = {}
if session_id:
kwargs["session_id"] = session_id
async with self.get_db() as session:
session: AsyncSession
async with session.begin():
new_session = PlatformSession(
creator=creator,
platform_id=platform_id,
display_name=display_name,
is_group=is_group,
**kwargs,
)
session.add(new_session)
await session.flush()
await session.refresh(new_session)
return new_session
async def get_platform_session_by_id(
self, session_id: str
) -> PlatformSession | None:
"""Get a Platform session by its ID."""
async with self.get_db() as session:
session: AsyncSession
query = select(PlatformSession).where(
PlatformSession.session_id == session_id,
)
result = await session.execute(query)
return result.scalar_one_or_none()
async def get_platform_sessions_by_creator(
self,
creator: str,
platform_id: str | None = None,
page: int = 1,
page_size: int = 20,
) -> list[PlatformSession]:
"""Get all Platform sessions for a specific creator (username) and optionally platform."""
async with self.get_db() as session:
session: AsyncSession
offset = (page - 1) * page_size
query = select(PlatformSession).where(PlatformSession.creator == creator)
if platform_id:
query = query.where(PlatformSession.platform_id == platform_id)
query = (
query.order_by(desc(PlatformSession.updated_at))
.offset(offset)
.limit(page_size)
)
result = await session.execute(query)
return list(result.scalars().all())
async def update_platform_session(
self,
session_id: str,
display_name: str | None = None,
) -> None:
"""Update a Platform session's updated_at timestamp and optionally display_name."""
async with self.get_db() as session:
session: AsyncSession
async with session.begin():
values: dict[str, T.Any] = {"updated_at": datetime.now(timezone.utc)}
if display_name is not None:
values["display_name"] = display_name
await session.execute(
update(PlatformSession)
.where(col(PlatformSession.session_id) == session_id)
.values(**values),
)
async def delete_platform_session(self, session_id: str) -> None:
"""Delete a Platform session by its ID."""
async with self.get_db() as session:
session: AsyncSession
async with session.begin():
await session.execute(
delete(PlatformSession).where(
col(PlatformSession.session_id) == session_id,
),
)

View File

@@ -10,22 +10,47 @@ class Result:
class BaseVecDB:
async def initialize(self):
"""
初始化向量数据库
"""
pass
"""初始化向量数据库"""
@abc.abstractmethod
async def insert(self, content: str, metadata: dict = None, id: str = None) -> int:
"""
插入一条文本和其对应向量,自动生成 ID 并保持一致性。
async def insert(
self,
content: str,
metadata: dict | None = None,
id: str | None = None,
) -> int:
"""插入一条文本和其对应向量,自动生成 ID 并保持一致性。"""
...
@abc.abstractmethod
async def insert_batch(
self,
contents: list[str],
metadatas: list[dict] | None = None,
ids: list[str] | None = None,
batch_size: int = 32,
tasks_limit: int = 3,
max_retries: int = 3,
progress_callback=None,
) -> int:
"""批量插入文本和其对应向量,自动生成 ID 并保持一致性。
Args:
progress_callback: 进度回调函数,接收参数 (current, total)
"""
...
@abc.abstractmethod
async def retrieve(self, query: str, top_k: int = 5) -> list[Result]:
"""
搜索最相似的文档。
async def retrieve(
self,
query: str,
top_k: int = 5,
fetch_k: int = 20,
rerank: bool = False,
metadata_filters: dict | None = None,
) -> list[Result]:
"""搜索最相似的文档。
Args:
query (str): 查询文本
top_k (int): 返回的最相似文档的数量
@@ -36,11 +61,13 @@ class BaseVecDB:
@abc.abstractmethod
async def delete(self, doc_id: str) -> bool:
"""
删除指定文档。
"""删除指定文档。
Args:
doc_id (str): 要删除的文档 ID
Returns:
bool: 删除是否成功
"""
...
@abc.abstractmethod
async def close(self): ...

View File

@@ -1,59 +1,232 @@
import aiosqlite
import json
import os
from contextlib import asynccontextmanager
from datetime import datetime
from sqlalchemy import Column, Text
from sqlalchemy.ext.asyncio import AsyncEngine, AsyncSession, create_async_engine
from sqlalchemy.orm import sessionmaker
from sqlmodel import Field, MetaData, SQLModel, col, func, select, text
from astrbot.core import logger
class BaseDocModel(SQLModel, table=False):
metadata = MetaData()
class Document(BaseDocModel, table=True):
"""SQLModel for documents table."""
__tablename__ = "documents" # type: ignore
id: int | None = Field(
default=None,
primary_key=True,
sa_column_kwargs={"autoincrement": True},
)
doc_id: str = Field(nullable=False)
text: str = Field(nullable=False)
metadata_: str | None = Field(default=None, sa_column=Column("metadata", Text))
created_at: datetime | None = Field(default=None)
updated_at: datetime | None = Field(default=None)
class DocumentStorage:
def __init__(self, db_path: str):
self.db_path = db_path
self.connection = None
self.DATABASE_URL = f"sqlite+aiosqlite:///{db_path}"
self.engine: AsyncEngine | None = None
self.async_session_maker: sessionmaker | None = None
self.sqlite_init_path = os.path.join(
os.path.dirname(__file__), "sqlite_init.sql"
os.path.dirname(__file__),
"sqlite_init.sql",
)
async def initialize(self):
"""Initialize the SQLite database and create the documents table if it doesn't exist."""
if not os.path.exists(self.db_path):
await self.connect()
async with self.connection.cursor() as cursor:
with open(self.sqlite_init_path, "r", encoding="utf-8") as f:
sql_script = f.read()
await cursor.executescript(sql_script)
await self.connection.commit()
else:
await self.connect()
await self.connect()
async with self.engine.begin() as conn: # type: ignore
# Create tables using SQLModel
await conn.run_sync(BaseDocModel.metadata.create_all)
try:
await conn.execute(
text(
"ALTER TABLE documents ADD COLUMN kb_doc_id TEXT "
"GENERATED ALWAYS AS (json_extract(metadata, '$.kb_doc_id')) STORED",
),
)
await conn.execute(
text(
"ALTER TABLE documents ADD COLUMN user_id TEXT "
"GENERATED ALWAYS AS (json_extract(metadata, '$.user_id')) STORED",
),
)
# Create indexes
await conn.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_documents_kb_doc_id ON documents(kb_doc_id)",
),
)
await conn.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_documents_user_id ON documents(user_id)",
),
)
except BaseException:
pass
await conn.commit()
async def connect(self):
"""Connect to the SQLite database."""
self.connection = await aiosqlite.connect(self.db_path)
if self.engine is None:
self.engine = create_async_engine(
self.DATABASE_URL,
echo=False,
future=True,
)
self.async_session_maker = sessionmaker(
self.engine, # type: ignore
class_=AsyncSession,
expire_on_commit=False,
) # type: ignore
async def get_documents(self, metadata_filters: dict, ids: list = None):
@asynccontextmanager
async def get_session(self):
"""Context manager for database sessions."""
async with self.async_session_maker() as session: # type: ignore
yield session
async def get_documents(
self,
metadata_filters: dict,
ids: list | None = None,
offset: int | None = 0,
limit: int | None = 100,
) -> list[dict]:
"""Retrieve documents by metadata filters and ids.
Args:
metadata_filters (dict): The metadata filters to apply.
ids (list | None): Optional list of document IDs to filter.
offset (int | None): Offset for pagination.
limit (int | None): Limit for pagination.
Returns:
list: The list of document IDs(primary key, not doc_id) that match the filters.
"""
# metadata filter -> SQL WHERE clause
where_clauses = []
values = []
for key, val in metadata_filters.items():
where_clauses.append(f"json_extract(metadata, '$.{key}') = ?")
values.append(val)
if ids is not None and len(ids) > 0:
ids = [str(i) for i in ids if i != -1]
where_clauses.append("id IN ({})".format(",".join("?" * len(ids))))
values.extend(ids)
where_sql = " AND ".join(where_clauses) or "1=1"
list: The list of documents that match the filters.
result = []
async with self.connection.cursor() as cursor:
sql = "SELECT * FROM documents WHERE " + where_sql
await cursor.execute(sql, values)
for row in await cursor.fetchall():
result.append(await self.tuple_to_dict(row))
return result
"""
if self.engine is None:
logger.warning(
"Database connection is not initialized, returning empty result",
)
return []
async with self.get_session() as session:
query = select(Document)
for key, val in metadata_filters.items():
query = query.where(
text(f"json_extract(metadata, '$.{key}') = :filter_{key}"),
).params(**{f"filter_{key}": val})
if ids is not None and len(ids) > 0:
valid_ids = [int(i) for i in ids if i != -1]
if valid_ids:
query = query.where(col(Document.id).in_(valid_ids))
if limit is not None:
query = query.limit(limit)
if offset is not None:
query = query.offset(offset)
result = await session.execute(query)
documents = result.scalars().all()
return [self._document_to_dict(doc) for doc in documents]
async def insert_document(self, doc_id: str, text: str, metadata: dict) -> int:
"""Insert a single document and return its integer ID.
Args:
doc_id (str): The document ID (UUID string).
text (str): The document text.
metadata (dict): The document metadata.
Returns:
int: The integer ID of the inserted document.
"""
assert self.engine is not None, "Database connection is not initialized."
async with self.get_session() as session, session.begin():
document = Document(
doc_id=doc_id,
text=text,
metadata_=json.dumps(metadata),
created_at=datetime.now(),
updated_at=datetime.now(),
)
session.add(document)
await session.flush() # Flush to get the ID
return document.id # type: ignore
async def insert_documents_batch(
self,
doc_ids: list[str],
texts: list[str],
metadatas: list[dict],
) -> list[int]:
"""Batch insert documents and return their integer IDs.
Args:
doc_ids (list[str]): List of document IDs (UUID strings).
texts (list[str]): List of document texts.
metadatas (list[dict]): List of document metadata.
Returns:
list[int]: List of integer IDs of the inserted documents.
"""
assert self.engine is not None, "Database connection is not initialized."
async with self.get_session() as session, session.begin():
import json
documents = []
for doc_id, text, metadata in zip(doc_ids, texts, metadatas):
document = Document(
doc_id=doc_id,
text=text,
metadata_=json.dumps(metadata),
created_at=datetime.now(),
updated_at=datetime.now(),
)
documents.append(document)
session.add(document)
await session.flush() # Flush to get all IDs
return [doc.id for doc in documents] # type: ignore
async def delete_document_by_doc_id(self, doc_id: str):
"""Delete a document by its doc_id.
Args:
doc_id (str): The doc_id of the document to delete.
"""
assert self.engine is not None, "Database connection is not initialized."
async with self.get_session() as session, session.begin():
query = select(Document).where(col(Document.doc_id) == doc_id)
result = await session.execute(query)
document = result.scalar_one_or_none()
if document:
await session.delete(document)
async def get_document_by_doc_id(self, doc_id: str):
"""Retrieve a document by its doc_id.
@@ -62,40 +235,134 @@ class DocumentStorage:
doc_id (str): The doc_id of the document to retrieve.
Returns:
dict: The document data.
dict: The document data or None if not found.
"""
async with self.connection.cursor() as cursor:
await cursor.execute("SELECT * FROM documents WHERE doc_id = ?", (doc_id,))
row = await cursor.fetchone()
if row:
return await self.tuple_to_dict(row)
else:
return None
assert self.engine is not None, "Database connection is not initialized."
async with self.get_session() as session:
query = select(Document).where(col(Document.doc_id) == doc_id)
result = await session.execute(query)
document = result.scalar_one_or_none()
if document:
return self._document_to_dict(document)
return None
async def update_document_by_doc_id(self, doc_id: str, new_text: str):
"""Retrieve a document by its doc_id.
"""Update a document by its doc_id.
Args:
doc_id (str): The doc_id.
new_text (str): The new text to update the document with.
"""
async with self.connection.cursor() as cursor:
await cursor.execute(
"UPDATE documents SET text = ? WHERE doc_id = ?", (new_text, doc_id)
assert self.engine is not None, "Database connection is not initialized."
async with self.get_session() as session, session.begin():
query = select(Document).where(col(Document.doc_id) == doc_id)
result = await session.execute(query)
document = result.scalar_one_or_none()
if document:
document.text = new_text
document.updated_at = datetime.now()
session.add(document)
async def delete_documents(self, metadata_filters: dict):
"""Delete documents by their metadata filters.
Args:
metadata_filters (dict): The metadata filters to apply.
"""
if self.engine is None:
logger.warning(
"Database connection is not initialized, skipping delete operation",
)
await self.connection.commit()
return
async with self.get_session() as session, session.begin():
query = select(Document)
for key, val in metadata_filters.items():
query = query.where(
text(f"json_extract(metadata, '$.{key}') = :filter_{key}"),
).params(**{f"filter_{key}": val})
result = await session.execute(query)
documents = result.scalars().all()
for doc in documents:
await session.delete(doc)
async def count_documents(self, metadata_filters: dict | None = None) -> int:
"""Count documents in the database.
Args:
metadata_filters (dict | None): Metadata filters to apply.
Returns:
int: The count of documents.
"""
if self.engine is None:
logger.warning("Database connection is not initialized, returning 0")
return 0
async with self.get_session() as session:
query = select(func.count(col(Document.id)))
if metadata_filters:
for key, val in metadata_filters.items():
query = query.where(
text(f"json_extract(metadata, '$.{key}') = :filter_{key}"),
).params(**{f"filter_{key}": val})
result = await session.execute(query)
count = result.scalar_one_or_none()
return count if count is not None else 0
async def get_user_ids(self) -> list[str]:
"""Retrieve all user IDs from the documents table.
Returns:
list: A list of user IDs.
"""
async with self.connection.cursor() as cursor:
await cursor.execute("SELECT DISTINCT user_id FROM documents")
rows = await cursor.fetchall()
assert self.engine is not None, "Database connection is not initialized."
async with self.get_session() as session:
query = text(
"SELECT DISTINCT user_id FROM documents WHERE user_id IS NOT NULL",
)
result = await session.execute(query)
rows = result.fetchall()
return [row[0] for row in rows]
def _document_to_dict(self, document: Document) -> dict:
"""Convert a Document model to a dictionary.
Args:
document (Document): The document to convert.
Returns:
dict: The converted dictionary.
"""
return {
"id": document.id,
"doc_id": document.doc_id,
"text": document.text,
"metadata": document.metadata_,
"created_at": document.created_at.isoformat()
if isinstance(document.created_at, datetime)
else document.created_at,
"updated_at": document.updated_at.isoformat()
if isinstance(document.updated_at, datetime)
else document.updated_at,
}
async def tuple_to_dict(self, row):
"""Convert a tuple to a dictionary.
@@ -104,6 +371,9 @@ class DocumentStorage:
Returns:
dict: The converted dictionary.
Note: This method is kept for backward compatibility but is no longer used internally.
"""
return {
"id": row[0],
@@ -116,6 +386,7 @@ class DocumentStorage:
async def close(self):
"""Close the connection to the SQLite database."""
if self.connection:
await self.connection.close()
self.connection = None
if self.engine:
await self.engine.dispose()
self.engine = None
self.async_session_maker = None

View File

@@ -2,14 +2,15 @@ try:
import faiss
except ModuleNotFoundError:
raise ImportError(
"faiss 未安装。请使用 'pip install faiss-cpu''pip install faiss-gpu' 安装。"
"faiss 未安装。请使用 'pip install faiss-cpu''pip install faiss-gpu' 安装。",
)
import os
import numpy as np
class EmbeddingStorage:
def __init__(self, dimension: int, path: str = None):
def __init__(self, dimension: int, path: str | None = None):
self.dimension = dimension
self.path = path
self.index = None
@@ -18,7 +19,6 @@ class EmbeddingStorage:
else:
base_index = faiss.IndexFlatL2(dimension)
self.index = faiss.IndexIDMap(base_index)
self.storage = {}
async def insert(self, vector: np.ndarray, id: int):
"""插入向量
@@ -28,13 +28,32 @@ class EmbeddingStorage:
id (int): 向量的ID
Raises:
ValueError: 如果向量的维度与存储的维度不匹配
"""
assert self.index is not None, "FAISS index is not initialized."
if vector.shape[0] != self.dimension:
raise ValueError(
f"向量维度不匹配, 期望: {self.dimension}, 实际: {vector.shape[0]}"
f"向量维度不匹配, 期望: {self.dimension}, 实际: {vector.shape[0]}",
)
self.index.add_with_ids(vector.reshape(1, -1), np.array([id]))
self.storage[id] = vector
await self.save_index()
async def insert_batch(self, vectors: np.ndarray, ids: list[int]):
"""批量插入向量
Args:
vectors (np.ndarray): 要插入的向量数组
ids (list[int]): 向量的ID列表
Raises:
ValueError: 如果向量的维度与存储的维度不匹配
"""
assert self.index is not None, "FAISS index is not initialized."
if vectors.shape[1] != self.dimension:
raise ValueError(
f"向量维度不匹配, 期望: {self.dimension}, 实际: {vectors.shape[1]}",
)
self.index.add_with_ids(vectors, np.array(ids))
await self.save_index()
async def search(self, vector: np.ndarray, k: int) -> tuple:
@@ -45,15 +64,30 @@ class EmbeddingStorage:
k (int): 返回的最相似向量的数量
Returns:
tuple: (距离, 索引)
"""
assert self.index is not None, "FAISS index is not initialized."
faiss.normalize_L2(vector)
distances, indices = self.index.search(vector, k)
return distances, indices
async def delete(self, ids: list[int]):
"""删除向量
Args:
ids (list[int]): 要删除的向量ID列表
"""
assert self.index is not None, "FAISS index is not initialized."
id_array = np.array(ids, dtype=np.int64)
self.index.remove_ids(id_array)
await self.save_index()
async def save_index(self):
"""保存索引
Args:
path (str): 保存索引的路径
"""
faiss.write_index(self.index, self.path)

View File

@@ -1,17 +1,18 @@
import time
import uuid
import json
import numpy as np
from astrbot import logger
from astrbot.core.provider.provider import EmbeddingProvider, RerankProvider
from ..base import BaseVecDB, Result
from .document_storage import DocumentStorage
from .embedding_storage import EmbeddingStorage
from ..base import Result, BaseVecDB
from astrbot.core.provider.provider import EmbeddingProvider
from astrbot.core.provider.provider import RerankProvider
class FaissVecDB(BaseVecDB):
"""
A class to represent a vector database.
"""
"""A class to represent a vector database."""
def __init__(
self,
@@ -25,7 +26,8 @@ class FaissVecDB(BaseVecDB):
self.embedding_provider = embedding_provider
self.document_storage = DocumentStorage(doc_store_path)
self.embedding_storage = EmbeddingStorage(
embedding_provider.get_dim(), index_store_path
embedding_provider.get_dim(),
index_store_path,
)
self.embedding_provider = embedding_provider
self.rerank_provider = rerank_provider
@@ -34,28 +36,69 @@ class FaissVecDB(BaseVecDB):
await self.document_storage.initialize()
async def insert(
self, content: str, metadata: dict | None = None, id: str | None = None
self,
content: str,
metadata: dict | None = None,
id: str | None = None,
) -> int:
"""
插入一条文本和其对应向量,自动生成 ID 并保持一致性。
"""
"""插入一条文本和其对应向量,自动生成 ID 并保持一致性。"""
metadata = metadata or {}
str_id = id or str(uuid.uuid4()) # 使用 UUID 作为原始 ID
vector = await self.embedding_provider.get_embedding(content)
vector = np.array(vector, dtype=np.float32)
async with self.document_storage.connection.cursor() as cursor:
await cursor.execute(
"INSERT INTO documents (doc_id, text, metadata) VALUES (?, ?, ?)",
(str_id, content, json.dumps(metadata)),
)
await self.document_storage.connection.commit()
result = await self.document_storage.get_document_by_doc_id(str_id)
int_id = result["id"]
# 插入向量到 FAISS
await self.embedding_storage.insert(vector, int_id)
return int_id
# 使用 DocumentStorage 的方法插入文档
int_id = await self.document_storage.insert_document(str_id, content, metadata)
# 插入向量到 FAISS
await self.embedding_storage.insert(vector, int_id)
return int_id
async def insert_batch(
self,
contents: list[str],
metadatas: list[dict] | None = None,
ids: list[str] | None = None,
batch_size: int = 32,
tasks_limit: int = 3,
max_retries: int = 3,
progress_callback=None,
) -> list[int]:
"""批量插入文本和其对应向量,自动生成 ID 并保持一致性。
Args:
progress_callback: 进度回调函数,接收参数 (current, total)
"""
metadatas = metadatas or [{} for _ in contents]
ids = ids or [str(uuid.uuid4()) for _ in contents]
start = time.time()
logger.debug(f"Generating embeddings for {len(contents)} contents...")
vectors = await self.embedding_provider.get_embeddings_batch(
contents,
batch_size=batch_size,
tasks_limit=tasks_limit,
max_retries=max_retries,
progress_callback=progress_callback,
)
end = time.time()
logger.debug(
f"Generated embeddings for {len(contents)} contents in {end - start:.2f} seconds.",
)
# 使用 DocumentStorage 的批量插入方法
int_ids = await self.document_storage.insert_documents_batch(
ids,
contents,
metadatas,
)
# 批量插入向量到 FAISS
vectors_array = np.array(vectors).astype("float32")
await self.embedding_storage.insert_batch(vectors_array, int_ids)
return int_ids
async def retrieve(
self,
@@ -65,8 +108,7 @@ class FaissVecDB(BaseVecDB):
rerank: bool = False,
metadata_filters: dict | None = None,
) -> list[Result]:
"""
搜索最相似的文档。
"""搜索最相似的文档。
Args:
query (str): 查询文本
@@ -77,6 +119,7 @@ class FaissVecDB(BaseVecDB):
Returns:
List[Result]: 查询结果
"""
embedding = await self.embedding_provider.get_embedding(query)
scores, indices = await self.embedding_storage.search(
@@ -89,7 +132,8 @@ class FaissVecDB(BaseVecDB):
scores[0] = 1.0 - (scores[0] / 2.0)
# NOTE: maybe the size is less than k.
fetched_docs = await self.document_storage.get_documents(
metadata_filters=metadata_filters or {}, ids=indices[0]
metadata_filters=metadata_filters or {},
ids=indices[0],
)
if not fetched_docs:
return []
@@ -110,7 +154,9 @@ class FaissVecDB(BaseVecDB):
documents = [doc.data["text"] for doc in top_k_results]
reranked_results = await self.rerank_provider.rerank(query, documents)
reranked_results = sorted(
reranked_results, key=lambda x: x.relevance_score, reverse=True
reranked_results,
key=lambda x: x.relevance_score,
reverse=True,
)
top_k_results = [
top_k_results[reranked_result.index]
@@ -119,23 +165,40 @@ class FaissVecDB(BaseVecDB):
return top_k_results
async def delete(self, doc_id: int):
"""
删除一条文档
"""
await self.document_storage.connection.execute(
"DELETE FROM documents WHERE doc_id = ?", (doc_id,)
)
await self.document_storage.connection.commit()
async def delete(self, doc_id: str):
"""删除一条文档块chunk"""
# 获得对应的 int id
result = await self.document_storage.get_document_by_doc_id(doc_id)
int_id = result["id"] if result else None
if int_id is None:
return
# 使用 DocumentStorage 的删除方法
await self.document_storage.delete_document_by_doc_id(doc_id)
await self.embedding_storage.delete([int_id])
async def close(self):
await self.document_storage.close()
async def count_documents(self) -> int:
async def count_documents(self, metadata_filter: dict | None = None) -> int:
"""计算文档数量
Args:
metadata_filter (dict | None): 元数据过滤器
"""
计算文档数量
"""
async with self.document_storage.connection.cursor() as cursor:
await cursor.execute("SELECT COUNT(*) FROM documents")
count = await cursor.fetchone()
return count[0] if count else 0
count = await self.document_storage.count_documents(
metadata_filters=metadata_filter or {},
)
return count
async def delete_documents(self, metadata_filters: dict):
"""根据元数据过滤器删除文档"""
docs = await self.document_storage.get_documents(
metadata_filters=metadata_filters,
offset=None,
limit=None,
)
doc_ids: list[int] = [doc["id"] for doc in docs]
await self.embedding_storage.delete(doc_ids)
await self.document_storage.delete_documents(metadata_filters=metadata_filters)

View File

@@ -1,5 +1,4 @@
"""
事件总线, 用于处理事件的分发和处理
"""事件总线, 用于处理事件的分发和处理
事件总线是一个异步队列, 用于接收各种消息事件, 并将其发送到Scheduler调度器进行处理
其中包含了一个无限循环的调度函数, 用于从事件队列中获取新的事件, 并创建一个新的异步任务来执行管道调度器的处理逻辑
@@ -13,10 +12,12 @@ class:
import asyncio
from asyncio import Queue
from astrbot.core.pipeline.scheduler import PipelineScheduler
from astrbot.core import logger
from .platform import AstrMessageEvent
from astrbot.core.astrbot_config_mgr import AstrBotConfigManager
from astrbot.core.pipeline.scheduler import PipelineScheduler
from .platform import AstrMessageEvent
class EventBus:
@@ -46,14 +47,15 @@ class EventBus:
Args:
event (AstrMessageEvent): 事件对象
"""
# 如果有发送者名称: [平台名] 发送者名称/发送者ID: 消息概要
if event.get_sender_name():
logger.info(
f"[{conf_name}] [{event.get_platform_id()}({event.get_platform_name()})] {event.get_sender_name()}/{event.get_sender_id()}: {event.get_message_outline()}"
f"[{conf_name}] [{event.get_platform_id()}({event.get_platform_name()})] {event.get_sender_name()}/{event.get_sender_id()}: {event.get_message_outline()}",
)
# 没有发送者名称: [平台名] 发送者ID: 消息概要
else:
logger.info(
f"[{conf_name}] [{event.get_platform_id()}({event.get_platform_name()})] {event.get_sender_id()}: {event.get_message_outline()}"
f"[{conf_name}] [{event.get_platform_id()}({event.get_platform_name()})] {event.get_sender_id()}: {event.get_message_outline()}",
)

View File

@@ -0,0 +1,9 @@
from __future__ import annotations
class AstrBotError(Exception):
"""Base exception for all AstrBot errors."""
class ProviderNotFoundError(AstrBotError):
"""Raised when a specified provider is not found."""

View File

@@ -1,9 +1,9 @@
import asyncio
import os
import uuid
import time
from urllib.parse import urlparse, unquote
import platform
import time
import uuid
from urllib.parse import unquote, urlparse
class FileTokenService:
@@ -23,7 +23,12 @@ class FileTokenService:
for token in expired_tokens:
self.staged_files.pop(token, None)
async def register_file(self, file_path: str, timeout: float = None) -> str:
async def check_token_expired(self, file_token: str) -> bool:
async with self.lock:
await self._cleanup_expired_tokens()
return file_token not in self.staged_files
async def register_file(self, file_path: str, timeout: float | None = None) -> str:
"""向令牌服务注册一个文件。
Args:
@@ -35,8 +40,8 @@ class FileTokenService:
Raises:
FileNotFoundError: 当路径不存在时抛出
"""
"""
# 处理 file:///
try:
parsed_uri = urlparse(file_path)
@@ -56,7 +61,7 @@ class FileTokenService:
if not os.path.exists(local_path):
raise FileNotFoundError(
f"文件不存在: {local_path} (原始输入: {file_path})"
f"文件不存在: {local_path} (原始输入: {file_path})",
)
file_token = str(uuid.uuid4())
@@ -79,6 +84,7 @@ class FileTokenService:
Raises:
KeyError: 当令牌不存在或已过期时抛出
FileNotFoundError: 当文件本身已被删除时抛出
"""
async with self.lock:
await self._cleanup_expired_tokens()

View File

@@ -1,5 +1,4 @@
"""
AstrBot 启动器,负责初始化和启动核心组件和仪表板服务器。
"""AstrBot 启动器,负责初始化和启动核心组件和仪表板服务器。
工作流程:
1. 初始化核心生命周期, 传递数据库和日志代理实例到核心生命周期
@@ -8,10 +7,10 @@ AstrBot 启动器,负责初始化和启动核心组件和仪表板服务器。
import asyncio
import traceback
from astrbot.core import logger
from astrbot.core import LogBroker, logger
from astrbot.core.core_lifecycle import AstrBotCoreLifecycle
from astrbot.core.db import BaseDatabase
from astrbot.core import LogBroker
from astrbot.dashboard.server import AstrBotDashboard
@@ -39,12 +38,18 @@ class InitialLoader:
webui_dir = self.webui_dir
self.dashboard_server = AstrBotDashboard(
core_lifecycle, self.db, core_lifecycle.dashboard_shutdown_event, webui_dir
core_lifecycle,
self.db,
core_lifecycle.dashboard_shutdown_event,
webui_dir,
)
task = asyncio.gather(
core_task, self.dashboard_server.run()
) # 启动核心任务和仪表板服务器
coro = self.dashboard_server.run()
if coro:
# 启动核心任务和仪表板服务器
task = asyncio.gather(core_task, coro)
else:
task = core_task
try:
await task # 整个AstrBot在这里运行
except asyncio.CancelledError:

View File

@@ -0,0 +1,9 @@
"""文档分块模块"""
from .base import BaseChunker
from .fixed_size import FixedSizeChunker
__all__ = [
"BaseChunker",
"FixedSizeChunker",
]

View File

@@ -0,0 +1,25 @@
"""文档分块器基类
定义了文档分块处理的抽象接口。
"""
from abc import ABC, abstractmethod
class BaseChunker(ABC):
"""分块器基类
所有分块器都应该继承此类并实现 chunk 方法。
"""
@abstractmethod
async def chunk(self, text: str, **kwargs) -> list[str]:
"""将文本分块
Args:
text: 输入文本
Returns:
list[str]: 分块后的文本列表
"""

View File

@@ -0,0 +1,59 @@
"""固定大小分块器
按照固定的字符数将文本分块,支持重叠区域。
"""
from .base import BaseChunker
class FixedSizeChunker(BaseChunker):
"""固定大小分块器
按照固定的字符数分块,并支持块之间的重叠。
"""
def __init__(self, chunk_size: int = 512, chunk_overlap: int = 50):
"""初始化分块器
Args:
chunk_size: 块的大小(字符数)
chunk_overlap: 块之间的重叠字符数
"""
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
async def chunk(self, text: str, **kwargs) -> list[str]:
"""固定大小分块
Args:
text: 输入文本
chunk_size: 每个文本块的最大大小
chunk_overlap: 每个文本块之间的重叠部分大小
Returns:
list[str]: 分块后的文本列表
"""
chunk_size = kwargs.get("chunk_size", self.chunk_size)
chunk_overlap = kwargs.get("chunk_overlap", self.chunk_overlap)
chunks = []
start = 0
text_len = len(text)
while start < text_len:
end = start + chunk_size
chunk = text[start:end]
if chunk:
chunks.append(chunk)
# 移动窗口,保留重叠部分
start = end - chunk_overlap
# 防止无限循环: 如果重叠过大,直接移到end
if start >= end or chunk_overlap >= chunk_size:
start = end
return chunks

View File

@@ -0,0 +1,161 @@
from collections.abc import Callable
from .base import BaseChunker
class RecursiveCharacterChunker(BaseChunker):
def __init__(
self,
chunk_size: int = 500,
chunk_overlap: int = 100,
length_function: Callable[[str], int] = len,
is_separator_regex: bool = False,
separators: list[str] | None = None,
):
"""初始化递归字符文本分割器
Args:
chunk_size: 每个文本块的最大大小
chunk_overlap: 每个文本块之间的重叠部分大小
length_function: 计算文本长度的函数
is_separator_regex: 分隔符是否为正则表达式
separators: 用于分割文本的分隔符列表,按优先级排序
"""
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.length_function = length_function
self.is_separator_regex = is_separator_regex
# 默认分隔符列表,按优先级从高到低
self.separators = separators or [
"\n\n", # 段落
"\n", # 换行
"", # 中文句子
"", # 中文逗号
". ", # 句子
", ", # 逗号分隔
" ", # 单词
"", # 字符
]
async def chunk(self, text: str, **kwargs) -> list[str]:
"""递归地将文本分割成块
Args:
text: 要分割的文本
chunk_size: 每个文本块的最大大小
chunk_overlap: 每个文本块之间的重叠部分大小
Returns:
分割后的文本块列表
"""
if not text:
return []
overlap = kwargs.get("chunk_overlap", self.chunk_overlap)
chunk_size = kwargs.get("chunk_size", self.chunk_size)
text_length = self.length_function(text)
if text_length <= chunk_size:
return [text]
for separator in self.separators:
if separator == "":
return self._split_by_character(text, chunk_size, overlap)
if separator in text:
splits = text.split(separator)
# 重新添加分隔符(除了最后一个片段)
splits = [s + separator for s in splits[:-1]] + [splits[-1]]
splits = [s for s in splits if s]
if len(splits) == 1:
continue
# 递归合并分割后的文本块
final_chunks = []
current_chunk = []
current_chunk_length = 0
for split in splits:
split_length = self.length_function(split)
# 如果单个分割部分已经超过了chunk_size需要递归分割
if split_length > chunk_size:
# 先处理当前积累的块
if current_chunk:
combined_text = "".join(current_chunk)
final_chunks.extend(
await self.chunk(
combined_text,
chunk_size=chunk_size,
chunk_overlap=overlap,
),
)
current_chunk = []
current_chunk_length = 0
# 递归分割过大的部分
final_chunks.extend(
await self.chunk(
split,
chunk_size=chunk_size,
chunk_overlap=overlap,
),
)
# 如果添加这部分会使当前块超过chunk_size
elif current_chunk_length + split_length > chunk_size:
# 合并当前块并添加到结果中
combined_text = "".join(current_chunk)
final_chunks.append(combined_text)
# 处理重叠部分
overlap_start = max(0, len(combined_text) - overlap)
if overlap_start > 0:
overlap_text = combined_text[overlap_start:]
current_chunk = [overlap_text, split]
current_chunk_length = (
self.length_function(overlap_text) + split_length
)
else:
current_chunk = [split]
current_chunk_length = split_length
else:
# 添加到当前块
current_chunk.append(split)
current_chunk_length += split_length
# 处理剩余的块
if current_chunk:
final_chunks.append("".join(current_chunk))
return final_chunks
return [text]
def _split_by_character(
self,
text: str,
chunk_size: int | None = None,
overlap: int | None = None,
) -> list[str]:
"""按字符级别分割文本
Args:
text: 要分割的文本
Returns:
分割后的文本块列表
"""
chunk_size = chunk_size or self.chunk_size
overlap = overlap or self.chunk_overlap
result = []
for i in range(0, len(text), chunk_size - overlap):
end = min(i + chunk_size, len(text))
result.append(text[i:end])
if end == len(text):
break
return result

View File

@@ -0,0 +1,301 @@
from contextlib import asynccontextmanager
from pathlib import Path
from sqlalchemy import delete, func, select, text, update
from sqlalchemy.ext.asyncio import AsyncSession, async_sessionmaker, create_async_engine
from sqlmodel import col, desc
from astrbot.core import logger
from astrbot.core.db.vec_db.faiss_impl import FaissVecDB
from astrbot.core.knowledge_base.models import (
BaseKBModel,
KBDocument,
KBMedia,
KnowledgeBase,
)
class KBSQLiteDatabase:
def __init__(self, db_path: str = "data/knowledge_base/kb.db") -> None:
"""初始化知识库数据库
Args:
db_path: 数据库文件路径, 默认为 data/knowledge_base/kb.db
"""
self.db_path = db_path
self.DATABASE_URL = f"sqlite+aiosqlite:///{db_path}"
self.inited = False
# 确保目录存在
Path(db_path).parent.mkdir(parents=True, exist_ok=True)
# 创建异步引擎
self.engine = create_async_engine(
self.DATABASE_URL,
echo=False,
pool_pre_ping=True,
pool_recycle=3600,
)
# 创建会话工厂
self.async_session = async_sessionmaker(
self.engine,
class_=AsyncSession,
expire_on_commit=False,
)
@asynccontextmanager
async def get_db(self):
"""获取数据库会话
用法:
async with kb_db.get_db() as session:
# 执行数据库操作
result = await session.execute(stmt)
"""
async with self.async_session() as session:
yield session
async def initialize(self) -> None:
"""初始化数据库,创建表并配置 SQLite 参数"""
async with self.engine.begin() as conn:
# 创建所有知识库相关表
await conn.run_sync(BaseKBModel.metadata.create_all)
# 配置 SQLite 性能优化参数
await conn.execute(text("PRAGMA journal_mode=WAL"))
await conn.execute(text("PRAGMA synchronous=NORMAL"))
await conn.execute(text("PRAGMA cache_size=20000"))
await conn.execute(text("PRAGMA temp_store=MEMORY"))
await conn.execute(text("PRAGMA mmap_size=134217728"))
await conn.execute(text("PRAGMA optimize"))
await conn.commit()
self.inited = True
async def migrate_to_v1(self) -> None:
"""执行知识库数据库 v1 迁移
创建所有必要的索引以优化查询性能
"""
async with self.get_db() as session:
session: AsyncSession
async with session.begin():
# 创建知识库表索引
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_kb_kb_id "
"ON knowledge_bases(kb_id)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_kb_name "
"ON knowledge_bases(kb_name)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_kb_created_at "
"ON knowledge_bases(created_at)",
),
)
# 创建文档表索引
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_doc_doc_id "
"ON kb_documents(doc_id)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_doc_kb_id "
"ON kb_documents(kb_id)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_doc_name "
"ON kb_documents(doc_name)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_doc_type "
"ON kb_documents(file_type)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_doc_created_at "
"ON kb_documents(created_at)",
),
)
# 创建多媒体表索引
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_media_media_id "
"ON kb_media(media_id)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_media_doc_id "
"ON kb_media(doc_id)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_media_kb_id ON kb_media(kb_id)",
),
)
await session.execute(
text(
"CREATE INDEX IF NOT EXISTS idx_media_type "
"ON kb_media(media_type)",
),
)
await session.commit()
async def close(self) -> None:
"""关闭数据库连接"""
await self.engine.dispose()
logger.info(f"知识库数据库已关闭: {self.db_path}")
async def get_kb_by_id(self, kb_id: str) -> KnowledgeBase | None:
"""根据 ID 获取知识库"""
async with self.get_db() as session:
stmt = select(KnowledgeBase).where(col(KnowledgeBase.kb_id) == kb_id)
result = await session.execute(stmt)
return result.scalar_one_or_none()
async def get_kb_by_name(self, kb_name: str) -> KnowledgeBase | None:
"""根据名称获取知识库"""
async with self.get_db() as session:
stmt = select(KnowledgeBase).where(col(KnowledgeBase.kb_name) == kb_name)
result = await session.execute(stmt)
return result.scalar_one_or_none()
async def list_kbs(self, offset: int = 0, limit: int = 100) -> list[KnowledgeBase]:
"""列出所有知识库"""
async with self.get_db() as session:
stmt = (
select(KnowledgeBase)
.offset(offset)
.limit(limit)
.order_by(desc(KnowledgeBase.created_at))
)
result = await session.execute(stmt)
return list(result.scalars().all())
async def count_kbs(self) -> int:
"""统计知识库数量"""
async with self.get_db() as session:
stmt = select(func.count(col(KnowledgeBase.id)))
result = await session.execute(stmt)
return result.scalar() or 0
# ===== 文档查询 =====
async def get_document_by_id(self, doc_id: str) -> KBDocument | None:
"""根据 ID 获取文档"""
async with self.get_db() as session:
stmt = select(KBDocument).where(col(KBDocument.doc_id) == doc_id)
result = await session.execute(stmt)
return result.scalar_one_or_none()
async def list_documents_by_kb(
self,
kb_id: str,
offset: int = 0,
limit: int = 100,
) -> list[KBDocument]:
"""列出知识库的所有文档"""
async with self.get_db() as session:
stmt = (
select(KBDocument)
.where(col(KBDocument.kb_id) == kb_id)
.offset(offset)
.limit(limit)
.order_by(desc(KBDocument.created_at))
)
result = await session.execute(stmt)
return list(result.scalars().all())
async def count_documents_by_kb(self, kb_id: str) -> int:
"""统计知识库的文档数量"""
async with self.get_db() as session:
stmt = select(func.count(col(KBDocument.id))).where(
col(KBDocument.kb_id) == kb_id,
)
result = await session.execute(stmt)
return result.scalar() or 0
async def get_document_with_metadata(self, doc_id: str) -> dict | None:
async with self.get_db() as session:
stmt = (
select(KBDocument, KnowledgeBase)
.join(KnowledgeBase, col(KBDocument.kb_id) == col(KnowledgeBase.kb_id))
.where(col(KBDocument.doc_id) == doc_id)
)
result = await session.execute(stmt)
row = result.first()
if not row:
return None
return {
"document": row[0],
"knowledge_base": row[1],
}
async def delete_document_by_id(self, doc_id: str, vec_db: FaissVecDB):
"""删除单个文档及其相关数据"""
# 在知识库表中删除
async with self.get_db() as session, session.begin():
# 删除文档记录
delete_stmt = delete(KBDocument).where(col(KBDocument.doc_id) == doc_id)
await session.execute(delete_stmt)
await session.commit()
# 在 vec db 中删除相关向量
await vec_db.delete_documents(metadata_filters={"kb_doc_id": doc_id})
# ===== 多媒体查询 =====
async def list_media_by_doc(self, doc_id: str) -> list[KBMedia]:
"""列出文档的所有多媒体资源"""
async with self.get_db() as session:
stmt = select(KBMedia).where(col(KBMedia.doc_id) == doc_id)
result = await session.execute(stmt)
return list(result.scalars().all())
async def get_media_by_id(self, media_id: str) -> KBMedia | None:
"""根据 ID 获取多媒体资源"""
async with self.get_db() as session:
stmt = select(KBMedia).where(col(KBMedia.media_id) == media_id)
result = await session.execute(stmt)
return result.scalar_one_or_none()
async def update_kb_stats(self, kb_id: str, vec_db: FaissVecDB) -> None:
"""更新知识库统计信息"""
chunk_cnt = await vec_db.count_documents()
async with self.get_db() as session, session.begin():
update_stmt = (
update(KnowledgeBase)
.where(col(KnowledgeBase.kb_id) == kb_id)
.values(
doc_count=select(func.count(col(KBDocument.id)))
.where(col(KBDocument.kb_id) == kb_id)
.scalar_subquery(),
chunk_count=chunk_cnt,
)
)
await session.execute(update_stmt)
await session.commit()

View File

@@ -0,0 +1,642 @@
import asyncio
import json
import re
import time
import uuid
from pathlib import Path
import aiofiles
from astrbot.core import logger
from astrbot.core.db.vec_db.base import BaseVecDB
from astrbot.core.db.vec_db.faiss_impl.vec_db import FaissVecDB
from astrbot.core.provider.manager import ProviderManager
from astrbot.core.provider.provider import (
EmbeddingProvider,
RerankProvider,
)
from astrbot.core.provider.provider import (
Provider as LLMProvider,
)
from .chunking.base import BaseChunker
from .chunking.recursive import RecursiveCharacterChunker
from .kb_db_sqlite import KBSQLiteDatabase
from .models import KBDocument, KBMedia, KnowledgeBase
from .parsers.url_parser import extract_text_from_url
from .parsers.util import select_parser
from .prompts import TEXT_REPAIR_SYSTEM_PROMPT
class RateLimiter:
"""一个简单的速率限制器"""
def __init__(self, max_rpm: int):
self.max_per_minute = max_rpm
self.interval = 60.0 / max_rpm if max_rpm > 0 else 0
self.last_call_time = 0
async def __aenter__(self):
if self.interval == 0:
return
now = time.monotonic()
elapsed = now - self.last_call_time
if elapsed < self.interval:
await asyncio.sleep(self.interval - elapsed)
self.last_call_time = time.monotonic()
async def __aexit__(self, exc_type, exc_val, exc_tb):
pass
async def _repair_and_translate_chunk_with_retry(
chunk: str,
repair_llm_service: LLMProvider,
rate_limiter: RateLimiter,
max_retries: int = 2,
) -> list[str]:
"""
Repairs, translates, and optionally re-chunks a single text chunk using the small LLM, with rate limiting.
"""
# 为了防止 LLM 上下文污染,在 user_prompt 中也加入明确的指令
user_prompt = f"""IGNORE ALL PREVIOUS INSTRUCTIONS. Your ONLY task is to process the following text chunk according to the system prompt provided.
Text chunk to process:
---
{chunk}
---
"""
for attempt in range(max_retries + 1):
try:
async with rate_limiter:
response = await repair_llm_service.text_chat(
prompt=user_prompt, system_prompt=TEXT_REPAIR_SYSTEM_PROMPT
)
llm_output = response.completion_text
if "<discard_chunk />" in llm_output:
return [] # Signal to discard this chunk
# More robust regex to handle potential LLM formatting errors (spaces, newlines in tags)
matches = re.findall(
r"<\s*repaired_text\s*>\s*(.*?)\s*<\s*/\s*repaired_text\s*>",
llm_output,
re.DOTALL,
)
if matches:
# Further cleaning to ensure no empty strings are returned
return [m.strip() for m in matches if m.strip()]
else:
# If no valid tags and not explicitly discarded, discard it to be safe.
return []
except Exception as e:
logger.warning(
f" - LLM call failed on attempt {attempt + 1}/{max_retries + 1}. Error: {str(e)}"
)
logger.error(
f" - Failed to process chunk after {max_retries + 1} attempts. Using original text."
)
return [chunk]
class KBHelper:
vec_db: BaseVecDB
kb: KnowledgeBase
def __init__(
self,
kb_db: KBSQLiteDatabase,
kb: KnowledgeBase,
provider_manager: ProviderManager,
kb_root_dir: str,
chunker: BaseChunker,
):
self.kb_db = kb_db
self.kb = kb
self.prov_mgr = provider_manager
self.kb_root_dir = kb_root_dir
self.chunker = chunker
self.kb_dir = Path(self.kb_root_dir) / self.kb.kb_id
self.kb_medias_dir = Path(self.kb_dir) / "medias" / self.kb.kb_id
self.kb_files_dir = Path(self.kb_dir) / "files" / self.kb.kb_id
self.kb_medias_dir.mkdir(parents=True, exist_ok=True)
self.kb_files_dir.mkdir(parents=True, exist_ok=True)
async def initialize(self):
await self._ensure_vec_db()
async def get_ep(self) -> EmbeddingProvider:
if not self.kb.embedding_provider_id:
raise ValueError(f"知识库 {self.kb.kb_name} 未配置 Embedding Provider")
ep: EmbeddingProvider = await self.prov_mgr.get_provider_by_id(
self.kb.embedding_provider_id,
) # type: ignore
if not ep:
raise ValueError(
f"无法找到 ID 为 {self.kb.embedding_provider_id} 的 Embedding Provider",
)
return ep
async def get_rp(self) -> RerankProvider | None:
if not self.kb.rerank_provider_id:
return None
rp: RerankProvider = await self.prov_mgr.get_provider_by_id(
self.kb.rerank_provider_id,
) # type: ignore
if not rp:
raise ValueError(
f"无法找到 ID 为 {self.kb.rerank_provider_id} 的 Rerank Provider",
)
return rp
async def _ensure_vec_db(self) -> FaissVecDB:
if not self.kb.embedding_provider_id:
raise ValueError(f"知识库 {self.kb.kb_name} 未配置 Embedding Provider")
ep = await self.get_ep()
rp = await self.get_rp()
vec_db = FaissVecDB(
doc_store_path=str(self.kb_dir / "doc.db"),
index_store_path=str(self.kb_dir / "index.faiss"),
embedding_provider=ep,
rerank_provider=rp,
)
await vec_db.initialize()
self.vec_db = vec_db
return vec_db
async def delete_vec_db(self):
"""删除知识库的向量数据库和所有相关文件"""
import shutil
await self.terminate()
if self.kb_dir.exists():
shutil.rmtree(self.kb_dir)
async def terminate(self):
if self.vec_db:
await self.vec_db.close()
async def upload_document(
self,
file_name: str,
file_content: bytes | None,
file_type: str,
chunk_size: int = 512,
chunk_overlap: int = 50,
batch_size: int = 32,
tasks_limit: int = 3,
max_retries: int = 3,
progress_callback=None,
pre_chunked_text: list[str] | None = None,
) -> KBDocument:
"""上传并处理文档(带原子性保证和失败清理)
流程:
1. 保存原始文件
2. 解析文档内容
3. 提取多媒体资源
4. 分块处理
5. 生成向量并存储
6. 保存元数据(事务)
7. 更新统计
Args:
progress_callback: 进度回调函数,接收参数 (stage, current, total)
- stage: 当前阶段 ('parsing', 'chunking', 'embedding')
- current: 当前进度
- total: 总数
"""
await self._ensure_vec_db()
doc_id = str(uuid.uuid4())
media_paths: list[Path] = []
file_size = 0
# file_path = self.kb_files_dir / f"{doc_id}.{file_type}"
# async with aiofiles.open(file_path, "wb") as f:
# await f.write(file_content)
try:
chunks_text = []
saved_media = []
if pre_chunked_text is not None:
# 如果提供了预分块文本,直接使用
chunks_text = pre_chunked_text
file_size = sum(len(chunk) for chunk in chunks_text)
logger.info(f"使用预分块文本进行上传,共 {len(chunks_text)} 个块。")
else:
# 否则,执行标准的文件解析和分块流程
if file_content is None:
raise ValueError(
"当未提供 pre_chunked_text 时file_content 不能为空。"
)
file_size = len(file_content)
# 阶段1: 解析文档
if progress_callback:
await progress_callback("parsing", 0, 100)
parser = await select_parser(f".{file_type}")
parse_result = await parser.parse(file_content, file_name)
text_content = parse_result.text
media_items = parse_result.media
if progress_callback:
await progress_callback("parsing", 100, 100)
# 保存媒体文件
for media_item in media_items:
media = await self._save_media(
doc_id=doc_id,
media_type=media_item.media_type,
file_name=media_item.file_name,
content=media_item.content,
mime_type=media_item.mime_type,
)
saved_media.append(media)
media_paths.append(Path(media.file_path))
# 阶段2: 分块
if progress_callback:
await progress_callback("chunking", 0, 100)
chunks_text = await self.chunker.chunk(
text_content,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
)
contents = []
metadatas = []
for idx, chunk_text in enumerate(chunks_text):
contents.append(chunk_text)
metadatas.append(
{
"kb_id": self.kb.kb_id,
"kb_doc_id": doc_id,
"chunk_index": idx,
},
)
if progress_callback:
await progress_callback("chunking", 100, 100)
# 阶段3: 生成向量(带进度回调)
async def embedding_progress_callback(current, total):
if progress_callback:
await progress_callback("embedding", current, total)
await self.vec_db.insert_batch(
contents=contents,
metadatas=metadatas,
batch_size=batch_size,
tasks_limit=tasks_limit,
max_retries=max_retries,
progress_callback=embedding_progress_callback,
)
# 保存文档的元数据
doc = KBDocument(
doc_id=doc_id,
kb_id=self.kb.kb_id,
doc_name=file_name,
file_type=file_type,
file_size=file_size,
# file_path=str(file_path),
file_path="",
chunk_count=len(chunks_text),
media_count=0,
)
async with self.kb_db.get_db() as session:
async with session.begin():
session.add(doc)
for media in saved_media:
session.add(media)
await session.commit()
await session.refresh(doc)
vec_db: FaissVecDB = self.vec_db # type: ignore
await self.kb_db.update_kb_stats(kb_id=self.kb.kb_id, vec_db=vec_db)
await self.refresh_kb()
await self.refresh_document(doc_id)
return doc
except Exception as e:
logger.error(f"上传文档失败: {e}")
# if file_path.exists():
# file_path.unlink()
for media_path in media_paths:
try:
if media_path.exists():
media_path.unlink()
except Exception as me:
logger.warning(f"清理多媒体文件失败 {media_path}: {me}")
raise e
async def list_documents(
self,
offset: int = 0,
limit: int = 100,
) -> list[KBDocument]:
"""列出知识库的所有文档"""
docs = await self.kb_db.list_documents_by_kb(self.kb.kb_id, offset, limit)
return docs
async def get_document(self, doc_id: str) -> KBDocument | None:
"""获取单个文档"""
doc = await self.kb_db.get_document_by_id(doc_id)
return doc
async def delete_document(self, doc_id: str):
"""删除单个文档及其相关数据"""
await self.kb_db.delete_document_by_id(
doc_id=doc_id,
vec_db=self.vec_db, # type: ignore
)
await self.kb_db.update_kb_stats(
kb_id=self.kb.kb_id,
vec_db=self.vec_db, # type: ignore
)
await self.refresh_kb()
async def delete_chunk(self, chunk_id: str, doc_id: str):
"""删除单个文本块及其相关数据"""
vec_db: FaissVecDB = self.vec_db # type: ignore
await vec_db.delete(chunk_id)
await self.kb_db.update_kb_stats(
kb_id=self.kb.kb_id,
vec_db=self.vec_db, # type: ignore
)
await self.refresh_kb()
await self.refresh_document(doc_id)
async def refresh_kb(self):
if self.kb:
kb = await self.kb_db.get_kb_by_id(self.kb.kb_id)
if kb:
self.kb = kb
async def refresh_document(self, doc_id: str) -> None:
"""更新文档的元数据"""
doc = await self.get_document(doc_id)
if not doc:
raise ValueError(f"无法找到 ID 为 {doc_id} 的文档")
chunk_count = await self.get_chunk_count_by_doc_id(doc_id)
doc.chunk_count = chunk_count
async with self.kb_db.get_db() as session:
async with session.begin():
session.add(doc)
await session.commit()
await session.refresh(doc)
async def get_chunks_by_doc_id(
self,
doc_id: str,
offset: int = 0,
limit: int = 100,
) -> list[dict]:
"""获取文档的所有块及其元数据"""
vec_db: FaissVecDB = self.vec_db # type: ignore
chunks = await vec_db.document_storage.get_documents(
metadata_filters={"kb_doc_id": doc_id},
offset=offset,
limit=limit,
)
result = []
for chunk in chunks:
chunk_md = json.loads(chunk["metadata"])
result.append(
{
"chunk_id": chunk["doc_id"],
"doc_id": chunk_md["kb_doc_id"],
"kb_id": chunk_md["kb_id"],
"chunk_index": chunk_md["chunk_index"],
"content": chunk["text"],
"char_count": len(chunk["text"]),
},
)
return result
async def get_chunk_count_by_doc_id(self, doc_id: str) -> int:
"""获取文档的块数量"""
vec_db: FaissVecDB = self.vec_db # type: ignore
count = await vec_db.count_documents(metadata_filter={"kb_doc_id": doc_id})
return count
async def _save_media(
self,
doc_id: str,
media_type: str,
file_name: str,
content: bytes,
mime_type: str,
) -> KBMedia:
"""保存多媒体资源"""
media_id = str(uuid.uuid4())
ext = Path(file_name).suffix
# 保存文件
file_path = self.kb_medias_dir / doc_id / f"{media_id}{ext}"
file_path.parent.mkdir(parents=True, exist_ok=True)
async with aiofiles.open(file_path, "wb") as f:
await f.write(content)
media = KBMedia(
media_id=media_id,
doc_id=doc_id,
kb_id=self.kb.kb_id,
media_type=media_type,
file_name=file_name,
file_path=str(file_path),
file_size=len(content),
mime_type=mime_type,
)
return media
async def upload_from_url(
self,
url: str,
chunk_size: int = 512,
chunk_overlap: int = 50,
batch_size: int = 32,
tasks_limit: int = 3,
max_retries: int = 3,
progress_callback=None,
enable_cleaning: bool = False,
cleaning_provider_id: str | None = None,
) -> KBDocument:
"""从 URL 上传并处理文档(带原子性保证和失败清理)
Args:
url: 要提取内容的网页 URL
chunk_size: 文本块大小
chunk_overlap: 文本块重叠大小
batch_size: 批处理大小
tasks_limit: 并发任务限制
max_retries: 最大重试次数
progress_callback: 进度回调函数,接收参数 (stage, current, total)
- stage: 当前阶段 ('extracting', 'cleaning', 'parsing', 'chunking', 'embedding')
- current: 当前进度
- total: 总数
Returns:
KBDocument: 上传的文档对象
Raises:
ValueError: 如果 URL 为空或无法提取内容
IOError: 如果网络请求失败
"""
# 获取 Tavily API 密钥
config = self.prov_mgr.acm.default_conf
tavily_keys = config.get("provider_settings", {}).get(
"websearch_tavily_key", []
)
if not tavily_keys:
raise ValueError(
"Error: Tavily API key is not configured in provider_settings."
)
# 阶段1: 从 URL 提取内容
if progress_callback:
await progress_callback("extracting", 0, 100)
try:
text_content = await extract_text_from_url(url, tavily_keys)
except Exception as e:
logger.error(f"Failed to extract content from URL {url}: {e}")
raise OSError(f"Failed to extract content from URL {url}: {e}") from e
if not text_content:
raise ValueError(f"No content extracted from URL: {url}")
if progress_callback:
await progress_callback("extracting", 100, 100)
# 阶段2: (可选)清洗内容并分块
final_chunks = await self._clean_and_rechunk_content(
content=text_content,
url=url,
progress_callback=progress_callback,
enable_cleaning=enable_cleaning,
cleaning_provider_id=cleaning_provider_id,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
)
if enable_cleaning and not final_chunks:
raise ValueError(
"内容清洗后未提取到有效文本。请尝试关闭内容清洗功能或更换更高性能的LLM模型后重试。"
)
# 创建一个虚拟文件名
file_name = url.split("/")[-1] or f"document_from_{url}"
if not Path(file_name).suffix:
file_name += ".url"
# 复用现有的 upload_document 方法,但传入预分块文本
return await self.upload_document(
file_name=file_name,
file_content=None,
file_type="url", # 使用 'url' 作为特殊文件类型
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
batch_size=batch_size,
tasks_limit=tasks_limit,
max_retries=max_retries,
progress_callback=progress_callback,
pre_chunked_text=final_chunks,
)
async def _clean_and_rechunk_content(
self,
content: str,
url: str,
progress_callback=None,
enable_cleaning: bool = False,
cleaning_provider_id: str | None = None,
repair_max_rpm: int = 60,
chunk_size: int = 512,
chunk_overlap: int = 50,
) -> list[str]:
"""
对从 URL 获取的内容进行清洗、修复、翻译和重新分块。
"""
if not enable_cleaning:
# 如果不启用清洗,则使用从前端传递的参数进行分块
logger.info(
f"内容清洗未启用,使用指定参数进行分块: chunk_size={chunk_size}, chunk_overlap={chunk_overlap}"
)
return await self.chunker.chunk(
content, chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
if not cleaning_provider_id:
logger.warning(
"启用了内容清洗,但未提供 cleaning_provider_id跳过清洗并使用默认分块。"
)
return await self.chunker.chunk(content)
if progress_callback:
await progress_callback("cleaning", 0, 100)
try:
# 获取指定的 LLM Provider
llm_provider = await self.prov_mgr.get_provider_by_id(cleaning_provider_id)
if not llm_provider or not isinstance(llm_provider, LLMProvider):
raise ValueError(
f"无法找到 ID 为 {cleaning_provider_id} 的 LLM Provider 或类型不正确"
)
# 初步分块
# 优化分隔符,优先按段落分割,以获得更高质量的文本块
text_splitter = RecursiveCharacterChunker(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=["\n\n", "\n", " "], # 优先使用段落分隔符
)
initial_chunks = await text_splitter.chunk(content)
logger.info(f"初步分块完成,生成 {len(initial_chunks)} 个块用于修复。")
# 并发处理所有块
rate_limiter = RateLimiter(repair_max_rpm)
tasks = [
_repair_and_translate_chunk_with_retry(
chunk, llm_provider, rate_limiter
)
for chunk in initial_chunks
]
repaired_results = await asyncio.gather(*tasks, return_exceptions=True)
final_chunks = []
for i, result in enumerate(repaired_results):
if isinstance(result, Exception):
logger.warning(f"{i} 处理异常: {str(result)}. 回退到原始块。")
final_chunks.append(initial_chunks[i])
elif isinstance(result, list):
final_chunks.extend(result)
logger.info(
f"文本修复完成: {len(initial_chunks)} 个原始块 -> {len(final_chunks)} 个最终块。"
)
if progress_callback:
await progress_callback("cleaning", 100, 100)
return final_chunks
except Exception as e:
logger.error(f"使用 Provider '{cleaning_provider_id}' 清洗内容失败: {e}")
# 清洗失败,返回默认分块结果,保证流程不中断
return await self.chunker.chunk(content)

View File

@@ -0,0 +1,330 @@
import traceback
from pathlib import Path
from astrbot.core import logger
from astrbot.core.provider.manager import ProviderManager
# from .chunking.fixed_size import FixedSizeChunker
from .chunking.recursive import RecursiveCharacterChunker
from .kb_db_sqlite import KBSQLiteDatabase
from .kb_helper import KBHelper
from .models import KBDocument, KnowledgeBase
from .retrieval.manager import RetrievalManager, RetrievalResult
from .retrieval.rank_fusion import RankFusion
from .retrieval.sparse_retriever import SparseRetriever
FILES_PATH = "data/knowledge_base"
DB_PATH = Path(FILES_PATH) / "kb.db"
"""Knowledge Base storage root directory"""
CHUNKER = RecursiveCharacterChunker()
class KnowledgeBaseManager:
kb_db: KBSQLiteDatabase
retrieval_manager: RetrievalManager
def __init__(
self,
provider_manager: ProviderManager,
):
Path(DB_PATH).parent.mkdir(parents=True, exist_ok=True)
self.provider_manager = provider_manager
self._session_deleted_callback_registered = False
self.kb_insts: dict[str, KBHelper] = {}
async def initialize(self):
"""初始化知识库模块"""
try:
logger.info("正在初始化知识库模块...")
# 初始化数据库
await self._init_kb_database()
# 初始化检索管理器
sparse_retriever = SparseRetriever(self.kb_db)
rank_fusion = RankFusion(self.kb_db)
self.retrieval_manager = RetrievalManager(
sparse_retriever=sparse_retriever,
rank_fusion=rank_fusion,
kb_db=self.kb_db,
)
await self.load_kbs()
except ImportError as e:
logger.error(f"知识库模块导入失败: {e}")
logger.warning("请确保已安装所需依赖: pypdf, aiofiles, Pillow, rank-bm25")
except Exception as e:
logger.error(f"知识库模块初始化失败: {e}")
logger.error(traceback.format_exc())
async def _init_kb_database(self):
self.kb_db = KBSQLiteDatabase(DB_PATH.as_posix())
await self.kb_db.initialize()
await self.kb_db.migrate_to_v1()
logger.info(f"KnowledgeBase database initialized: {DB_PATH}")
async def load_kbs(self):
"""加载所有知识库实例"""
kb_records = await self.kb_db.list_kbs()
for record in kb_records:
kb_helper = KBHelper(
kb_db=self.kb_db,
kb=record,
provider_manager=self.provider_manager,
kb_root_dir=FILES_PATH,
chunker=CHUNKER,
)
await kb_helper.initialize()
self.kb_insts[record.kb_id] = kb_helper
async def create_kb(
self,
kb_name: str,
description: str | None = None,
emoji: str | None = None,
embedding_provider_id: str | None = None,
rerank_provider_id: str | None = None,
chunk_size: int | None = None,
chunk_overlap: int | None = None,
top_k_dense: int | None = None,
top_k_sparse: int | None = None,
top_m_final: int | None = None,
) -> KBHelper:
"""创建新的知识库实例"""
kb = KnowledgeBase(
kb_name=kb_name,
description=description,
emoji=emoji or "📚",
embedding_provider_id=embedding_provider_id,
rerank_provider_id=rerank_provider_id,
chunk_size=chunk_size if chunk_size is not None else 512,
chunk_overlap=chunk_overlap if chunk_overlap is not None else 50,
top_k_dense=top_k_dense if top_k_dense is not None else 50,
top_k_sparse=top_k_sparse if top_k_sparse is not None else 50,
top_m_final=top_m_final if top_m_final is not None else 5,
)
async with self.kb_db.get_db() as session:
session.add(kb)
await session.commit()
await session.refresh(kb)
kb_helper = KBHelper(
kb_db=self.kb_db,
kb=kb,
provider_manager=self.provider_manager,
kb_root_dir=FILES_PATH,
chunker=CHUNKER,
)
await kb_helper.initialize()
self.kb_insts[kb.kb_id] = kb_helper
return kb_helper
async def get_kb(self, kb_id: str) -> KBHelper | None:
"""获取知识库实例"""
if kb_id in self.kb_insts:
return self.kb_insts[kb_id]
async def get_kb_by_name(self, kb_name: str) -> KBHelper | None:
"""通过名称获取知识库实例"""
for kb_helper in self.kb_insts.values():
if kb_helper.kb.kb_name == kb_name:
return kb_helper
return None
async def delete_kb(self, kb_id: str) -> bool:
"""删除知识库实例"""
kb_helper = await self.get_kb(kb_id)
if not kb_helper:
return False
await kb_helper.delete_vec_db()
async with self.kb_db.get_db() as session:
await session.delete(kb_helper.kb)
await session.commit()
self.kb_insts.pop(kb_id, None)
return True
async def list_kbs(self) -> list[KnowledgeBase]:
"""列出所有知识库实例"""
kbs = [kb_helper.kb for kb_helper in self.kb_insts.values()]
return kbs
async def update_kb(
self,
kb_id: str,
kb_name: str,
description: str | None = None,
emoji: str | None = None,
embedding_provider_id: str | None = None,
rerank_provider_id: str | None = None,
chunk_size: int | None = None,
chunk_overlap: int | None = None,
top_k_dense: int | None = None,
top_k_sparse: int | None = None,
top_m_final: int | None = None,
) -> KBHelper | None:
"""更新知识库实例"""
kb_helper = await self.get_kb(kb_id)
if not kb_helper:
return None
kb = kb_helper.kb
if kb_name is not None:
kb.kb_name = kb_name
if description is not None:
kb.description = description
if emoji is not None:
kb.emoji = emoji
if embedding_provider_id is not None:
kb.embedding_provider_id = embedding_provider_id
kb.rerank_provider_id = rerank_provider_id # 允许设置为 None
if chunk_size is not None:
kb.chunk_size = chunk_size
if chunk_overlap is not None:
kb.chunk_overlap = chunk_overlap
if top_k_dense is not None:
kb.top_k_dense = top_k_dense
if top_k_sparse is not None:
kb.top_k_sparse = top_k_sparse
if top_m_final is not None:
kb.top_m_final = top_m_final
async with self.kb_db.get_db() as session:
session.add(kb)
await session.commit()
await session.refresh(kb)
return kb_helper
async def retrieve(
self,
query: str,
kb_names: list[str],
top_k_fusion: int = 20,
top_m_final: int = 5,
) -> dict | None:
"""从指定知识库中检索相关内容"""
kb_ids = []
kb_id_helper_map = {}
for kb_name in kb_names:
if kb_helper := await self.get_kb_by_name(kb_name):
kb_ids.append(kb_helper.kb.kb_id)
kb_id_helper_map[kb_helper.kb.kb_id] = kb_helper
if not kb_ids:
return {}
results = await self.retrieval_manager.retrieve(
query=query,
kb_ids=kb_ids,
kb_id_helper_map=kb_id_helper_map,
top_k_fusion=top_k_fusion,
top_m_final=top_m_final,
)
if not results:
return None
context_text = self._format_context(results)
results_dict = [
{
"chunk_id": r.chunk_id,
"doc_id": r.doc_id,
"kb_id": r.kb_id,
"kb_name": r.kb_name,
"doc_name": r.doc_name,
"chunk_index": r.metadata.get("chunk_index", 0),
"content": r.content,
"score": r.score,
"char_count": r.metadata.get("char_count", 0),
}
for r in results
]
return {
"context_text": context_text,
"results": results_dict,
}
def _format_context(self, results: list[RetrievalResult]) -> str:
"""格式化知识上下文
Args:
results: 检索结果列表
Returns:
str: 格式化的上下文文本
"""
lines = ["以下是相关的知识库内容,请参考这些信息回答用户的问题:\n"]
for i, result in enumerate(results, 1):
lines.append(f"【知识 {i}")
lines.append(f"来源: {result.kb_name} / {result.doc_name}")
lines.append(f"内容: {result.content}")
lines.append(f"相关度: {result.score:.2f}")
lines.append("")
return "\n".join(lines)
async def terminate(self):
"""终止所有知识库实例,关闭数据库连接"""
for kb_id, kb_helper in self.kb_insts.items():
try:
await kb_helper.terminate()
except Exception as e:
logger.error(f"关闭知识库 {kb_id} 失败: {e}")
self.kb_insts.clear()
# 关闭元数据数据库
if hasattr(self, "kb_db") and self.kb_db:
try:
await self.kb_db.close()
except Exception as e:
logger.error(f"关闭知识库元数据数据库失败: {e}")
async def upload_from_url(
self,
kb_id: str,
url: str,
chunk_size: int = 512,
chunk_overlap: int = 50,
batch_size: int = 32,
tasks_limit: int = 3,
max_retries: int = 3,
progress_callback=None,
) -> KBDocument:
"""从 URL 上传文档到指定的知识库
Args:
kb_id: 知识库 ID
url: 要提取内容的网页 URL
chunk_size: 文本块大小
chunk_overlap: 文本块重叠大小
batch_size: 批处理大小
tasks_limit: 并发任务限制
max_retries: 最大重试次数
progress_callback: 进度回调函数
Returns:
KBDocument: 上传的文档对象
Raises:
ValueError: 如果知识库不存在或 URL 为空
IOError: 如果网络请求失败
"""
kb_helper = await self.get_kb(kb_id)
if not kb_helper:
raise ValueError(f"Knowledge base with id {kb_id} not found.")
return await kb_helper.upload_from_url(
url=url,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
batch_size=batch_size,
tasks_limit=tasks_limit,
max_retries=max_retries,
progress_callback=progress_callback,
)

View File

@@ -0,0 +1,120 @@
import uuid
from datetime import datetime, timezone
from sqlmodel import Field, MetaData, SQLModel, Text, UniqueConstraint
class BaseKBModel(SQLModel, table=False):
metadata = MetaData()
class KnowledgeBase(BaseKBModel, table=True):
"""知识库表
存储知识库的基本信息和统计数据。
"""
__tablename__ = "knowledge_bases" # type: ignore
id: int | None = Field(
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
kb_id: str = Field(
max_length=36,
nullable=False,
unique=True,
default_factory=lambda: str(uuid.uuid4()),
index=True,
)
kb_name: str = Field(max_length=100, nullable=False)
description: str | None = Field(default=None, sa_type=Text)
emoji: str | None = Field(default="📚", max_length=10)
embedding_provider_id: str | None = Field(default=None, max_length=100)
rerank_provider_id: str | None = Field(default=None, max_length=100)
# 分块配置参数
chunk_size: int | None = Field(default=512, nullable=True)
chunk_overlap: int | None = Field(default=50, nullable=True)
# 检索配置参数
top_k_dense: int | None = Field(default=50, nullable=True)
top_k_sparse: int | None = Field(default=50, nullable=True)
top_m_final: int | None = Field(default=5, nullable=True)
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
updated_at: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
sa_column_kwargs={"onupdate": datetime.now(timezone.utc)},
)
doc_count: int = Field(default=0, nullable=False)
chunk_count: int = Field(default=0, nullable=False)
__table_args__ = (
UniqueConstraint(
"kb_name",
name="uix_kb_name",
),
)
class KBDocument(BaseKBModel, table=True):
"""文档表
存储上传到知识库的文档元数据。
"""
__tablename__ = "kb_documents" # type: ignore
id: int | None = Field(
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
doc_id: str = Field(
max_length=36,
nullable=False,
unique=True,
default_factory=lambda: str(uuid.uuid4()),
index=True,
)
kb_id: str = Field(max_length=36, nullable=False, index=True)
doc_name: str = Field(max_length=255, nullable=False)
file_type: str = Field(max_length=20, nullable=False)
file_size: int = Field(nullable=False)
file_path: str = Field(max_length=512, nullable=False)
chunk_count: int = Field(default=0, nullable=False)
media_count: int = Field(default=0, nullable=False)
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
updated_at: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
sa_column_kwargs={"onupdate": datetime.now(timezone.utc)},
)
class KBMedia(BaseKBModel, table=True):
"""多媒体资源表
存储从文档中提取的图片、视频等多媒体资源。
"""
__tablename__ = "kb_media" # type: ignore
id: int | None = Field(
primary_key=True,
sa_column_kwargs={"autoincrement": True},
default=None,
)
media_id: str = Field(
max_length=36,
nullable=False,
unique=True,
default_factory=lambda: str(uuid.uuid4()),
index=True,
)
doc_id: str = Field(max_length=36, nullable=False, index=True)
kb_id: str = Field(max_length=36, nullable=False, index=True)
media_type: str = Field(max_length=20, nullable=False)
file_name: str = Field(max_length=255, nullable=False)
file_path: str = Field(max_length=512, nullable=False)
file_size: int = Field(nullable=False)
mime_type: str = Field(max_length=100, nullable=False)
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))

View File

@@ -0,0 +1,13 @@
"""文档解析器模块"""
from .base import BaseParser, MediaItem, ParseResult
from .pdf_parser import PDFParser
from .text_parser import TextParser
__all__ = [
"BaseParser",
"MediaItem",
"PDFParser",
"ParseResult",
"TextParser",
]

View File

@@ -0,0 +1,51 @@
"""文档解析器基类和数据结构
定义了文档解析器的抽象接口和相关数据类。
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass
@dataclass
class MediaItem:
"""多媒体项
表示从文档中提取的多媒体资源。
"""
media_type: str # image, video
file_name: str
content: bytes
mime_type: str
@dataclass
class ParseResult:
"""解析结果
包含解析后的文本内容和提取的多媒体资源。
"""
text: str
media: list[MediaItem]
class BaseParser(ABC):
"""文档解析器基类
所有文档解析器都应该继承此类并实现 parse 方法。
"""
@abstractmethod
async def parse(self, file_content: bytes, file_name: str) -> ParseResult:
"""解析文档
Args:
file_content: 文件内容
file_name: 文件名
Returns:
ParseResult: 解析结果
"""

View File

@@ -0,0 +1,26 @@
import io
import os
from markitdown_no_magika import MarkItDown, StreamInfo
from astrbot.core.knowledge_base.parsers.base import (
BaseParser,
ParseResult,
)
class MarkitdownParser(BaseParser):
"""解析 docx, xls, xlsx 格式"""
async def parse(self, file_content: bytes, file_name: str) -> ParseResult:
md = MarkItDown(enable_plugins=False)
bio = io.BytesIO(file_content)
stream_info = StreamInfo(
extension=os.path.splitext(file_name)[1].lower(),
filename=file_name,
)
result = md.convert(bio, stream_info=stream_info)
return ParseResult(
text=result.markdown,
media=[],
)

View File

@@ -0,0 +1,101 @@
"""PDF 文件解析器
支持解析 PDF 文件中的文本和图片资源。
"""
import io
from pypdf import PdfReader
from astrbot.core.knowledge_base.parsers.base import (
BaseParser,
MediaItem,
ParseResult,
)
class PDFParser(BaseParser):
"""PDF 文档解析器
提取 PDF 中的文本内容和嵌入的图片资源。
"""
async def parse(self, file_content: bytes, file_name: str) -> ParseResult:
"""解析 PDF 文件
Args:
file_content: 文件内容
file_name: 文件名
Returns:
ParseResult: 包含文本和图片的解析结果
"""
pdf_file = io.BytesIO(file_content)
reader = PdfReader(pdf_file)
text_parts = []
media_items = []
# 提取文本
for page in reader.pages:
text = page.extract_text()
if text:
text_parts.append(text)
# 提取图片
image_counter = 0
for page_num, page in enumerate(reader.pages):
try:
# 安全检查 Resources
if "/Resources" not in page:
continue
resources = page["/Resources"]
if not resources or "/XObject" not in resources: # type: ignore
continue
xobjects = resources["/XObject"].get_object() # type: ignore
if not xobjects:
continue
for obj_name in xobjects:
try:
obj = xobjects[obj_name]
if obj.get("/Subtype") != "/Image":
continue
# 提取图片数据
image_data = obj.get_data()
# 确定格式
filter_type = obj.get("/Filter", "")
if filter_type == "/DCTDecode":
ext = "jpg"
mime_type = "image/jpeg"
elif filter_type == "/FlateDecode":
ext = "png"
mime_type = "image/png"
else:
ext = "png"
mime_type = "image/png"
image_counter += 1
media_items.append(
MediaItem(
media_type="image",
file_name=f"page_{page_num}_img_{image_counter}.{ext}",
content=image_data,
mime_type=mime_type,
),
)
except Exception:
# 单个图片提取失败不影响整体
continue
except Exception:
# 页面处理失败不影响其他页面
continue
full_text = "\n\n".join(text_parts)
return ParseResult(text=full_text, media=media_items)

View File

@@ -0,0 +1,42 @@
"""文本文件解析器
支持解析 TXT 和 Markdown 文件。
"""
from astrbot.core.knowledge_base.parsers.base import BaseParser, ParseResult
class TextParser(BaseParser):
"""TXT/MD 文本解析器
支持多种字符编码的自动检测。
"""
async def parse(self, file_content: bytes, file_name: str) -> ParseResult:
"""解析文本文件
尝试使用多种编码解析文件内容。
Args:
file_content: 文件内容
file_name: 文件名
Returns:
ParseResult: 解析结果,不包含多媒体资源
Raises:
ValueError: 如果无法解码文件
"""
# 尝试多种编码
for encoding in ["utf-8", "gbk", "gb2312", "gb18030"]:
try:
text = file_content.decode(encoding)
break
except UnicodeDecodeError:
continue
else:
raise ValueError(f"无法解码文件: {file_name}")
# 文本文件无多媒体资源
return ParseResult(text=text, media=[])

View File

@@ -0,0 +1,103 @@
import asyncio
import aiohttp
class URLExtractor:
"""URL 内容提取器,封装了 Tavily API 调用和密钥管理"""
def __init__(self, tavily_keys: list[str]):
"""
初始化 URL 提取器
Args:
tavily_keys: Tavily API 密钥列表
"""
if not tavily_keys:
raise ValueError("Error: Tavily API keys are not configured.")
self.tavily_keys = tavily_keys
self.tavily_key_index = 0
self.tavily_key_lock = asyncio.Lock()
async def _get_tavily_key(self) -> str:
"""并发安全的从列表中获取并轮换Tavily API密钥。"""
async with self.tavily_key_lock:
key = self.tavily_keys[self.tavily_key_index]
self.tavily_key_index = (self.tavily_key_index + 1) % len(self.tavily_keys)
return key
async def extract_text_from_url(self, url: str) -> str:
"""
使用 Tavily API 从 URL 提取主要文本内容。
这是 web_searcher 插件中 tavily_extract_web_page 方法的简化版本,
专门为知识库模块设计,不依赖 AstrMessageEvent。
Args:
url: 要提取内容的网页 URL
Returns:
提取的文本内容
Raises:
ValueError: 如果 URL 为空或 API 密钥未配置
IOError: 如果请求失败或返回错误
"""
if not url:
raise ValueError("Error: url must be a non-empty string.")
tavily_key = await self._get_tavily_key()
api_url = "https://api.tavily.com/extract"
headers = {
"Authorization": f"Bearer {tavily_key}",
"Content-Type": "application/json",
}
payload = {
"urls": [url],
"extract_depth": "basic", # 使用基础提取深度
}
try:
async with aiohttp.ClientSession(trust_env=True) as session:
async with session.post(
api_url,
json=payload,
headers=headers,
timeout=30.0, # 增加超时时间,因为内容提取可能需要更长时间
) as response:
if response.status != 200:
reason = await response.text()
raise OSError(
f"Tavily web extraction failed: {reason}, status: {response.status}"
)
data = await response.json()
results = data.get("results", [])
if not results:
raise ValueError(f"No content extracted from URL: {url}")
# 返回第一个结果的内容
return results[0].get("raw_content", "")
except aiohttp.ClientError as e:
raise OSError(f"Failed to fetch URL {url}: {e}") from e
except Exception as e:
raise OSError(f"Failed to extract content from URL {url}: {e}") from e
# 为了向后兼容,提供一个简单的函数接口
async def extract_text_from_url(url: str, tavily_keys: list[str]) -> str:
"""
简单的函数接口,用于从 URL 提取文本内容
Args:
url: 要提取内容的网页 URL
tavily_keys: Tavily API 密钥列表
Returns:
提取的文本内容
"""
extractor = URLExtractor(tavily_keys)
return await extractor.extract_text_from_url(url)

View File

@@ -0,0 +1,13 @@
from .base import BaseParser
async def select_parser(ext: str) -> BaseParser:
if ext in {".md", ".txt", ".markdown", ".xlsx", ".docx", ".xls"}:
from .markitdown_parser import MarkitdownParser
return MarkitdownParser()
if ext == ".pdf":
from .pdf_parser import PDFParser
return PDFParser()
raise ValueError(f"暂时不支持的文件格式: {ext}")

View File

@@ -0,0 +1,65 @@
TEXT_REPAIR_SYSTEM_PROMPT = """You are a meticulous digital archivist. Your mission is to reconstruct a clean, readable article from raw, noisy text chunks.
**Core Task:**
1. **Analyze:** Examine the text chunk to separate "signal" (substantive information) from "noise" (UI elements, ads, navigation, footers).
2. **Process:** Clean and repair the signal. **Do not translate it.** Keep the original language.
**Crucial Rules:**
- **NEVER discard a chunk if it contains ANY valuable information.** Your primary duty is to salvage content.
- **If a chunk contains multiple distinct topics, split them.** Enclose each topic in its own `<repaired_text>` tag.
- Your output MUST be ONLY `<repaired_text>...</repaired_text>` tags or a single `<discard_chunk />` tag.
---
**Example 1: Chunk with Noise and Signal**
*Input Chunk:*
"Home | About | Products | **The Llama is a domesticated South American camelid.** | © 2025 ACME Corp."
*Your Thought Process:*
1. "Home | About | Products..." and "© 2025 ACME Corp." are noise.
2. "The Llama is a domesticated..." is the signal.
3. I must extract the signal and wrap it.
*Your Output:*
<repaired_text>
The Llama is a domesticated South American camelid.
</repaired_text>
---
**Example 2: Chunk with ONLY Noise**
*Input Chunk:*
"Next Page > | Subscribe to our newsletter | Follow us on X"
*Your Thought Process:*
1. This entire chunk is noise. There is no signal.
2. I must discard this.
*Your Output:*
<discard_chunk />
---
**Example 3: Chunk with Multiple Topics (Requires Splitting)**
*Input Chunk:*
"## Chapter 1: The Sun
The Sun is the star at the center of the Solar System.
## Chapter 2: The Moon
The Moon is Earth's only natural satellite."
*Your Thought Process:*
1. This chunk contains two distinct topics.
2. I must process them separately to maintain semantic integrity.
3. I will create two `<repaired_text>` blocks.
*Your Output:*
<repaired_text>
## Chapter 1: The Sun
The Sun is the star at the center of the Solar System.
</repaired_text>
<repaired_text>
## Chapter 2: The Moon
The Moon is Earth's only natural satellite.
</repaired_text>
"""

View File

@@ -0,0 +1,14 @@
"""检索模块"""
from .manager import RetrievalManager, RetrievalResult
from .rank_fusion import FusedResult, RankFusion
from .sparse_retriever import SparseResult, SparseRetriever
__all__ = [
"FusedResult",
"RankFusion",
"RetrievalManager",
"RetrievalResult",
"SparseResult",
"SparseRetriever",
]

View File

@@ -0,0 +1,767 @@
———
》),
)÷(1-
”,
)、
:
&
*
一一
~~~~
.
.一
./
--
=″
[⑤]]
[①D]
ng昉
//
[②e]
[②g]
}
,也
[①⑥]
[②B]
[①a]
[④a]
[①③]
[③h]
③]
[②b]
×××
[①⑧]
[⑤b]
[②c]
[④b]
[②③]
[③a]
[④c]
[①⑤]
[①⑦]
[①g]
∈[
[①⑨]
[①④]
[①c]
[②f]
[②⑧]
[②①]
[①C]
[③c]
[③g]
[②⑤]
[②②]
一.
[①h]
.数
[①B]
数/
[①i]
[③e]
[①①]
[④d]
[④e]
[③b]
[⑤a]
[①A]
[②⑧]
[②⑦]
[①d]
[②j]
://
′∈
[②④
[⑤e]
...
...................
…………………………………………………③
[③F]
[①o]
]∧′=[
∪φ∈
②c
[③①]
[①E]
Ψ
.日
[②d]
[②
[②⑦]
[②②]
[③e]
[①i]
[①B]
[①h]
[①d]
[①g]
[①②]
[②a]
[⑩]
[①e]
[②h]
[②⑥]
[③d]
[②⑩]
元/吨
[②⑩]
[①]
::
[②]
[③]
[④]
[⑤]
[⑥]
[⑦]
[⑧]
[⑨]
……
——
?
,
'
?
·
———
──
?
<
>
[
]
(
)
-
+
×
/
В
"
;
#
@
γ
μ
φ
φ.
×
Δ
sub
exp
sup
sub
Lex
+ξ
-β
<±
<Δ
<λ
<φ
=
=☆
>λ
_
~±
[⑤f]
[⑤d]
[②i]
[②G]
[①f]
......
[③⑩]
第二
一番
一直
一个
一些
许多
有的是
也就是说
末##末
哎呀
哎哟
俺们
按照
吧哒
罢了
本着
比方
比如
鄙人
彼此
别的
别说
并且
不比
不成
不单
不但
不独
不管
不光
不过
不仅
不拘
不论
不怕
不然
不如
不特
不惟
不问
不只
朝着
趁着
除此之外
除非
除了
此间
此外
从而
但是
当着
的话
等等
叮咚
对于
多少
而况
而且
而是
而外
而言
而已
尔后
反过来
反过来说
反之
非但
非徒
否则
嘎登
各个
各位
各种
各自
根据
故此
固然
关于
果然
果真
哈哈
何处
何况
何时
哼唷
呼哧
还是
还有
换句话说
换言之
或是
或者
极了
及其
及至
即便
即或
即令
即若
即使
几时
既然
既是
继而
加之
假如
假若
假使
鉴于
较之
接着
结果
紧接着
进而
尽管
经过
就是
就是说
具体地说
具体说来
开始
开外
可见
可是
可以
况且
来着
例如
连同
两者
另外
另一方面
慢说
漫说
每当
莫若
某个
某些
哪边
哪儿
哪个
哪里
哪年
哪怕
哪天
哪些
哪样
那边
那儿
那个
那会儿
那里
那么
那么些
那么样
那时
那些
那样
乃至
你们
宁可
宁肯
宁愿
啪达
旁人
凭借
其次
其二
其他
其它
其一
其余
其中
起见
起见
岂但
恰恰相反
前后
前者
然而
然后
然则
人家
任何
任凭
如此
如果
如何
如其
如若
如上所述
若非
若是
上下
尚且
设若
设使
甚而
甚么
甚至
省得
时候
什么
什么样
使得
是的
首先
谁知
顺着
似的
虽然
虽说
虽则
随着
所以
他们
他人
它们
她们
倘或
倘然
倘若
倘使
通过
同时
万一
为何
为了
为什么
为着
嗡嗡
我们
呜呼
乌乎
无论
无宁
毋宁
相对而言
向着
沿
沿着
要不
要不然
要不是
要么
要是
也罢
也好
一般
一旦
一方面
一来
一切
一样
一则
依照
以便
以及
以免
以至
以至于
以致
抑或
因此
因而
因为
由此可见
由于
有的
有关
有些
于是
于是乎
与此同时
与否
与其
越是
云云
再说
再者
在下
咱们
怎么
怎么办
怎么样
怎样
照着
这边
这儿
这个
这会儿
这就是说
这里
这么
这么点儿
这么些
这么样
这时
这些
这样
正如
之类
之所以
之一
只是
只限
只要
只有
至于
诸位
着呢
自从
自个儿
自各儿
自己
自家
自身
综上所述
总的来看
总的来说
总的说来
总而言之
总之
纵令
纵然
纵使
遵照
作为
喔唷

View File

@@ -0,0 +1,276 @@
"""检索管理器
协调稠密检索、稀疏检索和 Rerank,提供统一的检索接口
"""
import time
from dataclasses import dataclass
from astrbot import logger
from astrbot.core.db.vec_db.base import Result
from astrbot.core.db.vec_db.faiss_impl import FaissVecDB
from astrbot.core.knowledge_base.kb_db_sqlite import KBSQLiteDatabase
from astrbot.core.knowledge_base.retrieval.rank_fusion import RankFusion
from astrbot.core.knowledge_base.retrieval.sparse_retriever import SparseRetriever
from astrbot.core.provider.provider import RerankProvider
from ..kb_helper import KBHelper
@dataclass
class RetrievalResult:
"""检索结果"""
chunk_id: str
doc_id: str
doc_name: str
kb_id: str
kb_name: str
content: str
score: float
metadata: dict
class RetrievalManager:
"""检索管理器
职责:
- 协调稠密检索、稀疏检索和 Rerank
- 结果融合和排序
"""
def __init__(
self,
sparse_retriever: SparseRetriever,
rank_fusion: RankFusion,
kb_db: KBSQLiteDatabase,
):
"""初始化检索管理器
Args:
vec_db_factory: 向量数据库工厂
sparse_retriever: 稀疏检索器
rank_fusion: 结果融合器
kb_db: 知识库数据库实例
"""
self.sparse_retriever = sparse_retriever
self.rank_fusion = rank_fusion
self.kb_db = kb_db
async def retrieve(
self,
query: str,
kb_ids: list[str],
kb_id_helper_map: dict[str, KBHelper],
top_k_fusion: int = 20,
top_m_final: int = 5,
) -> list[RetrievalResult]:
"""混合检索
流程:
1. 稠密检索 (向量相似度)
2. 稀疏检索 (BM25)
3. 结果融合 (RRF)
4. Rerank 重排序
Args:
query: 查询文本
kb_ids: 知识库 ID 列表
top_m_final: 最终返回数量
enable_rerank: 是否启用 Rerank
Returns:
List[RetrievalResult]: 检索结果列表
"""
if not kb_ids:
return []
kb_options: dict = {}
new_kb_ids = []
for kb_id in kb_ids:
kb_helper = kb_id_helper_map.get(kb_id)
if kb_helper:
kb = kb_helper.kb
kb_options[kb_id] = {
"top_k_dense": kb.top_k_dense or 50,
"top_k_sparse": kb.top_k_sparse or 50,
"top_m_final": kb.top_m_final or 5,
"vec_db": kb_helper.vec_db,
"rerank_provider_id": kb.rerank_provider_id,
}
new_kb_ids.append(kb_id)
else:
logger.warning(f"知识库 ID {kb_id} 实例未找到, 已跳过该知识库的检索")
kb_ids = new_kb_ids
# 1. 稠密检索
time_start = time.time()
dense_results = await self._dense_retrieve(
query=query,
kb_ids=kb_ids,
kb_options=kb_options,
)
time_end = time.time()
logger.debug(
f"Dense retrieval across {len(kb_ids)} bases took {time_end - time_start:.2f}s and returned {len(dense_results)} results.",
)
# 2. 稀疏检索
time_start = time.time()
sparse_results = await self.sparse_retriever.retrieve(
query=query,
kb_ids=kb_ids,
kb_options=kb_options,
)
time_end = time.time()
logger.debug(
f"Sparse retrieval across {len(kb_ids)} bases took {time_end - time_start:.2f}s and returned {len(sparse_results)} results.",
)
# 3. 结果融合
time_start = time.time()
fused_results = await self.rank_fusion.fuse(
dense_results=dense_results,
sparse_results=sparse_results,
top_k=top_k_fusion,
)
time_end = time.time()
logger.debug(
f"Rank fusion took {time_end - time_start:.2f}s and returned {len(fused_results)} results.",
)
# 4. 转换为 RetrievalResult (获取元数据)
retrieval_results = []
for fr in fused_results:
metadata_dict = await self.kb_db.get_document_with_metadata(fr.doc_id)
if metadata_dict:
retrieval_results.append(
RetrievalResult(
chunk_id=fr.chunk_id,
doc_id=fr.doc_id,
doc_name=metadata_dict["document"].doc_name,
kb_id=fr.kb_id,
kb_name=metadata_dict["knowledge_base"].kb_name,
content=fr.content,
score=fr.score,
metadata={
"chunk_index": fr.chunk_index,
"char_count": len(fr.content),
},
),
)
# 5. Rerank
first_rerank = None
for kb_id in kb_ids:
vec_db: FaissVecDB = kb_options[kb_id]["vec_db"]
rerank_pi = kb_options[kb_id]["rerank_provider_id"]
if (
vec_db
and vec_db.rerank_provider
and rerank_pi
and rerank_pi == vec_db.rerank_provider.meta().id
):
first_rerank = vec_db.rerank_provider
break
if first_rerank and retrieval_results:
retrieval_results = await self._rerank(
query=query,
results=retrieval_results,
top_k=top_m_final,
rerank_provider=first_rerank,
)
return retrieval_results[:top_m_final]
async def _dense_retrieve(
self,
query: str,
kb_ids: list[str],
kb_options: dict,
):
"""稠密检索 (向量相似度)
为每个知识库使用独立的向量数据库进行检索,然后合并结果。
Args:
query: 查询文本
kb_ids: 知识库 ID 列表
top_k: 返回结果数量
Returns:
List[Result]: 检索结果列表
"""
all_results: list[Result] = []
for kb_id in kb_ids:
if kb_id not in kb_options:
continue
try:
vec_db: FaissVecDB = kb_options[kb_id]["vec_db"]
dense_k = int(kb_options[kb_id]["top_k_dense"])
vec_results = await vec_db.retrieve(
query=query,
k=dense_k,
fetch_k=dense_k * 2,
rerank=False, # 稠密检索阶段不进行 rerank
metadata_filters={"kb_id": kb_id},
)
all_results.extend(vec_results)
except Exception as e:
from astrbot.core import logger
logger.warning(f"知识库 {kb_id} 稠密检索失败: {e}")
continue
# 按相似度排序并返回 top_k
all_results.sort(key=lambda x: x.similarity, reverse=True)
# return all_results[: len(all_results) // len(kb_ids)]
return all_results
async def _rerank(
self,
query: str,
results: list[RetrievalResult],
top_k: int,
rerank_provider: RerankProvider,
) -> list[RetrievalResult]:
"""Rerank 重排序
Args:
query: 查询文本
results: 检索结果列表
top_k: 返回结果数量
Returns:
List[RetrievalResult]: 重排序后的结果列表
"""
if not results:
return []
# 准备文档列表
docs = [r.content for r in results]
# 调用 Rerank Provider
rerank_results = await rerank_provider.rerank(
query=query,
documents=docs,
)
# 更新分数并重新排序
reranked_list = []
for rerank_result in rerank_results:
idx = rerank_result.index
if idx < len(results):
result = results[idx]
result.score = rerank_result.relevance_score
reranked_list.append(result)
reranked_list.sort(key=lambda x: x.score, reverse=True)
return reranked_list[:top_k]

Some files were not shown because too many files have changed in this diff Show More