Compare commits
23 Commits
master
...
feat/memor
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c76b7ec387 | ||
|
|
b7f3010d72 | ||
|
|
fbbaf1cd08 | ||
|
|
9c8025acce | ||
|
|
98c5466b5d | ||
|
|
6345ac6ff8 | ||
|
|
5bcd683012 | ||
|
|
eaa193c6c5 | ||
|
|
1bdcaa1318 | ||
|
|
6b6c48354d | ||
|
|
774efb2fe0 | ||
|
|
3ec76636f9 | ||
|
|
283810d103 | ||
|
|
81a76bc8e5 | ||
|
|
788764be02 | ||
|
|
802ab26934 | ||
|
|
6857c81a14 | ||
|
|
a6ed511a30 | ||
|
|
44c2b58206 | ||
|
|
0e2adab3fd | ||
|
|
0fe87d6b98 | ||
|
|
31ef3d1084 | ||
|
|
b984bb2513 |
4
.github/workflows/auto_release.yml
vendored
4
.github/workflows/auto_release.yml
vendored
@@ -13,7 +13,7 @@ jobs:
|
||||
contents: write
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: Dashboard Build
|
||||
run: |
|
||||
@@ -70,7 +70,7 @@ jobs:
|
||||
needs: build-and-publish-to-github-release
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v6
|
||||
|
||||
2
.github/workflows/code-format.yml
vendored
2
.github/workflows/code-format.yml
vendored
@@ -12,7 +12,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v6
|
||||
|
||||
2
.github/workflows/codeql.yml
vendored
2
.github/workflows/codeql.yml
vendored
@@ -56,7 +56,7 @@ jobs:
|
||||
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
|
||||
2
.github/workflows/coverage_test.yml
vendored
2
.github/workflows/coverage_test.yml
vendored
@@ -17,7 +17,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
2
.github/workflows/dashboard_ci.yml
vendored
2
.github/workflows/dashboard_ci.yml
vendored
@@ -11,7 +11,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v6
|
||||
|
||||
4
.github/workflows/docker-image.yml
vendored
4
.github/workflows/docker-image.yml
vendored
@@ -20,7 +20,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
fetch-depth: 1
|
||||
fetch-tag: true
|
||||
@@ -118,7 +118,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
fetch-depth: 1
|
||||
fetch-tag: true
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -34,7 +34,6 @@ dashboard/node_modules/
|
||||
dashboard/dist/
|
||||
package-lock.json
|
||||
package.json
|
||||
yarn.lock
|
||||
|
||||
# Operating System
|
||||
**/.DS_Store
|
||||
@@ -48,5 +47,3 @@ astrbot.lock
|
||||
chroma
|
||||
venv/*
|
||||
pytest.ini
|
||||
AGENTS.md
|
||||
IFLOW.md
|
||||
|
||||
@@ -32,7 +32,7 @@
|
||||
<a href="https://github.com/AstrBotDevs/AstrBot/issues">问题提交</a>
|
||||
</div>
|
||||
|
||||
AstrBot 是一个开源的一站式 Agent 聊天机器人平台,可无缝接入主流即时通讯软件,为个人、开发者和团队打造可靠、可扩展的对话式智能基础设施。无论是个人 AI 伙伴、智能客服、自动化助手,还是企业知识库,AstrBot 都能在你的即时通讯软件平台的工作流中快速构建生产可用的 AI 应用。
|
||||
AstrBot 是一个开源的一站式 Agent 聊天机器人平台及开发框架。
|
||||
|
||||
## 主要功能
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = "4.7.4"
|
||||
__version__ = "3.5.23"
|
||||
|
||||
@@ -345,6 +345,9 @@ class MCPClient:
|
||||
|
||||
async def cleanup(self):
|
||||
"""Clean up resources including old exit stacks from reconnections"""
|
||||
# Set running_event first to unblock any waiting tasks
|
||||
self.running_event.set()
|
||||
|
||||
# Close current exit stack
|
||||
try:
|
||||
await self.exit_stack.aclose()
|
||||
@@ -356,9 +359,6 @@ class MCPClient:
|
||||
# Just clear the list to release references
|
||||
self._old_exit_stacks.clear()
|
||||
|
||||
# Set running_event first to unblock any waiting tasks
|
||||
self.running_event.set()
|
||||
|
||||
|
||||
class MCPTool(FunctionTool, Generic[TContext]):
|
||||
"""A function tool that calls an MCP service."""
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
|
||||
from typing import Any, ClassVar, Literal, cast
|
||||
|
||||
from pydantic import BaseModel, GetCoreSchemaHandler, model_validator
|
||||
from pydantic import BaseModel, GetCoreSchemaHandler
|
||||
from pydantic_core import core_schema
|
||||
|
||||
|
||||
@@ -145,39 +145,22 @@ class Message(BaseModel):
|
||||
"tool",
|
||||
]
|
||||
|
||||
content: str | list[ContentPart] | None = None
|
||||
content: str | list[ContentPart]
|
||||
"""The content of the message."""
|
||||
|
||||
tool_calls: list[ToolCall] | list[dict] | None = None
|
||||
"""The tool calls of the message."""
|
||||
|
||||
tool_call_id: str | None = None
|
||||
"""The ID of the tool call."""
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_content_required(self):
|
||||
# assistant + tool_calls is not None: allow content to be None
|
||||
if self.role == "assistant" and self.tool_calls is not None:
|
||||
return self
|
||||
|
||||
# other all cases: content is required
|
||||
if self.content is None:
|
||||
raise ValueError(
|
||||
"content is required unless role='assistant' and tool_calls is not None"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
class AssistantMessageSegment(Message):
|
||||
"""A message segment from the assistant."""
|
||||
|
||||
role: Literal["assistant"] = "assistant"
|
||||
tool_calls: list[ToolCall] | list[dict] | None = None
|
||||
|
||||
|
||||
class ToolCallMessageSegment(Message):
|
||||
"""A message segment representing a tool call."""
|
||||
|
||||
role: Literal["tool"] = "tool"
|
||||
tool_call_id: str
|
||||
|
||||
|
||||
class UserMessageSegment(Message):
|
||||
|
||||
@@ -2,12 +2,13 @@ import abc
|
||||
import typing as T
|
||||
from enum import Enum, auto
|
||||
|
||||
from astrbot import logger
|
||||
from astrbot.core.provider import Provider
|
||||
from astrbot.core.provider.entities import LLMResponse
|
||||
|
||||
from ..hooks import BaseAgentRunHooks
|
||||
from ..response import AgentResponse
|
||||
from ..run_context import ContextWrapper, TContext
|
||||
from ..tool_executor import BaseFunctionToolExecutor
|
||||
|
||||
|
||||
class AgentState(Enum):
|
||||
@@ -23,7 +24,9 @@ class BaseAgentRunner(T.Generic[TContext]):
|
||||
@abc.abstractmethod
|
||||
async def reset(
|
||||
self,
|
||||
provider: Provider,
|
||||
run_context: ContextWrapper[TContext],
|
||||
tool_executor: BaseFunctionToolExecutor[TContext],
|
||||
agent_hooks: BaseAgentRunHooks[TContext],
|
||||
**kwargs: T.Any,
|
||||
) -> None:
|
||||
@@ -57,9 +60,3 @@ class BaseAgentRunner(T.Generic[TContext]):
|
||||
This method should be called after the agent is done.
|
||||
"""
|
||||
...
|
||||
|
||||
def _transition_state(self, new_state: AgentState) -> None:
|
||||
"""Transition the agent state."""
|
||||
if self._state != new_state:
|
||||
logger.debug(f"Agent state transition: {self._state} -> {new_state}")
|
||||
self._state = new_state
|
||||
|
||||
@@ -1,367 +0,0 @@
|
||||
import base64
|
||||
import json
|
||||
import sys
|
||||
import typing as T
|
||||
|
||||
import astrbot.core.message.components as Comp
|
||||
from astrbot import logger
|
||||
from astrbot.core import sp
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
from astrbot.core.provider.entities import (
|
||||
LLMResponse,
|
||||
ProviderRequest,
|
||||
)
|
||||
|
||||
from ...hooks import BaseAgentRunHooks
|
||||
from ...response import AgentResponseData
|
||||
from ...run_context import ContextWrapper, TContext
|
||||
from ..base import AgentResponse, AgentState, BaseAgentRunner
|
||||
from .coze_api_client import CozeAPIClient
|
||||
|
||||
if sys.version_info >= (3, 12):
|
||||
from typing import override
|
||||
else:
|
||||
from typing_extensions import override
|
||||
|
||||
|
||||
class CozeAgentRunner(BaseAgentRunner[TContext]):
|
||||
"""Coze Agent Runner"""
|
||||
|
||||
@override
|
||||
async def reset(
|
||||
self,
|
||||
request: ProviderRequest,
|
||||
run_context: ContextWrapper[TContext],
|
||||
agent_hooks: BaseAgentRunHooks[TContext],
|
||||
provider_config: dict,
|
||||
**kwargs: T.Any,
|
||||
) -> None:
|
||||
self.req = request
|
||||
self.streaming = kwargs.get("streaming", False)
|
||||
self.final_llm_resp = None
|
||||
self._state = AgentState.IDLE
|
||||
self.agent_hooks = agent_hooks
|
||||
self.run_context = run_context
|
||||
|
||||
self.api_key = provider_config.get("coze_api_key", "")
|
||||
if not self.api_key:
|
||||
raise Exception("Coze API Key 不能为空。")
|
||||
self.bot_id = provider_config.get("bot_id", "")
|
||||
if not self.bot_id:
|
||||
raise Exception("Coze Bot ID 不能为空。")
|
||||
self.api_base: str = provider_config.get("coze_api_base", "https://api.coze.cn")
|
||||
|
||||
if not isinstance(self.api_base, str) or not self.api_base.startswith(
|
||||
("http://", "https://"),
|
||||
):
|
||||
raise Exception(
|
||||
"Coze API Base URL 格式不正确,必须以 http:// 或 https:// 开头。",
|
||||
)
|
||||
|
||||
self.timeout = provider_config.get("timeout", 120)
|
||||
if isinstance(self.timeout, str):
|
||||
self.timeout = int(self.timeout)
|
||||
self.auto_save_history = provider_config.get("auto_save_history", True)
|
||||
|
||||
# 创建 API 客户端
|
||||
self.api_client = CozeAPIClient(api_key=self.api_key, api_base=self.api_base)
|
||||
|
||||
# 会话相关缓存
|
||||
self.file_id_cache: dict[str, dict[str, str]] = {}
|
||||
|
||||
@override
|
||||
async def step(self):
|
||||
"""
|
||||
执行 Coze Agent 的一个步骤
|
||||
"""
|
||||
if not self.req:
|
||||
raise ValueError("Request is not set. Please call reset() first.")
|
||||
|
||||
if self._state == AgentState.IDLE:
|
||||
try:
|
||||
await self.agent_hooks.on_agent_begin(self.run_context)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in on_agent_begin hook: {e}", exc_info=True)
|
||||
|
||||
# 开始处理,转换到运行状态
|
||||
self._transition_state(AgentState.RUNNING)
|
||||
|
||||
try:
|
||||
# 执行 Coze 请求并处理结果
|
||||
async for response in self._execute_coze_request():
|
||||
yield response
|
||||
except Exception as e:
|
||||
logger.error(f"Coze 请求失败:{str(e)}")
|
||||
self._transition_state(AgentState.ERROR)
|
||||
self.final_llm_resp = LLMResponse(
|
||||
role="err", completion_text=f"Coze 请求失败:{str(e)}"
|
||||
)
|
||||
yield AgentResponse(
|
||||
type="err",
|
||||
data=AgentResponseData(
|
||||
chain=MessageChain().message(f"Coze 请求失败:{str(e)}")
|
||||
),
|
||||
)
|
||||
finally:
|
||||
await self.api_client.close()
|
||||
|
||||
@override
|
||||
async def step_until_done(
|
||||
self, max_step: int = 30
|
||||
) -> T.AsyncGenerator[AgentResponse, None]:
|
||||
while not self.done():
|
||||
async for resp in self.step():
|
||||
yield resp
|
||||
|
||||
async def _execute_coze_request(self):
|
||||
"""执行 Coze 请求的核心逻辑"""
|
||||
prompt = self.req.prompt or ""
|
||||
session_id = self.req.session_id or "unknown"
|
||||
image_urls = self.req.image_urls or []
|
||||
contexts = self.req.contexts or []
|
||||
system_prompt = self.req.system_prompt
|
||||
|
||||
# 用户ID参数
|
||||
user_id = session_id
|
||||
|
||||
# 获取或创建会话ID
|
||||
conversation_id = await sp.get_async(
|
||||
scope="umo",
|
||||
scope_id=user_id,
|
||||
key="coze_conversation_id",
|
||||
default="",
|
||||
)
|
||||
|
||||
# 构建消息
|
||||
additional_messages = []
|
||||
|
||||
if system_prompt:
|
||||
if not self.auto_save_history or not conversation_id:
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt,
|
||||
"content_type": "text",
|
||||
},
|
||||
)
|
||||
|
||||
# 处理历史上下文
|
||||
if not self.auto_save_history and contexts:
|
||||
for ctx in contexts:
|
||||
if isinstance(ctx, dict) and "role" in ctx and "content" in ctx:
|
||||
# 处理上下文中的图片
|
||||
content = ctx["content"]
|
||||
if isinstance(content, list):
|
||||
# 多模态内容,需要处理图片
|
||||
processed_content = []
|
||||
for item in content:
|
||||
if isinstance(item, dict):
|
||||
if item.get("type") == "text":
|
||||
processed_content.append(item)
|
||||
elif item.get("type") == "image_url":
|
||||
# 处理图片上传
|
||||
try:
|
||||
image_data = item.get("image_url", {})
|
||||
url = image_data.get("url", "")
|
||||
if url:
|
||||
file_id = (
|
||||
await self._download_and_upload_image(
|
||||
url, session_id
|
||||
)
|
||||
)
|
||||
processed_content.append(
|
||||
{
|
||||
"type": "file",
|
||||
"file_id": file_id,
|
||||
"file_url": url,
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"处理上下文图片失败: {e}")
|
||||
continue
|
||||
|
||||
if processed_content:
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": ctx["role"],
|
||||
"content": processed_content,
|
||||
"content_type": "object_string",
|
||||
}
|
||||
)
|
||||
else:
|
||||
# 纯文本内容
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": ctx["role"],
|
||||
"content": content,
|
||||
"content_type": "text",
|
||||
}
|
||||
)
|
||||
|
||||
# 构建当前消息
|
||||
if prompt or image_urls:
|
||||
if image_urls:
|
||||
# 多模态
|
||||
object_string_content = []
|
||||
if prompt:
|
||||
object_string_content.append({"type": "text", "text": prompt})
|
||||
|
||||
for url in image_urls:
|
||||
# the url is a base64 string
|
||||
try:
|
||||
image_data = base64.b64decode(url)
|
||||
file_id = await self.api_client.upload_file(image_data)
|
||||
object_string_content.append(
|
||||
{
|
||||
"type": "image",
|
||||
"file_id": file_id,
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"处理图片失败 {url}: {e}")
|
||||
continue
|
||||
|
||||
if object_string_content:
|
||||
content = json.dumps(object_string_content, ensure_ascii=False)
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": content,
|
||||
"content_type": "object_string",
|
||||
}
|
||||
)
|
||||
elif prompt:
|
||||
# 纯文本
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
"content_type": "text",
|
||||
},
|
||||
)
|
||||
|
||||
# 执行 Coze API 请求
|
||||
accumulated_content = ""
|
||||
message_started = False
|
||||
|
||||
async for chunk in self.api_client.chat_messages(
|
||||
bot_id=self.bot_id,
|
||||
user_id=user_id,
|
||||
additional_messages=additional_messages,
|
||||
conversation_id=conversation_id,
|
||||
auto_save_history=self.auto_save_history,
|
||||
stream=True,
|
||||
timeout=self.timeout,
|
||||
):
|
||||
event_type = chunk.get("event")
|
||||
data = chunk.get("data", {})
|
||||
|
||||
if event_type == "conversation.chat.created":
|
||||
if isinstance(data, dict) and "conversation_id" in data:
|
||||
await sp.put_async(
|
||||
scope="umo",
|
||||
scope_id=user_id,
|
||||
key="coze_conversation_id",
|
||||
value=data["conversation_id"],
|
||||
)
|
||||
|
||||
if event_type == "conversation.message.delta":
|
||||
# 增量消息
|
||||
content = data.get("content", "")
|
||||
if not content and "delta" in data:
|
||||
content = data["delta"].get("content", "")
|
||||
if not content and "text" in data:
|
||||
content = data.get("text", "")
|
||||
|
||||
if content:
|
||||
accumulated_content += content
|
||||
message_started = True
|
||||
|
||||
# 如果是流式响应,发送增量数据
|
||||
if self.streaming:
|
||||
yield AgentResponse(
|
||||
type="streaming_delta",
|
||||
data=AgentResponseData(
|
||||
chain=MessageChain().message(content)
|
||||
),
|
||||
)
|
||||
|
||||
elif event_type == "conversation.message.completed":
|
||||
# 消息完成
|
||||
logger.debug("Coze message completed")
|
||||
message_started = True
|
||||
|
||||
elif event_type == "conversation.chat.completed":
|
||||
# 对话完成
|
||||
logger.debug("Coze chat completed")
|
||||
break
|
||||
|
||||
elif event_type == "error":
|
||||
# 错误处理
|
||||
error_msg = data.get("msg", "未知错误")
|
||||
error_code = data.get("code", "UNKNOWN")
|
||||
logger.error(f"Coze 出现错误: {error_code} - {error_msg}")
|
||||
raise Exception(f"Coze 出现错误: {error_code} - {error_msg}")
|
||||
|
||||
if not message_started and not accumulated_content:
|
||||
logger.warning("Coze 未返回任何内容")
|
||||
accumulated_content = ""
|
||||
|
||||
# 创建最终响应
|
||||
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
|
||||
self.final_llm_resp = LLMResponse(role="assistant", result_chain=chain)
|
||||
self._transition_state(AgentState.DONE)
|
||||
|
||||
try:
|
||||
await self.agent_hooks.on_agent_done(self.run_context, self.final_llm_resp)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in on_agent_done hook: {e}", exc_info=True)
|
||||
|
||||
# 返回最终结果
|
||||
yield AgentResponse(
|
||||
type="llm_result",
|
||||
data=AgentResponseData(chain=chain),
|
||||
)
|
||||
|
||||
async def _download_and_upload_image(
|
||||
self,
|
||||
image_url: str,
|
||||
session_id: str | None = None,
|
||||
) -> str:
|
||||
"""下载图片并上传到 Coze,返回 file_id"""
|
||||
import hashlib
|
||||
|
||||
# 计算哈希实现缓存
|
||||
cache_key = hashlib.md5(image_url.encode("utf-8")).hexdigest()
|
||||
|
||||
if session_id:
|
||||
if session_id not in self.file_id_cache:
|
||||
self.file_id_cache[session_id] = {}
|
||||
|
||||
if cache_key in self.file_id_cache[session_id]:
|
||||
file_id = self.file_id_cache[session_id][cache_key]
|
||||
logger.debug(f"[Coze] 使用缓存的 file_id: {file_id}")
|
||||
return file_id
|
||||
|
||||
try:
|
||||
image_data = await self.api_client.download_image(image_url)
|
||||
file_id = await self.api_client.upload_file(image_data)
|
||||
|
||||
if session_id:
|
||||
self.file_id_cache[session_id][cache_key] = file_id
|
||||
logger.debug(f"[Coze] 图片上传成功并缓存,file_id: {file_id}")
|
||||
|
||||
return file_id
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理图片失败 {image_url}: {e!s}")
|
||||
raise Exception(f"处理图片失败: {e!s}")
|
||||
|
||||
@override
|
||||
def done(self) -> bool:
|
||||
"""检查 Agent 是否已完成工作"""
|
||||
return self._state in (AgentState.DONE, AgentState.ERROR)
|
||||
|
||||
@override
|
||||
def get_final_llm_resp(self) -> LLMResponse | None:
|
||||
return self.final_llm_resp
|
||||
@@ -1,403 +0,0 @@
|
||||
import asyncio
|
||||
import functools
|
||||
import queue
|
||||
import re
|
||||
import sys
|
||||
import threading
|
||||
import typing as T
|
||||
|
||||
from dashscope import Application
|
||||
from dashscope.app.application_response import ApplicationResponse
|
||||
|
||||
import astrbot.core.message.components as Comp
|
||||
from astrbot.core import logger, sp
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
from astrbot.core.provider.entities import (
|
||||
LLMResponse,
|
||||
ProviderRequest,
|
||||
)
|
||||
|
||||
from ...hooks import BaseAgentRunHooks
|
||||
from ...response import AgentResponseData
|
||||
from ...run_context import ContextWrapper, TContext
|
||||
from ..base import AgentResponse, AgentState, BaseAgentRunner
|
||||
|
||||
if sys.version_info >= (3, 12):
|
||||
from typing import override
|
||||
else:
|
||||
from typing_extensions import override
|
||||
|
||||
|
||||
class DashscopeAgentRunner(BaseAgentRunner[TContext]):
|
||||
"""Dashscope Agent Runner"""
|
||||
|
||||
@override
|
||||
async def reset(
|
||||
self,
|
||||
request: ProviderRequest,
|
||||
run_context: ContextWrapper[TContext],
|
||||
agent_hooks: BaseAgentRunHooks[TContext],
|
||||
provider_config: dict,
|
||||
**kwargs: T.Any,
|
||||
) -> None:
|
||||
self.req = request
|
||||
self.streaming = kwargs.get("streaming", False)
|
||||
self.final_llm_resp = None
|
||||
self._state = AgentState.IDLE
|
||||
self.agent_hooks = agent_hooks
|
||||
self.run_context = run_context
|
||||
|
||||
self.api_key = provider_config.get("dashscope_api_key", "")
|
||||
if not self.api_key:
|
||||
raise Exception("阿里云百炼 API Key 不能为空。")
|
||||
self.app_id = provider_config.get("dashscope_app_id", "")
|
||||
if not self.app_id:
|
||||
raise Exception("阿里云百炼 APP ID 不能为空。")
|
||||
self.dashscope_app_type = provider_config.get("dashscope_app_type", "")
|
||||
if not self.dashscope_app_type:
|
||||
raise Exception("阿里云百炼 APP 类型不能为空。")
|
||||
|
||||
self.variables: dict = provider_config.get("variables", {}) or {}
|
||||
self.rag_options: dict = provider_config.get("rag_options", {})
|
||||
self.output_reference = self.rag_options.get("output_reference", False)
|
||||
self.rag_options = self.rag_options.copy()
|
||||
self.rag_options.pop("output_reference", None)
|
||||
|
||||
self.timeout = provider_config.get("timeout", 120)
|
||||
if isinstance(self.timeout, str):
|
||||
self.timeout = int(self.timeout)
|
||||
|
||||
def has_rag_options(self):
|
||||
"""判断是否有 RAG 选项
|
||||
|
||||
Returns:
|
||||
bool: 是否有 RAG 选项
|
||||
|
||||
"""
|
||||
if self.rag_options and (
|
||||
len(self.rag_options.get("pipeline_ids", [])) > 0
|
||||
or len(self.rag_options.get("file_ids", [])) > 0
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
||||
@override
|
||||
async def step(self):
|
||||
"""
|
||||
执行 Dashscope Agent 的一个步骤
|
||||
"""
|
||||
if not self.req:
|
||||
raise ValueError("Request is not set. Please call reset() first.")
|
||||
|
||||
if self._state == AgentState.IDLE:
|
||||
try:
|
||||
await self.agent_hooks.on_agent_begin(self.run_context)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in on_agent_begin hook: {e}", exc_info=True)
|
||||
|
||||
# 开始处理,转换到运行状态
|
||||
self._transition_state(AgentState.RUNNING)
|
||||
|
||||
try:
|
||||
# 执行 Dashscope 请求并处理结果
|
||||
async for response in self._execute_dashscope_request():
|
||||
yield response
|
||||
except Exception as e:
|
||||
logger.error(f"阿里云百炼请求失败:{str(e)}")
|
||||
self._transition_state(AgentState.ERROR)
|
||||
self.final_llm_resp = LLMResponse(
|
||||
role="err", completion_text=f"阿里云百炼请求失败:{str(e)}"
|
||||
)
|
||||
yield AgentResponse(
|
||||
type="err",
|
||||
data=AgentResponseData(
|
||||
chain=MessageChain().message(f"阿里云百炼请求失败:{str(e)}")
|
||||
),
|
||||
)
|
||||
|
||||
@override
|
||||
async def step_until_done(
|
||||
self, max_step: int = 30
|
||||
) -> T.AsyncGenerator[AgentResponse, None]:
|
||||
while not self.done():
|
||||
async for resp in self.step():
|
||||
yield resp
|
||||
|
||||
def _consume_sync_generator(
|
||||
self, response: T.Any, response_queue: queue.Queue
|
||||
) -> None:
|
||||
"""在线程中消费同步generator,将结果放入队列
|
||||
|
||||
Args:
|
||||
response: 同步generator对象
|
||||
response_queue: 用于传递数据的队列
|
||||
|
||||
"""
|
||||
try:
|
||||
if self.streaming:
|
||||
for chunk in response:
|
||||
response_queue.put(("data", chunk))
|
||||
else:
|
||||
response_queue.put(("data", response))
|
||||
except Exception as e:
|
||||
response_queue.put(("error", e))
|
||||
finally:
|
||||
response_queue.put(("done", None))
|
||||
|
||||
async def _process_stream_chunk(
|
||||
self, chunk: ApplicationResponse, output_text: str
|
||||
) -> tuple[str, list | None, AgentResponse | None]:
|
||||
"""处理流式响应的单个chunk
|
||||
|
||||
Args:
|
||||
chunk: Dashscope响应chunk
|
||||
output_text: 当前累积的输出文本
|
||||
|
||||
Returns:
|
||||
(更新后的output_text, doc_references, AgentResponse或None)
|
||||
|
||||
"""
|
||||
logger.debug(f"dashscope stream chunk: {chunk}")
|
||||
|
||||
if chunk.status_code != 200:
|
||||
logger.error(
|
||||
f"阿里云百炼请求失败: request_id={chunk.request_id}, code={chunk.status_code}, message={chunk.message}, 请参考文档:https://help.aliyun.com/zh/model-studio/developer-reference/error-code",
|
||||
)
|
||||
self._transition_state(AgentState.ERROR)
|
||||
error_msg = (
|
||||
f"阿里云百炼请求失败: message={chunk.message} code={chunk.status_code}"
|
||||
)
|
||||
self.final_llm_resp = LLMResponse(
|
||||
role="err",
|
||||
result_chain=MessageChain().message(error_msg),
|
||||
)
|
||||
return (
|
||||
output_text,
|
||||
None,
|
||||
AgentResponse(
|
||||
type="err",
|
||||
data=AgentResponseData(chain=MessageChain().message(error_msg)),
|
||||
),
|
||||
)
|
||||
|
||||
chunk_text = chunk.output.get("text", "") or ""
|
||||
# RAG 引用脚标格式化
|
||||
chunk_text = re.sub(r"<ref>\[(\d+)\]</ref>", r"[\1]", chunk_text)
|
||||
|
||||
response = None
|
||||
if chunk_text:
|
||||
output_text += chunk_text
|
||||
response = AgentResponse(
|
||||
type="streaming_delta",
|
||||
data=AgentResponseData(chain=MessageChain().message(chunk_text)),
|
||||
)
|
||||
|
||||
# 获取文档引用
|
||||
doc_references = chunk.output.get("doc_references", None)
|
||||
|
||||
return output_text, doc_references, response
|
||||
|
||||
def _format_doc_references(self, doc_references: list) -> str:
|
||||
"""格式化文档引用为文本
|
||||
|
||||
Args:
|
||||
doc_references: 文档引用列表
|
||||
|
||||
Returns:
|
||||
格式化后的引用文本
|
||||
|
||||
"""
|
||||
ref_parts = []
|
||||
for ref in doc_references:
|
||||
ref_title = (
|
||||
ref.get("title", "") if ref.get("title") else ref.get("doc_name", "")
|
||||
)
|
||||
ref_parts.append(f"{ref['index_id']}. {ref_title}\n")
|
||||
ref_str = "".join(ref_parts)
|
||||
return f"\n\n回答来源:\n{ref_str}"
|
||||
|
||||
async def _build_request_payload(
|
||||
self, prompt: str, session_id: str, contexts: list, system_prompt: str
|
||||
) -> dict:
|
||||
"""构建请求payload
|
||||
|
||||
Args:
|
||||
prompt: 用户输入
|
||||
session_id: 会话ID
|
||||
contexts: 上下文列表
|
||||
system_prompt: 系统提示词
|
||||
|
||||
Returns:
|
||||
请求payload字典
|
||||
|
||||
"""
|
||||
conversation_id = await sp.get_async(
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
key="dashscope_conversation_id",
|
||||
default="",
|
||||
)
|
||||
# 获得会话变量
|
||||
payload_vars = self.variables.copy()
|
||||
session_var = await sp.get_async(
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
key="session_variables",
|
||||
default={},
|
||||
)
|
||||
payload_vars.update(session_var)
|
||||
|
||||
if (
|
||||
self.dashscope_app_type in ["agent", "dialog-workflow"]
|
||||
and not self.has_rag_options()
|
||||
):
|
||||
# 支持多轮对话的
|
||||
p = {
|
||||
"app_id": self.app_id,
|
||||
"api_key": self.api_key,
|
||||
"prompt": prompt,
|
||||
"biz_params": payload_vars or None,
|
||||
"stream": self.streaming,
|
||||
"incremental_output": True,
|
||||
}
|
||||
if conversation_id:
|
||||
p["session_id"] = conversation_id
|
||||
return p
|
||||
else:
|
||||
# 不支持多轮对话的
|
||||
payload = {
|
||||
"app_id": self.app_id,
|
||||
"prompt": prompt,
|
||||
"api_key": self.api_key,
|
||||
"biz_params": payload_vars or None,
|
||||
"stream": self.streaming,
|
||||
"incremental_output": True,
|
||||
}
|
||||
if self.rag_options:
|
||||
payload["rag_options"] = self.rag_options
|
||||
return payload
|
||||
|
||||
async def _handle_streaming_response(
|
||||
self, response: T.Any, session_id: str
|
||||
) -> T.AsyncGenerator[AgentResponse, None]:
|
||||
"""处理流式响应
|
||||
|
||||
Args:
|
||||
response: Dashscope 流式响应 generator
|
||||
|
||||
Yields:
|
||||
AgentResponse 对象
|
||||
|
||||
"""
|
||||
response_queue = queue.Queue()
|
||||
consumer_thread = threading.Thread(
|
||||
target=self._consume_sync_generator,
|
||||
args=(response, response_queue),
|
||||
daemon=True,
|
||||
)
|
||||
consumer_thread.start()
|
||||
|
||||
output_text = ""
|
||||
doc_references = None
|
||||
|
||||
while True:
|
||||
try:
|
||||
item_type, item_data = await asyncio.get_event_loop().run_in_executor(
|
||||
None, response_queue.get, True, 1
|
||||
)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
if item_type == "done":
|
||||
break
|
||||
elif item_type == "error":
|
||||
raise item_data
|
||||
elif item_type == "data":
|
||||
chunk = item_data
|
||||
assert isinstance(chunk, ApplicationResponse)
|
||||
|
||||
(
|
||||
output_text,
|
||||
chunk_doc_refs,
|
||||
response,
|
||||
) = await self._process_stream_chunk(chunk, output_text)
|
||||
|
||||
if response:
|
||||
if response.type == "err":
|
||||
yield response
|
||||
return
|
||||
yield response
|
||||
|
||||
if chunk_doc_refs:
|
||||
doc_references = chunk_doc_refs
|
||||
|
||||
if chunk.output.session_id:
|
||||
await sp.put_async(
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
key="dashscope_conversation_id",
|
||||
value=chunk.output.session_id,
|
||||
)
|
||||
|
||||
# 添加 RAG 引用
|
||||
if self.output_reference and doc_references:
|
||||
ref_text = self._format_doc_references(doc_references)
|
||||
output_text += ref_text
|
||||
|
||||
if self.streaming:
|
||||
yield AgentResponse(
|
||||
type="streaming_delta",
|
||||
data=AgentResponseData(chain=MessageChain().message(ref_text)),
|
||||
)
|
||||
|
||||
# 创建最终响应
|
||||
chain = MessageChain(chain=[Comp.Plain(output_text)])
|
||||
self.final_llm_resp = LLMResponse(role="assistant", result_chain=chain)
|
||||
self._transition_state(AgentState.DONE)
|
||||
|
||||
try:
|
||||
await self.agent_hooks.on_agent_done(self.run_context, self.final_llm_resp)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in on_agent_done hook: {e}", exc_info=True)
|
||||
|
||||
# 返回最终结果
|
||||
yield AgentResponse(
|
||||
type="llm_result",
|
||||
data=AgentResponseData(chain=chain),
|
||||
)
|
||||
|
||||
async def _execute_dashscope_request(self):
|
||||
"""执行 Dashscope 请求的核心逻辑"""
|
||||
prompt = self.req.prompt or ""
|
||||
session_id = self.req.session_id or "unknown"
|
||||
image_urls = self.req.image_urls or []
|
||||
contexts = self.req.contexts or []
|
||||
system_prompt = self.req.system_prompt
|
||||
|
||||
# 检查图片输入
|
||||
if image_urls:
|
||||
logger.warning("阿里云百炼暂不支持图片输入,将自动忽略图片内容。")
|
||||
|
||||
# 构建请求payload
|
||||
payload = await self._build_request_payload(
|
||||
prompt, session_id, contexts, system_prompt
|
||||
)
|
||||
|
||||
if not self.streaming:
|
||||
payload["incremental_output"] = False
|
||||
|
||||
# 发起请求
|
||||
partial = functools.partial(Application.call, **payload)
|
||||
response = await asyncio.get_event_loop().run_in_executor(None, partial)
|
||||
|
||||
async for resp in self._handle_streaming_response(response, session_id):
|
||||
yield resp
|
||||
|
||||
@override
|
||||
def done(self) -> bool:
|
||||
"""检查 Agent 是否已完成工作"""
|
||||
return self._state in (AgentState.DONE, AgentState.ERROR)
|
||||
|
||||
@override
|
||||
def get_final_llm_resp(self) -> LLMResponse | None:
|
||||
return self.final_llm_resp
|
||||
@@ -1,336 +0,0 @@
|
||||
import base64
|
||||
import os
|
||||
import sys
|
||||
import typing as T
|
||||
|
||||
import astrbot.core.message.components as Comp
|
||||
from astrbot.core import logger, sp
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
from astrbot.core.provider.entities import (
|
||||
LLMResponse,
|
||||
ProviderRequest,
|
||||
)
|
||||
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
|
||||
from astrbot.core.utils.io import download_file
|
||||
|
||||
from ...hooks import BaseAgentRunHooks
|
||||
from ...response import AgentResponseData
|
||||
from ...run_context import ContextWrapper, TContext
|
||||
from ..base import AgentResponse, AgentState, BaseAgentRunner
|
||||
from .dify_api_client import DifyAPIClient
|
||||
|
||||
if sys.version_info >= (3, 12):
|
||||
from typing import override
|
||||
else:
|
||||
from typing_extensions import override
|
||||
|
||||
|
||||
class DifyAgentRunner(BaseAgentRunner[TContext]):
|
||||
"""Dify Agent Runner"""
|
||||
|
||||
@override
|
||||
async def reset(
|
||||
self,
|
||||
request: ProviderRequest,
|
||||
run_context: ContextWrapper[TContext],
|
||||
agent_hooks: BaseAgentRunHooks[TContext],
|
||||
provider_config: dict,
|
||||
**kwargs: T.Any,
|
||||
) -> None:
|
||||
self.req = request
|
||||
self.streaming = kwargs.get("streaming", False)
|
||||
self.final_llm_resp = None
|
||||
self._state = AgentState.IDLE
|
||||
self.agent_hooks = agent_hooks
|
||||
self.run_context = run_context
|
||||
|
||||
self.api_key = provider_config.get("dify_api_key", "")
|
||||
self.api_base = provider_config.get("dify_api_base", "https://api.dify.ai/v1")
|
||||
self.api_type = provider_config.get("dify_api_type", "chat")
|
||||
self.workflow_output_key = provider_config.get(
|
||||
"dify_workflow_output_key",
|
||||
"astrbot_wf_output",
|
||||
)
|
||||
self.dify_query_input_key = provider_config.get(
|
||||
"dify_query_input_key",
|
||||
"astrbot_text_query",
|
||||
)
|
||||
self.variables: dict = provider_config.get("variables", {}) or {}
|
||||
self.timeout = provider_config.get("timeout", 60)
|
||||
if isinstance(self.timeout, str):
|
||||
self.timeout = int(self.timeout)
|
||||
|
||||
self.api_client = DifyAPIClient(self.api_key, self.api_base)
|
||||
|
||||
@override
|
||||
async def step(self):
|
||||
"""
|
||||
执行 Dify Agent 的一个步骤
|
||||
"""
|
||||
if not self.req:
|
||||
raise ValueError("Request is not set. Please call reset() first.")
|
||||
|
||||
if self._state == AgentState.IDLE:
|
||||
try:
|
||||
await self.agent_hooks.on_agent_begin(self.run_context)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in on_agent_begin hook: {e}", exc_info=True)
|
||||
|
||||
# 开始处理,转换到运行状态
|
||||
self._transition_state(AgentState.RUNNING)
|
||||
|
||||
try:
|
||||
# 执行 Dify 请求并处理结果
|
||||
async for response in self._execute_dify_request():
|
||||
yield response
|
||||
except Exception as e:
|
||||
logger.error(f"Dify 请求失败:{str(e)}")
|
||||
self._transition_state(AgentState.ERROR)
|
||||
self.final_llm_resp = LLMResponse(
|
||||
role="err", completion_text=f"Dify 请求失败:{str(e)}"
|
||||
)
|
||||
yield AgentResponse(
|
||||
type="err",
|
||||
data=AgentResponseData(
|
||||
chain=MessageChain().message(f"Dify 请求失败:{str(e)}")
|
||||
),
|
||||
)
|
||||
finally:
|
||||
await self.api_client.close()
|
||||
|
||||
@override
|
||||
async def step_until_done(
|
||||
self, max_step: int = 30
|
||||
) -> T.AsyncGenerator[AgentResponse, None]:
|
||||
while not self.done():
|
||||
async for resp in self.step():
|
||||
yield resp
|
||||
|
||||
async def _execute_dify_request(self):
|
||||
"""执行 Dify 请求的核心逻辑"""
|
||||
prompt = self.req.prompt or ""
|
||||
session_id = self.req.session_id or "unknown"
|
||||
image_urls = self.req.image_urls or []
|
||||
system_prompt = self.req.system_prompt
|
||||
|
||||
conversation_id = await sp.get_async(
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
key="dify_conversation_id",
|
||||
default="",
|
||||
)
|
||||
result = ""
|
||||
|
||||
# 处理图片上传
|
||||
files_payload = []
|
||||
for image_url in image_urls:
|
||||
# image_url is a base64 string
|
||||
try:
|
||||
image_data = base64.b64decode(image_url)
|
||||
file_response = await self.api_client.file_upload(
|
||||
file_data=image_data,
|
||||
user=session_id,
|
||||
mime_type="image/png",
|
||||
file_name="image.png",
|
||||
)
|
||||
logger.debug(f"Dify 上传图片响应:{file_response}")
|
||||
if "id" not in file_response:
|
||||
logger.warning(
|
||||
f"上传图片后得到未知的 Dify 响应:{file_response},图片将忽略。"
|
||||
)
|
||||
continue
|
||||
files_payload.append(
|
||||
{
|
||||
"type": "image",
|
||||
"transfer_method": "local_file",
|
||||
"upload_file_id": file_response["id"],
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"上传图片失败:{e}")
|
||||
continue
|
||||
|
||||
# 获得会话变量
|
||||
payload_vars = self.variables.copy()
|
||||
# 动态变量
|
||||
session_var = await sp.get_async(
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
key="session_variables",
|
||||
default={},
|
||||
)
|
||||
payload_vars.update(session_var)
|
||||
payload_vars["system_prompt"] = system_prompt
|
||||
|
||||
# 处理不同的 API 类型
|
||||
match self.api_type:
|
||||
case "chat" | "agent" | "chatflow":
|
||||
if not prompt:
|
||||
prompt = "请描述这张图片。"
|
||||
|
||||
async for chunk in self.api_client.chat_messages(
|
||||
inputs={
|
||||
**payload_vars,
|
||||
},
|
||||
query=prompt,
|
||||
user=session_id,
|
||||
conversation_id=conversation_id,
|
||||
files=files_payload,
|
||||
timeout=self.timeout,
|
||||
):
|
||||
logger.debug(f"dify resp chunk: {chunk}")
|
||||
if chunk["event"] == "message" or chunk["event"] == "agent_message":
|
||||
result += chunk["answer"]
|
||||
if not conversation_id:
|
||||
await sp.put_async(
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
key="dify_conversation_id",
|
||||
value=chunk["conversation_id"],
|
||||
)
|
||||
conversation_id = chunk["conversation_id"]
|
||||
|
||||
# 如果是流式响应,发送增量数据
|
||||
if self.streaming and chunk["answer"]:
|
||||
yield AgentResponse(
|
||||
type="streaming_delta",
|
||||
data=AgentResponseData(
|
||||
chain=MessageChain().message(chunk["answer"])
|
||||
),
|
||||
)
|
||||
elif chunk["event"] == "message_end":
|
||||
logger.debug("Dify message end")
|
||||
break
|
||||
elif chunk["event"] == "error":
|
||||
logger.error(f"Dify 出现错误:{chunk}")
|
||||
raise Exception(
|
||||
f"Dify 出现错误 status: {chunk['status']} message: {chunk['message']}"
|
||||
)
|
||||
|
||||
case "workflow":
|
||||
async for chunk in self.api_client.workflow_run(
|
||||
inputs={
|
||||
self.dify_query_input_key: prompt,
|
||||
"astrbot_session_id": session_id,
|
||||
**payload_vars,
|
||||
},
|
||||
user=session_id,
|
||||
files=files_payload,
|
||||
timeout=self.timeout,
|
||||
):
|
||||
logger.debug(f"dify workflow resp chunk: {chunk}")
|
||||
match chunk["event"]:
|
||||
case "workflow_started":
|
||||
logger.info(
|
||||
f"Dify 工作流(ID: {chunk['workflow_run_id']})开始运行。"
|
||||
)
|
||||
case "node_finished":
|
||||
logger.debug(
|
||||
f"Dify 工作流节点(ID: {chunk['data']['node_id']} Title: {chunk['data'].get('title', '')})运行结束。"
|
||||
)
|
||||
case "text_chunk":
|
||||
if self.streaming and chunk["data"]["text"]:
|
||||
yield AgentResponse(
|
||||
type="streaming_delta",
|
||||
data=AgentResponseData(
|
||||
chain=MessageChain().message(
|
||||
chunk["data"]["text"]
|
||||
)
|
||||
),
|
||||
)
|
||||
case "workflow_finished":
|
||||
logger.info(
|
||||
f"Dify 工作流(ID: {chunk['workflow_run_id']})运行结束"
|
||||
)
|
||||
logger.debug(f"Dify 工作流结果:{chunk}")
|
||||
if chunk["data"]["error"]:
|
||||
logger.error(
|
||||
f"Dify 工作流出现错误:{chunk['data']['error']}"
|
||||
)
|
||||
raise Exception(
|
||||
f"Dify 工作流出现错误:{chunk['data']['error']}"
|
||||
)
|
||||
if self.workflow_output_key not in chunk["data"]["outputs"]:
|
||||
raise Exception(
|
||||
f"Dify 工作流的输出不包含指定的键名:{self.workflow_output_key}"
|
||||
)
|
||||
result = chunk
|
||||
case _:
|
||||
raise Exception(f"未知的 Dify API 类型:{self.api_type}")
|
||||
|
||||
if not result:
|
||||
logger.warning("Dify 请求结果为空,请查看 Debug 日志。")
|
||||
|
||||
# 解析结果
|
||||
chain = await self.parse_dify_result(result)
|
||||
|
||||
# 创建最终响应
|
||||
self.final_llm_resp = LLMResponse(role="assistant", result_chain=chain)
|
||||
self._transition_state(AgentState.DONE)
|
||||
|
||||
try:
|
||||
await self.agent_hooks.on_agent_done(self.run_context, self.final_llm_resp)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in on_agent_done hook: {e}", exc_info=True)
|
||||
|
||||
# 返回最终结果
|
||||
yield AgentResponse(
|
||||
type="llm_result",
|
||||
data=AgentResponseData(chain=chain),
|
||||
)
|
||||
|
||||
async def parse_dify_result(self, chunk: dict | str) -> MessageChain:
|
||||
"""解析 Dify 的响应结果"""
|
||||
if isinstance(chunk, str):
|
||||
# Chat
|
||||
return MessageChain(chain=[Comp.Plain(chunk)])
|
||||
|
||||
async def parse_file(item: dict):
|
||||
match item["type"]:
|
||||
case "image":
|
||||
return Comp.Image(file=item["url"], url=item["url"])
|
||||
case "audio":
|
||||
# 仅支持 wav
|
||||
temp_dir = os.path.join(get_astrbot_data_path(), "temp")
|
||||
path = os.path.join(temp_dir, f"{item['filename']}.wav")
|
||||
await download_file(item["url"], path)
|
||||
return Comp.Image(file=item["url"], url=item["url"])
|
||||
case "video":
|
||||
return Comp.Video(file=item["url"])
|
||||
case _:
|
||||
return Comp.File(name=item["filename"], file=item["url"])
|
||||
|
||||
output = chunk["data"]["outputs"][self.workflow_output_key]
|
||||
chains = []
|
||||
if isinstance(output, str):
|
||||
# 纯文本输出
|
||||
chains.append(Comp.Plain(output))
|
||||
elif isinstance(output, list):
|
||||
# 主要适配 Dify 的 HTTP 请求结点的多模态输出
|
||||
for item in output:
|
||||
# handle Array[File]
|
||||
if (
|
||||
not isinstance(item, dict)
|
||||
or item.get("dify_model_identity", "") != "__dify__file__"
|
||||
):
|
||||
chains.append(Comp.Plain(str(output)))
|
||||
break
|
||||
else:
|
||||
chains.append(Comp.Plain(str(output)))
|
||||
|
||||
# scan file
|
||||
files = chunk["data"].get("files", [])
|
||||
for item in files:
|
||||
comp = await parse_file(item)
|
||||
chains.append(comp)
|
||||
|
||||
return MessageChain(chain=chains)
|
||||
|
||||
@override
|
||||
def done(self) -> bool:
|
||||
"""检查 Agent 是否已完成工作"""
|
||||
return self._state in (AgentState.DONE, AgentState.ERROR)
|
||||
|
||||
@override
|
||||
def get_final_llm_resp(self) -> LLMResponse | None:
|
||||
return self.final_llm_resp
|
||||
@@ -69,6 +69,12 @@ class ToolLoopAgentRunner(BaseAgentRunner[TContext]):
|
||||
)
|
||||
self.run_context.messages = messages
|
||||
|
||||
def _transition_state(self, new_state: AgentState) -> None:
|
||||
"""转换 Agent 状态"""
|
||||
if self._state != new_state:
|
||||
logger.debug(f"Agent state transition: {self._state} -> {new_state}")
|
||||
self._state = new_state
|
||||
|
||||
async def _iter_llm_responses(self) -> T.AsyncGenerator[LLMResponse, None]:
|
||||
"""Yields chunks *and* a final LLMResponse."""
|
||||
if self.streaming:
|
||||
|
||||
@@ -4,7 +4,7 @@ import os
|
||||
|
||||
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
|
||||
|
||||
VERSION = "4.7.4"
|
||||
VERSION = "4.6.0"
|
||||
DB_PATH = os.path.join(get_astrbot_data_path(), "data_v4.db")
|
||||
|
||||
# 默认配置
|
||||
@@ -68,19 +68,9 @@ DEFAULT_CONFIG = {
|
||||
"dequeue_context_length": 1,
|
||||
"streaming_response": False,
|
||||
"show_tool_use_status": False,
|
||||
"agent_runner_type": "local",
|
||||
"dify_agent_runner_provider_id": "",
|
||||
"coze_agent_runner_provider_id": "",
|
||||
"dashscope_agent_runner_provider_id": "",
|
||||
"unsupported_streaming_strategy": "realtime_segmenting",
|
||||
"reachability_check": False,
|
||||
"max_agent_step": 30,
|
||||
"tool_call_timeout": 60,
|
||||
"file_extract": {
|
||||
"enable": False,
|
||||
"provider": "moonshotai",
|
||||
"moonshotai_api_key": "",
|
||||
},
|
||||
},
|
||||
"provider_stt_settings": {
|
||||
"enable": False,
|
||||
@@ -96,7 +86,6 @@ DEFAULT_CONFIG = {
|
||||
"group_icl_enable": False,
|
||||
"group_message_max_cnt": 300,
|
||||
"image_caption": False,
|
||||
"image_caption_provider_id": "",
|
||||
"active_reply": {
|
||||
"enable": False,
|
||||
"method": "possibility_reply",
|
||||
@@ -152,16 +141,7 @@ DEFAULT_CONFIG = {
|
||||
}
|
||||
|
||||
|
||||
"""
|
||||
AstrBot v3 时代的配置元数据,目前仅承担以下功能:
|
||||
|
||||
1. 保存配置时,配置项的类型验证
|
||||
2. WebUI 展示提供商和平台适配器模版
|
||||
|
||||
WebUI 的配置文件在 `CONFIG_METADATA_3` 中。
|
||||
|
||||
未来将会逐步淘汰此配置元数据。
|
||||
"""
|
||||
# 配置项的中文描述、值类型
|
||||
CONFIG_METADATA_2 = {
|
||||
"platform_group": {
|
||||
"metadata": {
|
||||
@@ -654,7 +634,7 @@ CONFIG_METADATA_2 = {
|
||||
},
|
||||
"words_count_threshold": {
|
||||
"type": "int",
|
||||
"hint": "分段回复的字数上限。只有字数小于此值的消息才会被分段,超过此值的长消息将直接发送(不分段)。默认为 150",
|
||||
"hint": "超过这个字数的消息不会被分段回复。默认为 150",
|
||||
},
|
||||
"regex": {
|
||||
"type": "string",
|
||||
@@ -1031,7 +1011,7 @@ CONFIG_METADATA_2 = {
|
||||
"id": "dify_app_default",
|
||||
"provider": "dify",
|
||||
"type": "dify",
|
||||
"provider_type": "agent_runner",
|
||||
"provider_type": "chat_completion",
|
||||
"enable": True,
|
||||
"dify_api_type": "chat",
|
||||
"dify_api_key": "",
|
||||
@@ -1045,20 +1025,20 @@ CONFIG_METADATA_2 = {
|
||||
"Coze": {
|
||||
"id": "coze",
|
||||
"provider": "coze",
|
||||
"provider_type": "agent_runner",
|
||||
"provider_type": "chat_completion",
|
||||
"type": "coze",
|
||||
"enable": True,
|
||||
"coze_api_key": "",
|
||||
"bot_id": "",
|
||||
"coze_api_base": "https://api.coze.cn",
|
||||
"timeout": 60,
|
||||
# "auto_save_history": True,
|
||||
"auto_save_history": True,
|
||||
},
|
||||
"阿里云百炼应用": {
|
||||
"id": "dashscope",
|
||||
"provider": "dashscope",
|
||||
"type": "dashscope",
|
||||
"provider_type": "agent_runner",
|
||||
"provider_type": "chat_completion",
|
||||
"enable": True,
|
||||
"dashscope_app_type": "agent",
|
||||
"dashscope_api_key": "",
|
||||
@@ -1107,7 +1087,7 @@ CONFIG_METADATA_2 = {
|
||||
"api_base": "",
|
||||
"model": "whisper-1",
|
||||
},
|
||||
"Whisper(Local)": {
|
||||
"Whisper(本地加载)": {
|
||||
"hint": "启用前请 pip 安装 openai-whisper 库(N卡用户大约下载 2GB,主要是 torch 和 cuda,CPU 用户大约下载 1 GB),并且安装 ffmpeg。否则将无法正常转文字。",
|
||||
"provider": "openai",
|
||||
"type": "openai_whisper_selfhost",
|
||||
@@ -1116,7 +1096,7 @@ CONFIG_METADATA_2 = {
|
||||
"id": "whisper_selfhost",
|
||||
"model": "tiny",
|
||||
},
|
||||
"SenseVoice(Local)": {
|
||||
"SenseVoice(本地加载)": {
|
||||
"hint": "启用前请 pip 安装 funasr、funasr_onnx、torchaudio、torch、modelscope、jieba 库(默认使用CPU,大约下载 1 GB),并且安装 ffmpeg。否则将无法正常转文字。",
|
||||
"type": "sensevoice_stt_selfhost",
|
||||
"provider": "sensevoice",
|
||||
@@ -1151,7 +1131,7 @@ CONFIG_METADATA_2 = {
|
||||
"pitch": "+0Hz",
|
||||
"timeout": 20,
|
||||
},
|
||||
"GSV TTS(Local)": {
|
||||
"GSV TTS(本地加载)": {
|
||||
"id": "gsv_tts",
|
||||
"enable": False,
|
||||
"provider": "gpt_sovits",
|
||||
@@ -1328,19 +1308,6 @@ CONFIG_METADATA_2 = {
|
||||
"timeout": 20,
|
||||
"launch_model_if_not_running": False,
|
||||
},
|
||||
"阿里云百炼重排序": {
|
||||
"id": "bailian_rerank",
|
||||
"type": "bailian_rerank",
|
||||
"provider": "bailian",
|
||||
"provider_type": "rerank",
|
||||
"enable": True,
|
||||
"rerank_api_key": "",
|
||||
"rerank_api_base": "https://dashscope.aliyuncs.com/api/v1/services/rerank/text-rerank/text-rerank",
|
||||
"rerank_model": "qwen3-rerank",
|
||||
"timeout": 30,
|
||||
"return_documents": False,
|
||||
"instruct": "",
|
||||
},
|
||||
"Xinference STT": {
|
||||
"id": "xinference_stt",
|
||||
"type": "xinference_stt",
|
||||
@@ -1375,16 +1342,6 @@ CONFIG_METADATA_2 = {
|
||||
"description": "重排序模型名称",
|
||||
"type": "string",
|
||||
},
|
||||
"return_documents": {
|
||||
"description": "是否在排序结果中返回文档原文",
|
||||
"type": "bool",
|
||||
"hint": "默认值false,以减少网络传输开销。",
|
||||
},
|
||||
"instruct": {
|
||||
"description": "自定义排序任务类型说明",
|
||||
"type": "string",
|
||||
"hint": "仅在使用 qwen3-rerank 模型时生效。建议使用英文撰写。",
|
||||
},
|
||||
"launch_model_if_not_running": {
|
||||
"description": "模型未运行时自动启动",
|
||||
"type": "bool",
|
||||
@@ -1927,6 +1884,7 @@ CONFIG_METADATA_2 = {
|
||||
"enable": {
|
||||
"description": "启用",
|
||||
"type": "bool",
|
||||
"hint": "是否启用。",
|
||||
},
|
||||
"key": {
|
||||
"description": "API Key",
|
||||
@@ -2056,38 +2014,14 @@ CONFIG_METADATA_2 = {
|
||||
"unsupported_streaming_strategy": {
|
||||
"type": "string",
|
||||
},
|
||||
"agent_runner_type": {
|
||||
"type": "string",
|
||||
},
|
||||
"dify_agent_runner_provider_id": {
|
||||
"type": "string",
|
||||
},
|
||||
"coze_agent_runner_provider_id": {
|
||||
"type": "string",
|
||||
},
|
||||
"dashscope_agent_runner_provider_id": {
|
||||
"type": "string",
|
||||
},
|
||||
"max_agent_step": {
|
||||
"description": "工具调用轮数上限",
|
||||
"type": "int",
|
||||
},
|
||||
"tool_call_timeout": {
|
||||
"description": "工具调用超时时间(秒)",
|
||||
"type": "int",
|
||||
},
|
||||
"file_extract": {
|
||||
"type": "object",
|
||||
"items": {
|
||||
"enable": {
|
||||
"type": "bool",
|
||||
},
|
||||
"provider": {
|
||||
"type": "string",
|
||||
},
|
||||
"moonshotai_api_key": {
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
"provider_stt_settings": {
|
||||
@@ -2130,9 +2064,6 @@ CONFIG_METADATA_2 = {
|
||||
"image_caption": {
|
||||
"type": "bool",
|
||||
},
|
||||
"image_caption_provider_id": {
|
||||
"type": "string",
|
||||
},
|
||||
"image_caption_prompt": {
|
||||
"type": "string",
|
||||
},
|
||||
@@ -2222,87 +2153,34 @@ CONFIG_METADATA_2 = {
|
||||
}
|
||||
|
||||
|
||||
"""
|
||||
v4.7.0 之后,name, description, hint 等字段已经实现 i18n 国际化。国际化资源文件位于:
|
||||
|
||||
- dashboard/src/i18n/locales/en-US/features/config-metadata.json
|
||||
- dashboard/src/i18n/locales/zh-CN/features/config-metadata.json
|
||||
|
||||
如果在此文件中添加了新的配置字段,请务必同步更新上述两个国际化资源文件。
|
||||
"""
|
||||
CONFIG_METADATA_3 = {
|
||||
"ai_group": {
|
||||
"name": "AI 配置",
|
||||
"metadata": {
|
||||
"agent_runner": {
|
||||
"description": "Agent 执行方式",
|
||||
"hint": "选择 AI 对话的执行器,默认为 AstrBot 内置 Agent 执行器,可使用 AstrBot 内的知识库、人格、工具调用功能。如果不打算接入 Dify 或 Coze 等第三方 Agent 执行器,不需要修改此节。",
|
||||
"ai": {
|
||||
"description": "模型",
|
||||
"type": "object",
|
||||
"items": {
|
||||
"provider_settings.enable": {
|
||||
"description": "启用",
|
||||
"description": "启用大语言模型聊天",
|
||||
"type": "bool",
|
||||
"hint": "AI 对话总开关",
|
||||
},
|
||||
"provider_settings.agent_runner_type": {
|
||||
"description": "执行器",
|
||||
"type": "string",
|
||||
"options": ["local", "dify", "coze", "dashscope"],
|
||||
"labels": ["内置 Agent", "Dify", "Coze", "阿里云百炼应用"],
|
||||
"condition": {
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
"provider_settings.coze_agent_runner_provider_id": {
|
||||
"description": "Coze Agent 执行器提供商 ID",
|
||||
"type": "string",
|
||||
"_special": "select_agent_runner_provider:coze",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "coze",
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
"provider_settings.dify_agent_runner_provider_id": {
|
||||
"description": "Dify Agent 执行器提供商 ID",
|
||||
"type": "string",
|
||||
"_special": "select_agent_runner_provider:dify",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "dify",
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
"provider_settings.dashscope_agent_runner_provider_id": {
|
||||
"description": "阿里云百炼应用 Agent 执行器提供商 ID",
|
||||
"type": "string",
|
||||
"_special": "select_agent_runner_provider:dashscope",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "dashscope",
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
"ai": {
|
||||
"description": "模型",
|
||||
"hint": "当使用非内置 Agent 执行器时,默认聊天模型和默认图片转述模型可能会无效,但某些插件会依赖此配置项来调用 AI 能力。",
|
||||
"type": "object",
|
||||
"items": {
|
||||
"provider_settings.default_provider_id": {
|
||||
"description": "默认聊天模型",
|
||||
"type": "string",
|
||||
"_special": "select_provider",
|
||||
"hint": "留空时使用第一个模型",
|
||||
"hint": "留空时使用第一个模型。",
|
||||
},
|
||||
"provider_settings.default_image_caption_provider_id": {
|
||||
"description": "默认图片转述模型",
|
||||
"type": "string",
|
||||
"_special": "select_provider",
|
||||
"hint": "留空代表不使用,可用于非多模态模型",
|
||||
"hint": "留空代表不使用。可用于不支持视觉模态的聊天模型。",
|
||||
},
|
||||
"provider_stt_settings.enable": {
|
||||
"description": "启用语音转文本",
|
||||
"type": "bool",
|
||||
"hint": "STT 总开关",
|
||||
"hint": "STT 总开关。",
|
||||
},
|
||||
"provider_stt_settings.provider_id": {
|
||||
"description": "默认语音转文本模型",
|
||||
@@ -2316,11 +2194,12 @@ CONFIG_METADATA_3 = {
|
||||
"provider_tts_settings.enable": {
|
||||
"description": "启用文本转语音",
|
||||
"type": "bool",
|
||||
"hint": "TTS 总开关",
|
||||
"hint": "TTS 总开关。当关闭时,会话启用 TTS 也不会生效。",
|
||||
},
|
||||
"provider_tts_settings.provider_id": {
|
||||
"description": "默认文本转语音模型",
|
||||
"type": "string",
|
||||
"hint": "用户也可使用 /provider 单独选择会话的 TTS 模型。",
|
||||
"_special": "select_provider_tts",
|
||||
"condition": {
|
||||
"provider_tts_settings.enable": True,
|
||||
@@ -2331,9 +2210,6 @@ CONFIG_METADATA_3 = {
|
||||
"type": "text",
|
||||
},
|
||||
},
|
||||
"condition": {
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
"persona": {
|
||||
"description": "人格",
|
||||
@@ -2345,10 +2221,6 @@ CONFIG_METADATA_3 = {
|
||||
"_special": "select_persona",
|
||||
},
|
||||
},
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
"knowledgebase": {
|
||||
"description": "知识库",
|
||||
@@ -2377,10 +2249,6 @@ CONFIG_METADATA_3 = {
|
||||
"hint": "启用后,知识库检索将作为 LLM Tool,由模型自主决定何时调用知识库进行查询。需要模型支持函数调用能力。",
|
||||
},
|
||||
},
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
"websearch": {
|
||||
"description": "网页搜索",
|
||||
@@ -2417,41 +2285,7 @@ CONFIG_METADATA_3 = {
|
||||
"type": "bool",
|
||||
},
|
||||
},
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
# "file_extract": {
|
||||
# "description": "文档解析能力 [beta]",
|
||||
# "type": "object",
|
||||
# "items": {
|
||||
# "provider_settings.file_extract.enable": {
|
||||
# "description": "启用文档解析能力",
|
||||
# "type": "bool",
|
||||
# },
|
||||
# "provider_settings.file_extract.provider": {
|
||||
# "description": "文档解析提供商",
|
||||
# "type": "string",
|
||||
# "options": ["moonshotai"],
|
||||
# "condition": {
|
||||
# "provider_settings.file_extract.enable": True,
|
||||
# },
|
||||
# },
|
||||
# "provider_settings.file_extract.moonshotai_api_key": {
|
||||
# "description": "Moonshot AI API Key",
|
||||
# "type": "string",
|
||||
# "condition": {
|
||||
# "provider_settings.file_extract.provider": "moonshotai",
|
||||
# "provider_settings.file_extract.enable": True,
|
||||
# },
|
||||
# },
|
||||
# },
|
||||
# "condition": {
|
||||
# "provider_settings.agent_runner_type": "local",
|
||||
# "provider_settings.enable": True,
|
||||
# },
|
||||
# },
|
||||
"others": {
|
||||
"description": "其他配置",
|
||||
"type": "object",
|
||||
@@ -2459,51 +2293,34 @@ CONFIG_METADATA_3 = {
|
||||
"provider_settings.display_reasoning_text": {
|
||||
"description": "显示思考内容",
|
||||
"type": "bool",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
},
|
||||
"provider_settings.identifier": {
|
||||
"description": "用户识别",
|
||||
"type": "bool",
|
||||
"hint": "启用后,会在提示词前包含用户 ID 信息。",
|
||||
},
|
||||
"provider_settings.group_name_display": {
|
||||
"description": "显示群名称",
|
||||
"type": "bool",
|
||||
"hint": "启用后,在支持的平台(OneBot v11)上会在提示词前包含群名称信息。",
|
||||
"hint": "启用后,在支持的平台(aiocqhttp)上会在 prompt 中包含群名称信息。",
|
||||
},
|
||||
"provider_settings.datetime_system_prompt": {
|
||||
"description": "现实世界时间感知",
|
||||
"type": "bool",
|
||||
"hint": "启用后,会在系统提示词中附带当前时间信息。",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
},
|
||||
"provider_settings.show_tool_use_status": {
|
||||
"description": "输出函数调用状态",
|
||||
"type": "bool",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
},
|
||||
"provider_settings.max_agent_step": {
|
||||
"description": "工具调用轮数上限",
|
||||
"type": "int",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
},
|
||||
"provider_settings.tool_call_timeout": {
|
||||
"description": "工具调用超时时间(秒)",
|
||||
"type": "int",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
},
|
||||
"provider_settings.streaming_response": {
|
||||
"description": "流式输出",
|
||||
"description": "流式回复",
|
||||
"type": "bool",
|
||||
},
|
||||
"provider_settings.unsupported_streaming_strategy": {
|
||||
@@ -2519,23 +2336,17 @@ CONFIG_METADATA_3 = {
|
||||
"provider_settings.max_context_length": {
|
||||
"description": "最多携带对话轮数",
|
||||
"type": "int",
|
||||
"hint": "超出这个数量时丢弃最旧的部分,一轮聊天记为 1 条,-1 为不限制",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
"hint": "超出这个数量时丢弃最旧的部分,一轮聊天记为 1 条。-1 为不限制。",
|
||||
},
|
||||
"provider_settings.dequeue_context_length": {
|
||||
"description": "丢弃对话轮数",
|
||||
"type": "int",
|
||||
"hint": "超出最多携带对话轮数时, 一次丢弃的聊天轮数",
|
||||
"condition": {
|
||||
"provider_settings.agent_runner_type": "local",
|
||||
},
|
||||
"hint": "超出最多携带对话轮数时, 一次丢弃的聊天轮数。",
|
||||
},
|
||||
"provider_settings.wake_prefix": {
|
||||
"description": "LLM 聊天额外唤醒前缀 ",
|
||||
"type": "string",
|
||||
"hint": "如果唤醒前缀为 /, 额外聊天唤醒前缀为 chat,则需要 /chat 才会触发 LLM 请求",
|
||||
"hint": "如果唤醒前缀为 `/`, 额外聊天唤醒前缀为 `chat`,则需要 `/chat` 才会触发 LLM 请求。默认为空。",
|
||||
},
|
||||
"provider_settings.prompt_prefix": {
|
||||
"description": "用户提示词",
|
||||
@@ -2546,14 +2357,6 @@ CONFIG_METADATA_3 = {
|
||||
"description": "开启 TTS 时同时输出语音和文字内容",
|
||||
"type": "bool",
|
||||
},
|
||||
"provider_settings.reachability_check": {
|
||||
"description": "提供商可达性检测",
|
||||
"type": "bool",
|
||||
"hint": "/provider 命令列出模型时是否并发检测连通性。开启后会主动调用模型测试连通性,可能产生额外 token 消耗。",
|
||||
},
|
||||
},
|
||||
"condition": {
|
||||
"provider_settings.enable": True,
|
||||
},
|
||||
},
|
||||
},
|
||||
@@ -2844,16 +2647,7 @@ CONFIG_METADATA_3 = {
|
||||
"provider_ltm_settings.image_caption": {
|
||||
"description": "自动理解图片",
|
||||
"type": "bool",
|
||||
"hint": "需要设置群聊图片转述模型。",
|
||||
},
|
||||
"provider_ltm_settings.image_caption_provider_id": {
|
||||
"description": "群聊图片转述模型",
|
||||
"type": "string",
|
||||
"_special": "select_provider",
|
||||
"hint": "用于群聊上下文感知的图片理解,与默认图片转述模型分开配置。",
|
||||
"condition": {
|
||||
"provider_ltm_settings.image_caption": True,
|
||||
},
|
||||
"hint": "需要设置默认图片转述模型。",
|
||||
},
|
||||
"provider_ltm_settings.active_reply.enable": {
|
||||
"description": "主动回复",
|
||||
|
||||
@@ -1,110 +0,0 @@
|
||||
"""
|
||||
配置元数据国际化工具
|
||||
|
||||
提供配置元数据的国际化键转换功能
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
|
||||
class ConfigMetadataI18n:
|
||||
"""配置元数据国际化转换器"""
|
||||
|
||||
@staticmethod
|
||||
def _get_i18n_key(group: str, section: str, field: str, attr: str) -> str:
|
||||
"""
|
||||
生成国际化键
|
||||
|
||||
Args:
|
||||
group: 配置组,如 'ai_group', 'platform_group'
|
||||
section: 配置节,如 'agent_runner', 'general'
|
||||
field: 字段名,如 'enable', 'default_provider'
|
||||
attr: 属性类型,如 'description', 'hint', 'labels'
|
||||
|
||||
Returns:
|
||||
国际化键,格式如: 'ai_group.agent_runner.enable.description'
|
||||
"""
|
||||
if field:
|
||||
return f"{group}.{section}.{field}.{attr}"
|
||||
else:
|
||||
return f"{group}.{section}.{attr}"
|
||||
|
||||
@staticmethod
|
||||
def convert_to_i18n_keys(metadata: dict[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
将配置元数据转换为使用国际化键
|
||||
|
||||
Args:
|
||||
metadata: 原始配置元数据字典
|
||||
|
||||
Returns:
|
||||
使用国际化键的配置元数据字典
|
||||
"""
|
||||
result = {}
|
||||
|
||||
for group_key, group_data in metadata.items():
|
||||
group_result = {
|
||||
"name": f"{group_key}.name",
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
for section_key, section_data in group_data.get("metadata", {}).items():
|
||||
section_result = {
|
||||
"description": f"{group_key}.{section_key}.description",
|
||||
"type": section_data.get("type"),
|
||||
}
|
||||
|
||||
# 复制其他属性
|
||||
for key in ["items", "condition", "_special", "invisible"]:
|
||||
if key in section_data:
|
||||
section_result[key] = section_data[key]
|
||||
|
||||
# 处理 hint
|
||||
if "hint" in section_data:
|
||||
section_result["hint"] = f"{group_key}.{section_key}.hint"
|
||||
|
||||
# 处理 items 中的字段
|
||||
if "items" in section_data and isinstance(section_data["items"], dict):
|
||||
items_result = {}
|
||||
for field_key, field_data in section_data["items"].items():
|
||||
# 处理嵌套的点号字段名(如 provider_settings.enable)
|
||||
field_name = field_key
|
||||
|
||||
field_result = {}
|
||||
|
||||
# 复制基本属性
|
||||
for attr in [
|
||||
"type",
|
||||
"condition",
|
||||
"_special",
|
||||
"invisible",
|
||||
"options",
|
||||
]:
|
||||
if attr in field_data:
|
||||
field_result[attr] = field_data[attr]
|
||||
|
||||
# 转换文本属性为国际化键
|
||||
if "description" in field_data:
|
||||
field_result["description"] = (
|
||||
f"{group_key}.{section_key}.{field_name}.description"
|
||||
)
|
||||
|
||||
if "hint" in field_data:
|
||||
field_result["hint"] = (
|
||||
f"{group_key}.{section_key}.{field_name}.hint"
|
||||
)
|
||||
|
||||
if "labels" in field_data:
|
||||
field_result["labels"] = (
|
||||
f"{group_key}.{section_key}.{field_name}.labels"
|
||||
)
|
||||
|
||||
items_result[field_key] = field_result
|
||||
|
||||
section_result["items"] = items_result
|
||||
|
||||
group_result["metadata"][section_key] = section_result
|
||||
|
||||
result[group_key] = group_result
|
||||
|
||||
return result
|
||||
@@ -16,13 +16,15 @@ import time
|
||||
import traceback
|
||||
from asyncio import Queue
|
||||
|
||||
from astrbot.api import logger, sp
|
||||
from astrbot.core import LogBroker
|
||||
from astrbot.core import LogBroker, logger, sp
|
||||
from astrbot.core.astrbot_config_mgr import AstrBotConfigManager
|
||||
from astrbot.core.config.default import VERSION
|
||||
from astrbot.core.conversation_mgr import ConversationManager
|
||||
from astrbot.core.db import BaseDatabase
|
||||
from astrbot.core.db.migration.migra_45_to_46 import migrate_45_to_46
|
||||
from astrbot.core.db.migration.migra_webchat_session import migrate_webchat_session
|
||||
from astrbot.core.knowledge_base.kb_mgr import KnowledgeBaseManager
|
||||
from astrbot.core.memory.memory_manager import MemoryManager
|
||||
from astrbot.core.persona_mgr import PersonaManager
|
||||
from astrbot.core.pipeline.scheduler import PipelineContext, PipelineScheduler
|
||||
from astrbot.core.platform.manager import PlatformManager
|
||||
@@ -33,7 +35,6 @@ from astrbot.core.star.context import Context
|
||||
from astrbot.core.star.star_handler import EventType, star_handlers_registry, star_map
|
||||
from astrbot.core.umop_config_router import UmopConfigRouter
|
||||
from astrbot.core.updator import AstrBotUpdator
|
||||
from astrbot.core.utils.migra_helper import migra
|
||||
|
||||
from . import astrbot_config, html_renderer
|
||||
from .event_bus import EventBus
|
||||
@@ -97,16 +98,18 @@ class AstrBotCoreLifecycle:
|
||||
sp=sp,
|
||||
)
|
||||
|
||||
# apply migration
|
||||
# 4.5 to 4.6 migration for umop_config_router
|
||||
try:
|
||||
await migra(
|
||||
self.db,
|
||||
self.astrbot_config_mgr,
|
||||
self.umop_config_router,
|
||||
self.astrbot_config_mgr,
|
||||
)
|
||||
await migrate_45_to_46(self.astrbot_config_mgr, self.umop_config_router)
|
||||
except Exception as e:
|
||||
logger.error(f"AstrBot migration failed: {e!s}")
|
||||
logger.error(f"Migration from version 4.5 to 4.6 failed: {e!s}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
# migration for webchat session
|
||||
try:
|
||||
await migrate_webchat_session(self.db)
|
||||
except Exception as e:
|
||||
logger.error(f"Migration for webchat session failed: {e!s}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
# 初始化事件队列
|
||||
@@ -134,6 +137,8 @@ class AstrBotCoreLifecycle:
|
||||
|
||||
# 初始化知识库管理器
|
||||
self.kb_manager = KnowledgeBaseManager(self.provider_manager)
|
||||
# 初始化记忆管理器
|
||||
self.memory_manager = MemoryManager()
|
||||
|
||||
# 初始化提供给插件的上下文
|
||||
self.star_context = Context(
|
||||
@@ -147,6 +152,7 @@ class AstrBotCoreLifecycle:
|
||||
self.persona_mgr,
|
||||
self.astrbot_config_mgr,
|
||||
self.kb_manager,
|
||||
self.memory_manager,
|
||||
)
|
||||
|
||||
# 初始化插件管理器
|
||||
|
||||
@@ -25,7 +25,7 @@ async def migrate_webchat_session(db_helper: BaseDatabase):
|
||||
"""
|
||||
# 检查是否已经完成迁移
|
||||
migration_done = await db_helper.get_preference(
|
||||
"global", "global", "migration_done_webchat_session_1"
|
||||
"global", "global", "migration_done_webchat_session"
|
||||
)
|
||||
if migration_done:
|
||||
return
|
||||
@@ -43,7 +43,7 @@ async def migrate_webchat_session(db_helper: BaseDatabase):
|
||||
func.max(PlatformMessageHistory.updated_at).label("latest"),
|
||||
)
|
||||
.where(col(PlatformMessageHistory.platform_id) == "webchat")
|
||||
.where(col(PlatformMessageHistory.sender_id) != "bot")
|
||||
.where(col(PlatformMessageHistory.sender_id) == "astrbot")
|
||||
.group_by(col(PlatformMessageHistory.user_id))
|
||||
)
|
||||
|
||||
@@ -53,7 +53,7 @@ async def migrate_webchat_session(db_helper: BaseDatabase):
|
||||
if not webchat_users:
|
||||
logger.info("没有找到需要迁移的 WebChat 数据")
|
||||
await sp.put_async(
|
||||
"global", "global", "migration_done_webchat_session_1", True
|
||||
"global", "global", "migration_done_webchat_session", True
|
||||
)
|
||||
return
|
||||
|
||||
@@ -124,7 +124,7 @@ async def migrate_webchat_session(db_helper: BaseDatabase):
|
||||
logger.info("没有新会话需要迁移")
|
||||
|
||||
# 标记迁移完成
|
||||
await sp.put_async("global", "global", "migration_done_webchat_session_1", True)
|
||||
await sp.put_async("global", "global", "migration_done_webchat_session", True)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"迁移过程中发生错误: {e}", exc_info=True)
|
||||
|
||||
@@ -173,7 +173,7 @@ class PlatformSession(SQLModel, table=True):
|
||||
max_length=100,
|
||||
nullable=False,
|
||||
unique=True,
|
||||
default_factory=lambda: str(uuid.uuid4()),
|
||||
default_factory=lambda: f"webchat_{uuid.uuid4()}",
|
||||
)
|
||||
platform_id: str = Field(default="webchat", nullable=False)
|
||||
"""Platform identifier (e.g., 'webchat', 'qq', 'discord')"""
|
||||
|
||||
@@ -794,7 +794,7 @@ class SQLiteDatabase(BaseDatabase):
|
||||
|
||||
await session.execute(
|
||||
update(PlatformSession)
|
||||
.where(col(PlatformSession.session_id) == session_id)
|
||||
.where(col(PlatformSession.session_id == session_id))
|
||||
.values(**values),
|
||||
)
|
||||
|
||||
@@ -805,6 +805,6 @@ class SQLiteDatabase(BaseDatabase):
|
||||
async with session.begin():
|
||||
await session.execute(
|
||||
delete(PlatformSession).where(
|
||||
col(PlatformSession.session_id) == session_id,
|
||||
col(PlatformSession.session_id == session_id),
|
||||
),
|
||||
)
|
||||
|
||||
@@ -1,11 +1,20 @@
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
from typing import TypedDict
|
||||
|
||||
|
||||
@dataclass
|
||||
class Result:
|
||||
class ResultData(TypedDict):
|
||||
id: str
|
||||
doc_id: str
|
||||
text: str
|
||||
metadata: str
|
||||
created_at: int
|
||||
updated_at: int
|
||||
|
||||
similarity: float
|
||||
data: dict
|
||||
data: ResultData | dict
|
||||
|
||||
|
||||
class BaseVecDB:
|
||||
|
||||
822
astrbot/core/memory/DESIGN.excalidraw
Normal file
822
astrbot/core/memory/DESIGN.excalidraw
Normal file
@@ -0,0 +1,822 @@
|
||||
{
|
||||
"type": "excalidraw",
|
||||
"version": 2,
|
||||
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
|
||||
"elements": [
|
||||
{
|
||||
"id": "l6cYurMvF69IM4Kc33Qou",
|
||||
"type": "rectangle",
|
||||
"x": 173.140625,
|
||||
"y": -29.0234375,
|
||||
"width": 92.95703125,
|
||||
"height": 77.109375,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a0",
|
||||
"roundness": {
|
||||
"type": 3
|
||||
},
|
||||
"seed": 1409469537,
|
||||
"version": 91,
|
||||
"versionNonce": 307958671,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763703733605,
|
||||
"link": null,
|
||||
"locked": false
|
||||
},
|
||||
{
|
||||
"id": "1ZvS6t8U6ihUjNU0dakgl",
|
||||
"type": "arrow",
|
||||
"x": 409.30859375,
|
||||
"y": 9.6875,
|
||||
"width": 118.2734375,
|
||||
"height": 1.9609375,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a1",
|
||||
"roundness": {
|
||||
"type": 2
|
||||
},
|
||||
"seed": 326508865,
|
||||
"version": 120,
|
||||
"versionNonce": 199367023,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703733605,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"points": [
|
||||
[
|
||||
0,
|
||||
0
|
||||
],
|
||||
[
|
||||
-118.2734375,
|
||||
-1.9609375
|
||||
]
|
||||
],
|
||||
"lastCommittedPoint": null,
|
||||
"startBinding": null,
|
||||
"endBinding": null,
|
||||
"startArrowhead": null,
|
||||
"endArrowhead": "arrow",
|
||||
"elbowed": false
|
||||
},
|
||||
{
|
||||
"id": "tfdUGiJdcMoOHGfqFHXK6",
|
||||
"type": "text",
|
||||
"x": 153.46875,
|
||||
"y": -70.9765625,
|
||||
"width": 136.4598846435547,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a2",
|
||||
"roundness": null,
|
||||
"seed": 688712865,
|
||||
"version": 67,
|
||||
"versionNonce": 300660705,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703743816,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "FAISS+SQLite",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "FAISS+SQLite",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "AeL3kEB9a8_TAvAXpAbpl",
|
||||
"type": "text",
|
||||
"x": 438.36328125,
|
||||
"y": -3.78125,
|
||||
"width": 116.109375,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a3",
|
||||
"roundness": null,
|
||||
"seed": 788579535,
|
||||
"version": 33,
|
||||
"versionNonce": 946602095,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703932431,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "FACT",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "FACT",
|
||||
"autoResize": false,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "Pe3TeMZvxQ8tRTcbD5v6P",
|
||||
"type": "arrow",
|
||||
"x": 297.125,
|
||||
"y": 40.2578125,
|
||||
"width": 120.2421875,
|
||||
"height": 1.421875,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a4",
|
||||
"roundness": {
|
||||
"type": 2
|
||||
},
|
||||
"seed": 1146229999,
|
||||
"version": 44,
|
||||
"versionNonce": 636917679,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703759050,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"points": [
|
||||
[
|
||||
0,
|
||||
0
|
||||
],
|
||||
[
|
||||
120.2421875,
|
||||
1.421875
|
||||
]
|
||||
],
|
||||
"lastCommittedPoint": null,
|
||||
"startBinding": null,
|
||||
"endBinding": null,
|
||||
"startArrowhead": null,
|
||||
"endArrowhead": "arrow",
|
||||
"elbowed": false
|
||||
},
|
||||
{
|
||||
"id": "GhmQoadtQRK8c8aEEbYKQ",
|
||||
"type": "text",
|
||||
"x": 283.53515625,
|
||||
"y": 64.76171875,
|
||||
"width": 130.85989379882812,
|
||||
"height": 50,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a5",
|
||||
"roundness": null,
|
||||
"seed": 1445650959,
|
||||
"version": 79,
|
||||
"versionNonce": 566193167,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703768982,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "top-n Similary\n",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "top-n Similary\n",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "uTEFJs8cNS09WFq2pi9P7",
|
||||
"type": "rectangle",
|
||||
"x": 528.1586158430439,
|
||||
"y": -173.43472375183552,
|
||||
"width": 135.7578125,
|
||||
"height": 128.73828125,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a6",
|
||||
"roundness": {
|
||||
"type": 3
|
||||
},
|
||||
"seed": 223409231,
|
||||
"version": 44,
|
||||
"versionNonce": 1066827105,
|
||||
"isDeleted": false,
|
||||
"boundElements": [
|
||||
{
|
||||
"id": "FfWdx1_yCq6UYfXamJX9N",
|
||||
"type": "arrow"
|
||||
}
|
||||
],
|
||||
"updated": 1763704050188,
|
||||
"link": null,
|
||||
"locked": false
|
||||
},
|
||||
{
|
||||
"id": "2SzqzpJ4C2ymVj8-8vN7H",
|
||||
"type": "text",
|
||||
"x": 548.1480270948795,
|
||||
"y": -211,
|
||||
"width": 86.43992614746094,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "a7",
|
||||
"roundness": null,
|
||||
"seed": 1015608623,
|
||||
"version": 23,
|
||||
"versionNonce": 950374849,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763704047884,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "Memories",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "Memories",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "CgW6Yf9v0a9q1tsjhDl7b",
|
||||
"type": "text",
|
||||
"x": 568.3099317299038,
|
||||
"y": -154.69469411681115,
|
||||
"width": 62.099945068359375,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aA",
|
||||
"roundness": null,
|
||||
"seed": 452254927,
|
||||
"version": 10,
|
||||
"versionNonce": 972895023,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763704057762,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "chunk1",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "chunk1",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "knvlKpaFZ8lY-73Y-e9W6",
|
||||
"type": "text",
|
||||
"x": 569.11328125,
|
||||
"y": -116.91056665512056,
|
||||
"width": 67.55995178222656,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aB",
|
||||
"roundness": null,
|
||||
"seed": 914644015,
|
||||
"version": 90,
|
||||
"versionNonce": 158135631,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763704057762,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "chunk2",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "chunk2",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "Q7URqvTSMpvj08ye-afTT",
|
||||
"type": "rectangle",
|
||||
"x": 444.515625,
|
||||
"y": 36.7890625,
|
||||
"width": 58.859375,
|
||||
"height": 29.41796875,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aC",
|
||||
"roundness": {
|
||||
"type": 3
|
||||
},
|
||||
"seed": 1642537601,
|
||||
"version": 19,
|
||||
"versionNonce": 948406575,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703870173,
|
||||
"link": null,
|
||||
"locked": false
|
||||
},
|
||||
{
|
||||
"id": "JjxBt9cZIZXNTd6CmwyKL",
|
||||
"type": "rectangle",
|
||||
"x": 452.203125,
|
||||
"y": 46.064453125,
|
||||
"width": 58.859375,
|
||||
"height": 29.41796875,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aD",
|
||||
"roundness": {
|
||||
"type": 3
|
||||
},
|
||||
"seed": 1746916641,
|
||||
"version": 40,
|
||||
"versionNonce": 1650978255,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763703871882,
|
||||
"link": null,
|
||||
"locked": false
|
||||
},
|
||||
{
|
||||
"id": "XGBCPPFnjriqsL8LvLwyQ",
|
||||
"type": "rectangle",
|
||||
"x": 461.56640625,
|
||||
"y": 56.162109375,
|
||||
"width": 58.859375,
|
||||
"height": 29.41796875,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aE",
|
||||
"roundness": {
|
||||
"type": 3
|
||||
},
|
||||
"seed": 529794575,
|
||||
"version": 85,
|
||||
"versionNonce": 2131900641,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763703874182,
|
||||
"link": null,
|
||||
"locked": false
|
||||
},
|
||||
{
|
||||
"id": "FfWdx1_yCq6UYfXamJX9N",
|
||||
"type": "arrow",
|
||||
"x": 537.6875,
|
||||
"y": 48.203125,
|
||||
"width": 6.615850226297994,
|
||||
"height": 75.81335873223107,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aF",
|
||||
"roundness": {
|
||||
"type": 2
|
||||
},
|
||||
"seed": 1982870689,
|
||||
"version": 90,
|
||||
"versionNonce": 25307457,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763704050188,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"points": [
|
||||
[
|
||||
0,
|
||||
0
|
||||
],
|
||||
[
|
||||
6.615850226297994,
|
||||
-75.81335873223107
|
||||
]
|
||||
],
|
||||
"lastCommittedPoint": null,
|
||||
"startBinding": null,
|
||||
"endBinding": {
|
||||
"elementId": "uTEFJs8cNS09WFq2pi9P7",
|
||||
"focus": 0.6071885090336794,
|
||||
"gap": 24.64453125
|
||||
},
|
||||
"startArrowhead": null,
|
||||
"endArrowhead": "arrow",
|
||||
"elbowed": false
|
||||
},
|
||||
{
|
||||
"id": "jgJgqGMRWcaNX_28wY4CU",
|
||||
"type": "text",
|
||||
"x": 570,
|
||||
"y": 10,
|
||||
"width": 67.11994934082031,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aG",
|
||||
"roundness": null,
|
||||
"seed": 1065220559,
|
||||
"version": 26,
|
||||
"versionNonce": 2115991521,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703959397,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "update",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "update",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "_5pSPPOpp9h1TpFCIc055",
|
||||
"type": "text",
|
||||
"x": 292.36328125,
|
||||
"y": -138.5703125,
|
||||
"width": 122.87992858886719,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aH",
|
||||
"roundness": null,
|
||||
"seed": 51461025,
|
||||
"version": 26,
|
||||
"versionNonce": 1647492655,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763703925147,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "ADD Memory",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "ADD Memory",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "YG6MdL14l7lk4ypQNMZ_k",
|
||||
"type": "text",
|
||||
"x": 296.71885397566257,
|
||||
"y": 161.399157096715,
|
||||
"width": 295.27984619140625,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aJ",
|
||||
"roundness": null,
|
||||
"seed": 1183210273,
|
||||
"version": 122,
|
||||
"versionNonce": 1702733281,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763704085083,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "RETRIEVE Memory (STATIC)",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "RETRIEVE Memory (STATIC)",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "Foa3VPJYqhj1uAX5mn3n0",
|
||||
"type": "rectangle",
|
||||
"x": 324.7616636099071,
|
||||
"y": 248.63213980937013,
|
||||
"width": 135.7578125,
|
||||
"height": 128.73828125,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aL",
|
||||
"roundness": {
|
||||
"type": 3
|
||||
},
|
||||
"seed": 995116257,
|
||||
"version": 225,
|
||||
"versionNonce": 1886900225,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763704055846,
|
||||
"link": null,
|
||||
"locked": false
|
||||
},
|
||||
{
|
||||
"id": "pe3veI_yBFKYtbaJwDKQT",
|
||||
"type": "text",
|
||||
"x": 344.7510748617428,
|
||||
"y": 211.06686356120565,
|
||||
"width": 86.43992614746094,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aM",
|
||||
"roundness": null,
|
||||
"seed": 26673345,
|
||||
"version": 204,
|
||||
"versionNonce": 1004546017,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763704055846,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "Memories",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "Memories",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "bOlhO8AaKE86_43viu5UG",
|
||||
"type": "text",
|
||||
"x": 365.50408375566445,
|
||||
"y": 269.24725381983865,
|
||||
"width": 62.099945068359375,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aN",
|
||||
"roundness": null,
|
||||
"seed": 1849784033,
|
||||
"version": 106,
|
||||
"versionNonce": 762320737,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763704060295,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "chunk1",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "chunk1",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "V_iDW10PKwMe7vWb5S5HF",
|
||||
"type": "text",
|
||||
"x": 366.3074332757606,
|
||||
"y": 307.03138128152926,
|
||||
"width": 67.55995178222656,
|
||||
"height": 25,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aO",
|
||||
"roundness": null,
|
||||
"seed": 1670509249,
|
||||
"version": 186,
|
||||
"versionNonce": 1964540737,
|
||||
"isDeleted": false,
|
||||
"boundElements": [],
|
||||
"updated": 1763704060295,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "chunk2",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "chunk2",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
},
|
||||
{
|
||||
"id": "LHKMRdSowgcl2LsKacxTz",
|
||||
"type": "text",
|
||||
"x": 484.9493410573871,
|
||||
"y": 292.45619471187945,
|
||||
"width": 273.579833984375,
|
||||
"height": 50,
|
||||
"angle": 0,
|
||||
"strokeColor": "#1e1e1e",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"strokeStyle": "solid",
|
||||
"roughness": 1,
|
||||
"opacity": 100,
|
||||
"groupIds": [],
|
||||
"frameId": null,
|
||||
"index": "aP",
|
||||
"roundness": null,
|
||||
"seed": 945666991,
|
||||
"version": 104,
|
||||
"versionNonce": 1512137505,
|
||||
"isDeleted": false,
|
||||
"boundElements": null,
|
||||
"updated": 1763704096016,
|
||||
"link": null,
|
||||
"locked": false,
|
||||
"text": "RANKED By DECAY SCORE,\nTOP K",
|
||||
"fontSize": 20,
|
||||
"fontFamily": 5,
|
||||
"textAlign": "left",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "RANKED By DECAY SCORE,\nTOP K",
|
||||
"autoResize": true,
|
||||
"lineHeight": 1.25
|
||||
}
|
||||
],
|
||||
"appState": {
|
||||
"gridSize": 20,
|
||||
"gridStep": 5,
|
||||
"gridModeEnabled": false,
|
||||
"viewBackgroundColor": "#ffffff"
|
||||
},
|
||||
"files": {}
|
||||
}
|
||||
76
astrbot/core/memory/_README.md
Normal file
76
astrbot/core/memory/_README.md
Normal file
@@ -0,0 +1,76 @@
|
||||
## Decay Score
|
||||
|
||||
记忆衰减分数定义为:
|
||||
|
||||
\[
|
||||
\text{decay\_score}
|
||||
= \alpha \cdot e^{-\lambda \cdot \Delta t \cdot \beta}
|
||||
|
||||
+ (1-\alpha)\cdot (1 - e^{-\gamma \cdot c})
|
||||
\]
|
||||
|
||||
其中:
|
||||
|
||||
+ \(\Delta t\):自上次检索以来经过的时间(天),由 `last_retrieval_at` 计算;
|
||||
+ \(c\):检索次数,对应字段 `retrieval_count`;
|
||||
+ \(\alpha\):控制时间衰减和检索次数影响的权重;
|
||||
+ \(\gamma\):控制检索次数影响的速率;
|
||||
+ \(\lambda\):控制时间衰减的速率;
|
||||
+ \(\beta\):时间衰减调节因子;
|
||||
|
||||
\[
|
||||
\beta = \frac{1}{1 + a \cdot c}
|
||||
\]
|
||||
|
||||
+ \(a\):控制检索次数对时间衰减影响的权重。
|
||||
|
||||
## ADD MEMORY
|
||||
|
||||
+ LLM 通过 `astr_add_memory` 工具调用,传入记忆内容和记忆类型。
|
||||
+ 生成 `mem_id = uuid4()`。
|
||||
+ 从上下文中获取 `owner_id = unified_message_origin`。
|
||||
|
||||
步骤:
|
||||
|
||||
1. 使用 VecDB 以新记忆内容为 query,检索前 20 条相似记忆。
|
||||
2. 从中取相似度最高的前 5 条:
|
||||
+ 若相似度超过“合并阈值”(如 `sim >= merge_threshold`):
|
||||
+ 将该条记忆视为同一记忆,使用 LLM 将旧内容与新内容合并;
|
||||
+ 在同一个 `mem_id` 上更新 MemoryDB 和 VecDB(UPDATE,而非新建)。
|
||||
+ 否则:
|
||||
+ 作为全新的记忆插入:
|
||||
+ 写入 VecDB(metadata 中包含 `mem_id`, `owner_id`);
|
||||
+ 写入 MemoryDB 的 `memory_chunks` 表,初始化:
|
||||
+ `created_at = now`
|
||||
+ `last_retrieval_at = now`
|
||||
+ `retrieval_count = 1` 等。
|
||||
3. 对 VecDB 返回的前 20 条记忆,如果相似度高于某个“赫布阈值”(`hebb_threshold`),则:
|
||||
+ `retrieval_count += 1`
|
||||
+ `last_retrieval_at = now`
|
||||
|
||||
这一步体现了赫布学习:与新记忆共同被激活的旧记忆会获得一次强化。
|
||||
|
||||
## QUERY MEMORY (STATIC)
|
||||
|
||||
+ LLM 通过 `astr_query_memory` 工具调用,无参数。
|
||||
|
||||
步骤:
|
||||
|
||||
1. 从 MemoryDB 的 `memory_chunks` 表中查询当前用户所有活跃记忆:
|
||||
+ `SELECT * FROM memory_chunks WHERE owner_id = ? AND is_active = 1`
|
||||
2. 对每条记忆,根据 `last_retrieval_at` 和 `retrieval_count` 计算对应的 `decay_score`。
|
||||
3. 按 `decay_score` 从高到低排序,返回前 `top_k` 条记忆内容给 LLM。
|
||||
4. 对返回的这 `top_k` 条记忆:
|
||||
+ `retrieval_count += 1`
|
||||
+ `last_retrieval_at = now`
|
||||
|
||||
## QUERY MEMORY (DYNAMIC)(暂不实现)
|
||||
|
||||
+ LLM 提供查询内容作为语义 query。
|
||||
+ 使用 VecDB 检索与该 query 最相似的前 `N` 条记忆(`N > top_k`)。
|
||||
+ 根据 `mem_id` 从 `memory_chunks` 中加载对应记录。
|
||||
+ 对这批候选记忆计算:
|
||||
+ 语义相似度(来自 VecDB)
|
||||
+ `decay_score`
|
||||
+ 最终排序分数(例如 `w1 * sim + w2 * decay_score`)
|
||||
+ 按最终排序分数从高到低返回前 `top_k` 条记忆内容,并更新它们的 `retrieval_count` 和 `last_retrieval_at`。
|
||||
63
astrbot/core/memory/entities.py
Normal file
63
astrbot/core/memory/entities.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import uuid
|
||||
from datetime import datetime, timezone
|
||||
|
||||
import numpy as np
|
||||
from sqlmodel import Field, MetaData, SQLModel
|
||||
|
||||
MEMORY_TYPE_IMPORTANCE = {"persona": 1.3, "fact": 1.0, "ephemeral": 0.8}
|
||||
|
||||
|
||||
class BaseMemoryModel(SQLModel, table=False):
|
||||
metadata = MetaData()
|
||||
|
||||
|
||||
class MemoryChunk(BaseMemoryModel, table=True):
|
||||
"""A chunk of memory stored in the system."""
|
||||
|
||||
__tablename__ = "memory_chunks" # type: ignore
|
||||
|
||||
id: int | None = Field(
|
||||
primary_key=True,
|
||||
sa_column_kwargs={"autoincrement": True},
|
||||
default=None,
|
||||
)
|
||||
mem_id: str = Field(
|
||||
max_length=36,
|
||||
nullable=False,
|
||||
unique=True,
|
||||
default_factory=lambda: str(uuid.uuid4()),
|
||||
index=True,
|
||||
)
|
||||
fact: str = Field(nullable=False)
|
||||
"""The factual content of the memory chunk."""
|
||||
owner_id: str = Field(max_length=255, nullable=False, index=True)
|
||||
"""The identifier of the owner (user) of the memory chunk."""
|
||||
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
"""The timestamp when the memory chunk was created."""
|
||||
last_retrieval_at: datetime = Field(
|
||||
default_factory=lambda: datetime.now(timezone.utc)
|
||||
)
|
||||
"""The timestamp when the memory chunk was last retrieved."""
|
||||
retrieval_count: int = Field(default=1, nullable=False)
|
||||
"""The number of times the memory chunk has been retrieved."""
|
||||
memory_type: str = Field(max_length=20, nullable=False, default="fact")
|
||||
"""The type of memory (e.g., 'persona', 'fact', 'ephemeral')."""
|
||||
is_active: bool = Field(default=True, nullable=False)
|
||||
"""Whether the memory chunk is active."""
|
||||
|
||||
def compute_decay_score(self, current_time: datetime) -> float:
|
||||
"""Compute the decay score of the memory chunk based on time and retrievals."""
|
||||
# Constants for the decay formula
|
||||
alpha = 0.5
|
||||
gamma = 0.1
|
||||
lambda_ = 0.05
|
||||
a = 0.1
|
||||
|
||||
# Calculate delta_t in days
|
||||
delta_t = (current_time - self.last_retrieval_at).total_seconds() / 86400
|
||||
c = self.retrieval_count
|
||||
beta = 1 / (1 + a * c)
|
||||
decay_score = alpha * np.exp(-lambda_ * delta_t * beta) + (1 - alpha) * (
|
||||
1 - np.exp(-gamma * c)
|
||||
)
|
||||
return decay_score * MEMORY_TYPE_IMPORTANCE.get(self.memory_type, 1.0)
|
||||
174
astrbot/core/memory/mem_db_sqlite.py
Normal file
174
astrbot/core/memory/mem_db_sqlite.py
Normal file
@@ -0,0 +1,174 @@
|
||||
from contextlib import asynccontextmanager
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
|
||||
from sqlalchemy import select, text, update
|
||||
from sqlalchemy.ext.asyncio import AsyncSession, async_sessionmaker, create_async_engine
|
||||
from sqlmodel import col
|
||||
|
||||
from astrbot.core import logger
|
||||
|
||||
from .entities import BaseMemoryModel, MemoryChunk
|
||||
|
||||
|
||||
class MemoryDatabase:
|
||||
def __init__(self, db_path: str = "data/astr_memory/memory.db") -> None:
|
||||
"""Initialize memory database
|
||||
|
||||
Args:
|
||||
db_path: Database file path, default is data/astr_memory/memory.db
|
||||
|
||||
"""
|
||||
self.db_path = db_path
|
||||
self.DATABASE_URL = f"sqlite+aiosqlite:///{db_path}"
|
||||
self.inited = False
|
||||
|
||||
# Ensure directory exists
|
||||
Path(db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Create async engine
|
||||
self.engine = create_async_engine(
|
||||
self.DATABASE_URL,
|
||||
echo=False,
|
||||
pool_pre_ping=True,
|
||||
pool_recycle=3600,
|
||||
)
|
||||
|
||||
# Create session factory
|
||||
self.async_session = async_sessionmaker(
|
||||
self.engine,
|
||||
class_=AsyncSession,
|
||||
expire_on_commit=False,
|
||||
)
|
||||
|
||||
@asynccontextmanager
|
||||
async def get_db(self):
|
||||
"""Get database session
|
||||
|
||||
Usage:
|
||||
async with mem_db.get_db() as session:
|
||||
# Perform database operations
|
||||
result = await session.execute(stmt)
|
||||
"""
|
||||
async with self.async_session() as session:
|
||||
yield session
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""Initialize database, create tables and configure SQLite parameters"""
|
||||
async with self.engine.begin() as conn:
|
||||
# Create all memory related tables
|
||||
await conn.run_sync(BaseMemoryModel.metadata.create_all)
|
||||
|
||||
# Configure SQLite performance optimization parameters
|
||||
await conn.execute(text("PRAGMA journal_mode=WAL"))
|
||||
await conn.execute(text("PRAGMA synchronous=NORMAL"))
|
||||
await conn.execute(text("PRAGMA cache_size=20000"))
|
||||
await conn.execute(text("PRAGMA temp_store=MEMORY"))
|
||||
await conn.execute(text("PRAGMA mmap_size=134217728"))
|
||||
await conn.execute(text("PRAGMA optimize"))
|
||||
await conn.commit()
|
||||
|
||||
await self._create_indexes()
|
||||
self.inited = True
|
||||
logger.info(f"Memory database initialized: {self.db_path}")
|
||||
|
||||
async def _create_indexes(self) -> None:
|
||||
"""Create indexes for memory_chunks table"""
|
||||
async with self.get_db() as session:
|
||||
async with session.begin():
|
||||
# Create memory chunks table indexes
|
||||
await session.execute(
|
||||
text(
|
||||
"CREATE INDEX IF NOT EXISTS idx_mem_mem_id "
|
||||
"ON memory_chunks(mem_id)",
|
||||
),
|
||||
)
|
||||
await session.execute(
|
||||
text(
|
||||
"CREATE INDEX IF NOT EXISTS idx_mem_owner_id "
|
||||
"ON memory_chunks(owner_id)",
|
||||
),
|
||||
)
|
||||
await session.execute(
|
||||
text(
|
||||
"CREATE INDEX IF NOT EXISTS idx_mem_owner_active "
|
||||
"ON memory_chunks(owner_id, is_active)",
|
||||
),
|
||||
)
|
||||
await session.commit()
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close database connection"""
|
||||
await self.engine.dispose()
|
||||
logger.info(f"Memory database closed: {self.db_path}")
|
||||
|
||||
async def insert_memory(self, memory: MemoryChunk) -> MemoryChunk:
|
||||
"""Insert a new memory chunk"""
|
||||
async with self.get_db() as session:
|
||||
session.add(memory)
|
||||
await session.commit()
|
||||
await session.refresh(memory)
|
||||
return memory
|
||||
|
||||
async def get_memory_by_id(self, mem_id: str) -> MemoryChunk | None:
|
||||
"""Get memory chunk by mem_id"""
|
||||
async with self.get_db() as session:
|
||||
stmt = select(MemoryChunk).where(col(MemoryChunk.mem_id) == mem_id)
|
||||
result = await session.execute(stmt)
|
||||
return result.scalar_one_or_none()
|
||||
|
||||
async def update_memory(self, memory: MemoryChunk) -> MemoryChunk:
|
||||
"""Update an existing memory chunk"""
|
||||
async with self.get_db() as session:
|
||||
session.add(memory)
|
||||
await session.commit()
|
||||
await session.refresh(memory)
|
||||
return memory
|
||||
|
||||
async def get_active_memories(self, owner_id: str) -> list[MemoryChunk]:
|
||||
"""Get all active memories for a user"""
|
||||
async with self.get_db() as session:
|
||||
stmt = select(MemoryChunk).where(
|
||||
col(MemoryChunk.owner_id) == owner_id,
|
||||
col(MemoryChunk.is_active) == True, # noqa: E712
|
||||
)
|
||||
result = await session.execute(stmt)
|
||||
return list(result.scalars().all())
|
||||
|
||||
async def update_retrieval_stats(
|
||||
self,
|
||||
mem_ids: list[str],
|
||||
current_time: datetime | None = None,
|
||||
) -> None:
|
||||
"""Update retrieval statistics for multiple memories"""
|
||||
if not mem_ids:
|
||||
return
|
||||
|
||||
if current_time is None:
|
||||
current_time = datetime.now(timezone.utc)
|
||||
|
||||
async with self.get_db() as session:
|
||||
async with session.begin():
|
||||
stmt = (
|
||||
update(MemoryChunk)
|
||||
.where(col(MemoryChunk.mem_id).in_(mem_ids))
|
||||
.values(
|
||||
retrieval_count=MemoryChunk.retrieval_count + 1,
|
||||
last_retrieval_at=current_time,
|
||||
)
|
||||
)
|
||||
await session.execute(stmt)
|
||||
await session.commit()
|
||||
|
||||
async def deactivate_memory(self, mem_id: str) -> bool:
|
||||
"""Deactivate a memory chunk"""
|
||||
async with self.get_db() as session:
|
||||
async with session.begin():
|
||||
stmt = (
|
||||
update(MemoryChunk)
|
||||
.where(col(MemoryChunk.mem_id) == mem_id)
|
||||
.values(is_active=False)
|
||||
)
|
||||
result = await session.execute(stmt)
|
||||
await session.commit()
|
||||
return result.rowcount > 0 if result.rowcount else False # type: ignore
|
||||
281
astrbot/core/memory/memory_manager.py
Normal file
281
astrbot/core/memory/memory_manager.py
Normal file
@@ -0,0 +1,281 @@
|
||||
import json
|
||||
import uuid
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
|
||||
from astrbot.core import logger
|
||||
from astrbot.core.db.vec_db.faiss_impl import FaissVecDB
|
||||
from astrbot.core.provider.provider import EmbeddingProvider
|
||||
from astrbot.core.provider.provider import Provider as LLMProvider
|
||||
|
||||
from .entities import MemoryChunk
|
||||
from .mem_db_sqlite import MemoryDatabase
|
||||
|
||||
MERGE_THRESHOLD = 0.85
|
||||
"""Similarity threshold for merging memories"""
|
||||
HEBB_THRESHOLD = 0.70
|
||||
"""Similarity threshold for Hebbian learning reinforcement"""
|
||||
MERGE_SYSTEM_PROMPT = """You are a memory consolidation assistant. Your task is to merge two related memory entries into a single, comprehensive memory.
|
||||
|
||||
Input format:
|
||||
- Old memory: [existing memory content]
|
||||
- New memory: [new memory content to be integrated]
|
||||
|
||||
Your output should be a single, concise memory that combines the essential information from both entries. Preserve specific details, update outdated information, and eliminate redundancy. Output only the merged memory content without any explanations or meta-commentary."""
|
||||
|
||||
|
||||
class MemoryManager:
|
||||
"""Manager for user long-term memory storage and retrieval"""
|
||||
|
||||
def __init__(self, memory_root_dir: str = "data/astr_memory"):
|
||||
self.memory_root_dir = Path(memory_root_dir)
|
||||
self.memory_root_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.mem_db: MemoryDatabase | None = None
|
||||
self.vec_db: FaissVecDB | None = None
|
||||
|
||||
self._initialized = False
|
||||
|
||||
async def initialize(
|
||||
self,
|
||||
embedding_provider: EmbeddingProvider,
|
||||
merge_llm_provider: LLMProvider,
|
||||
):
|
||||
"""Initialize memory database and vector database"""
|
||||
# Initialize MemoryDB
|
||||
db_path = self.memory_root_dir / "memory.db"
|
||||
self.mem_db = MemoryDatabase(db_path.as_posix())
|
||||
await self.mem_db.initialize()
|
||||
|
||||
self.embedding_provider = embedding_provider
|
||||
self.merge_llm_provider = merge_llm_provider
|
||||
|
||||
# Initialize VecDB
|
||||
doc_store_path = self.memory_root_dir / "doc.db"
|
||||
index_store_path = self.memory_root_dir / "index.faiss"
|
||||
self.vec_db = FaissVecDB(
|
||||
doc_store_path=doc_store_path.as_posix(),
|
||||
index_store_path=index_store_path.as_posix(),
|
||||
embedding_provider=self.embedding_provider,
|
||||
)
|
||||
await self.vec_db.initialize()
|
||||
|
||||
logger.info("Memory manager initialized")
|
||||
self._initialized = True
|
||||
|
||||
async def terminate(self):
|
||||
"""Close all database connections"""
|
||||
if self.vec_db:
|
||||
await self.vec_db.close()
|
||||
if self.mem_db:
|
||||
await self.mem_db.close()
|
||||
|
||||
async def add_memory(
|
||||
self,
|
||||
fact: str,
|
||||
owner_id: str,
|
||||
memory_type: str = "fact",
|
||||
) -> MemoryChunk:
|
||||
"""Add a new memory with similarity check and merge logic
|
||||
|
||||
Implements the ADD MEMORY workflow from _README.md:
|
||||
1. Search for similar memories using VecDB
|
||||
2. If similarity >= merge_threshold, merge with existing memory
|
||||
3. Otherwise, create new memory
|
||||
4. Apply Hebbian learning to similar memories (similarity >= hebb_threshold)
|
||||
|
||||
Args:
|
||||
fact: Memory content
|
||||
owner_id: User identifier
|
||||
memory_type: Memory type ('persona', 'fact', 'ephemeral')
|
||||
|
||||
Returns:
|
||||
The created or updated MemoryChunk
|
||||
|
||||
"""
|
||||
if not self.vec_db or not self.mem_db:
|
||||
raise RuntimeError("Memory manager not initialized")
|
||||
|
||||
current_time = datetime.now(timezone.utc)
|
||||
|
||||
# Step 1: Search for similar memories
|
||||
similar_results = await self.vec_db.retrieve(
|
||||
query=fact,
|
||||
k=20,
|
||||
fetch_k=50,
|
||||
metadata_filters={"owner_id": owner_id},
|
||||
)
|
||||
|
||||
# Step 2: Check if we should merge with existing memories (top 3 similar ones)
|
||||
merge_candidates = [
|
||||
r for r in similar_results[:3] if r.similarity >= MERGE_THRESHOLD
|
||||
]
|
||||
|
||||
if merge_candidates:
|
||||
# Get all candidate memories from database
|
||||
candidate_memories: list[tuple[str, MemoryChunk]] = []
|
||||
for candidate in merge_candidates:
|
||||
mem_id = json.loads(candidate.data["metadata"])["mem_id"]
|
||||
memory = await self.mem_db.get_memory_by_id(mem_id)
|
||||
if memory:
|
||||
candidate_memories.append((mem_id, memory))
|
||||
|
||||
if candidate_memories:
|
||||
# Use the most similar memory as the base
|
||||
base_mem_id, base_memory = candidate_memories[0]
|
||||
|
||||
# Collect all facts to merge (existing candidates + new fact)
|
||||
all_facts = [mem.fact for _, mem in candidate_memories] + [fact]
|
||||
merged_fact = await self._merge_multiple_memories(all_facts)
|
||||
|
||||
# Update the base memory
|
||||
base_memory.fact = merged_fact
|
||||
base_memory.last_retrieval_at = current_time
|
||||
base_memory.retrieval_count += 1
|
||||
updated_memory = await self.mem_db.update_memory(base_memory)
|
||||
|
||||
# Update VecDB for base memory
|
||||
await self.vec_db.delete(base_mem_id)
|
||||
await self.vec_db.insert(
|
||||
content=merged_fact,
|
||||
metadata={
|
||||
"mem_id": base_mem_id,
|
||||
"owner_id": owner_id,
|
||||
"memory_type": memory_type,
|
||||
},
|
||||
id=base_mem_id,
|
||||
)
|
||||
|
||||
# Deactivate and remove other merged memories
|
||||
for mem_id, _ in candidate_memories[1:]:
|
||||
await self.mem_db.deactivate_memory(mem_id)
|
||||
await self.vec_db.delete(mem_id)
|
||||
|
||||
logger.info(
|
||||
f"Merged {len(candidate_memories)} memories into {base_mem_id} for user {owner_id}"
|
||||
)
|
||||
return updated_memory
|
||||
|
||||
# Step 3: Create new memory
|
||||
mem_id = str(uuid.uuid4())
|
||||
new_memory = MemoryChunk(
|
||||
mem_id=mem_id,
|
||||
fact=fact,
|
||||
owner_id=owner_id,
|
||||
memory_type=memory_type,
|
||||
created_at=current_time,
|
||||
last_retrieval_at=current_time,
|
||||
retrieval_count=1,
|
||||
is_active=True,
|
||||
)
|
||||
|
||||
# Insert into MemoryDB
|
||||
created_memory = await self.mem_db.insert_memory(new_memory)
|
||||
|
||||
# Insert into VecDB
|
||||
await self.vec_db.insert(
|
||||
content=fact,
|
||||
metadata={
|
||||
"mem_id": mem_id,
|
||||
"owner_id": owner_id,
|
||||
"memory_type": memory_type,
|
||||
},
|
||||
id=mem_id,
|
||||
)
|
||||
|
||||
# Step 4: Apply Hebbian learning to similar memories
|
||||
hebb_mem_ids = [
|
||||
json.loads(r.data["metadata"])["mem_id"]
|
||||
for r in similar_results
|
||||
if r.similarity >= HEBB_THRESHOLD
|
||||
]
|
||||
if hebb_mem_ids:
|
||||
await self.mem_db.update_retrieval_stats(hebb_mem_ids, current_time)
|
||||
logger.debug(
|
||||
f"Applied Hebbian learning to {len(hebb_mem_ids)} memories for user {owner_id}",
|
||||
)
|
||||
|
||||
logger.info(f"Created new memory {mem_id} for user {owner_id}")
|
||||
return created_memory
|
||||
|
||||
async def query_memory(
|
||||
self,
|
||||
owner_id: str,
|
||||
top_k: int = 5,
|
||||
) -> list[MemoryChunk]:
|
||||
"""Query user's memories using static retrieval with decay score ranking
|
||||
|
||||
Implements the QUERY MEMORY (STATIC) workflow from _README.md:
|
||||
1. Get all active memories for user from MemoryDB
|
||||
2. Compute decay_score for each memory
|
||||
3. Sort by decay_score and return top_k
|
||||
4. Update retrieval statistics for returned memories
|
||||
|
||||
Args:
|
||||
owner_id: User identifier
|
||||
top_k: Number of memories to return
|
||||
|
||||
Returns:
|
||||
List of top_k MemoryChunk sorted by decay score
|
||||
"""
|
||||
if not self.mem_db:
|
||||
raise RuntimeError("Memory manager not initialized")
|
||||
|
||||
current_time = datetime.now(timezone.utc)
|
||||
|
||||
# Step 1: Get all active memories for user
|
||||
all_memories = await self.mem_db.get_active_memories(owner_id)
|
||||
|
||||
if not all_memories:
|
||||
return []
|
||||
|
||||
# Step 2-3: Compute decay scores and sort
|
||||
memories_with_scores = [
|
||||
(mem, mem.compute_decay_score(current_time)) for mem in all_memories
|
||||
]
|
||||
memories_with_scores.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# Get top_k memories
|
||||
top_memories = [mem for mem, _ in memories_with_scores[:top_k]]
|
||||
|
||||
# Step 4: Update retrieval statistics
|
||||
mem_ids = [mem.mem_id for mem in top_memories]
|
||||
await self.mem_db.update_retrieval_stats(mem_ids, current_time)
|
||||
|
||||
logger.debug(f"Retrieved {len(top_memories)} memories for user {owner_id}")
|
||||
return top_memories
|
||||
|
||||
async def _merge_multiple_memories(self, facts: list[str]) -> str:
|
||||
"""Merge multiple memory facts using LLM in one call
|
||||
|
||||
Args:
|
||||
facts: List of memory facts to merge
|
||||
|
||||
Returns:
|
||||
Merged memory content
|
||||
"""
|
||||
if not self.merge_llm_provider:
|
||||
return " ".join(facts)
|
||||
|
||||
if len(facts) == 1:
|
||||
return facts[0]
|
||||
|
||||
try:
|
||||
# Format all facts as a numbered list
|
||||
facts_list = "\n".join(f"{i + 1}. {fact}" for i, fact in enumerate(facts))
|
||||
user_prompt = (
|
||||
f"Please merge the following {len(facts)} related memory entries "
|
||||
"into a single, comprehensive memory:"
|
||||
f"\n{facts_list}\n\nOutput only the merged memory content."
|
||||
)
|
||||
response = await self.merge_llm_provider.text_chat(
|
||||
prompt=user_prompt,
|
||||
system_prompt=MERGE_SYSTEM_PROMPT,
|
||||
)
|
||||
|
||||
merged_content = response.completion_text.strip()
|
||||
return merged_content if merged_content else " ".join(facts)
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to merge memories with LLM: {e}, using fallback")
|
||||
return " ".join(facts)
|
||||
156
astrbot/core/memory/tools.py
Normal file
156
astrbot/core/memory/tools.py
Normal file
@@ -0,0 +1,156 @@
|
||||
from pydantic import Field
|
||||
from pydantic.dataclasses import dataclass
|
||||
|
||||
from astrbot.core.agent.tool import FunctionTool, ToolExecResult
|
||||
from astrbot.core.astr_agent_context import AstrAgentContext, ContextWrapper
|
||||
|
||||
|
||||
@dataclass
|
||||
class AddMemory(FunctionTool[AstrAgentContext]):
|
||||
"""Tool for adding memories to user's long-term memory storage"""
|
||||
|
||||
name: str = "astr_add_memory"
|
||||
description: str = (
|
||||
"Add a new memory to the user's long-term memory storage. "
|
||||
"Use this tool only when the user explicitly asks you to remember something, "
|
||||
"or when they share stable preferences, identity, or long-term goals that will be useful in future interactions."
|
||||
)
|
||||
parameters: dict = Field(
|
||||
default_factory=lambda: {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"fact": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The concrete memory content to store, such as a user preference, "
|
||||
"identity detail, long-term goal, or stable profile fact."
|
||||
),
|
||||
},
|
||||
"memory_type": {
|
||||
"type": "string",
|
||||
"enum": ["persona", "fact", "ephemeral"],
|
||||
"description": (
|
||||
"The relative importance of this memory. "
|
||||
"Use 'persona' for core identity or highly impactful information, "
|
||||
"'fact' for normal long-term preferences, "
|
||||
"and 'ephemeral' for minor or tentative facts."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": ["fact", "memory_type"],
|
||||
}
|
||||
)
|
||||
|
||||
async def call(
|
||||
self, context: ContextWrapper[AstrAgentContext], **kwargs
|
||||
) -> ToolExecResult:
|
||||
"""Add a memory to long-term storage
|
||||
|
||||
Args:
|
||||
context: Agent context
|
||||
**kwargs: Must contain 'fact' and 'memory_type'
|
||||
|
||||
Returns:
|
||||
ToolExecResult with success message
|
||||
|
||||
"""
|
||||
mm = context.context.context.memory_manager
|
||||
fact = kwargs.get("fact")
|
||||
memory_type = kwargs.get("memory_type", "fact")
|
||||
|
||||
if not fact:
|
||||
return "Missing required parameter: fact"
|
||||
|
||||
try:
|
||||
# Get owner_id from context
|
||||
owner_id = context.context.event.unified_msg_origin
|
||||
|
||||
# Add memory using memory manager
|
||||
memory = await mm.add_memory(
|
||||
fact=fact,
|
||||
owner_id=owner_id,
|
||||
memory_type=memory_type,
|
||||
)
|
||||
|
||||
return f"Memory added successfully (ID: {memory.mem_id})"
|
||||
|
||||
except Exception as e:
|
||||
return f"Failed to add memory: {str(e)}"
|
||||
|
||||
|
||||
@dataclass
|
||||
class QueryMemory(FunctionTool[AstrAgentContext]):
|
||||
"""Tool for querying user's long-term memories"""
|
||||
|
||||
name: str = "astr_query_memory"
|
||||
description: str = (
|
||||
"Query the user's long-term memory storage and return the most relevant memories. "
|
||||
"Use this tool when you need user-specific context, preferences, or past facts "
|
||||
"that are not explicitly present in the current conversation."
|
||||
)
|
||||
parameters: dict = Field(
|
||||
default_factory=lambda: {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"description": (
|
||||
"Maximum number of memories to retrieve after retention-based ranking. "
|
||||
"Typically between 3 and 10."
|
||||
),
|
||||
"default": 5,
|
||||
"minimum": 1,
|
||||
"maximum": 20,
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
)
|
||||
|
||||
async def call(
|
||||
self, context: ContextWrapper[AstrAgentContext], **kwargs
|
||||
) -> ToolExecResult:
|
||||
"""Query memories from long-term storage
|
||||
|
||||
Args:
|
||||
context: Agent context
|
||||
**kwargs: Optional 'top_k' parameter
|
||||
|
||||
Returns:
|
||||
ToolExecResult with formatted memory list
|
||||
|
||||
"""
|
||||
mm = context.context.context.memory_manager
|
||||
top_k = kwargs.get("top_k", 5)
|
||||
|
||||
try:
|
||||
# Get owner_id from context
|
||||
owner_id = context.context.event.unified_msg_origin
|
||||
|
||||
# Query memories using memory manager
|
||||
memories = await mm.query_memory(
|
||||
owner_id=owner_id,
|
||||
top_k=top_k,
|
||||
)
|
||||
|
||||
if not memories:
|
||||
return "No memories found for this user."
|
||||
|
||||
# Format memories for output
|
||||
formatted_memories = []
|
||||
for i, mem in enumerate(memories, 1):
|
||||
formatted_memories.append(
|
||||
f"{i}. [{mem.memory_type.upper()}] {mem.fact} "
|
||||
f"(retrieved {mem.retrieval_count} times, "
|
||||
f"last: {mem.last_retrieval_at.strftime('%Y-%m-%d')})"
|
||||
)
|
||||
|
||||
result_text = "Retrieved memories:\n" + "\n".join(formatted_memories)
|
||||
return result_text
|
||||
|
||||
except Exception as e:
|
||||
return f"Failed to query memories: {str(e)}"
|
||||
|
||||
|
||||
ADD_MEMORY_TOOL = AddMemory()
|
||||
QUERY_MEMORY_TOOL = QueryMemory()
|
||||
@@ -722,12 +722,7 @@ class File(BaseMessageComponent):
|
||||
"""下载文件"""
|
||||
download_dir = os.path.join(get_astrbot_data_path(), "temp")
|
||||
os.makedirs(download_dir, exist_ok=True)
|
||||
if self.name:
|
||||
name, ext = os.path.splitext(self.name)
|
||||
filename = f"{name}_{uuid.uuid4().hex[:8]}{ext}"
|
||||
else:
|
||||
filename = f"{uuid.uuid4().hex}"
|
||||
file_path = os.path.join(download_dir, filename)
|
||||
file_path = os.path.join(download_dir, f"{uuid.uuid4().hex}")
|
||||
await download_file(self.url, file_path)
|
||||
self.file_ = os.path.abspath(file_path)
|
||||
|
||||
|
||||
@@ -1,48 +0,0 @@
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from astrbot.core import logger
|
||||
from astrbot.core.platform.astr_message_event import AstrMessageEvent
|
||||
from astrbot.core.star.session_llm_manager import SessionServiceManager
|
||||
|
||||
from ...context import PipelineContext
|
||||
from ..stage import Stage
|
||||
from .agent_sub_stages.internal import InternalAgentSubStage
|
||||
from .agent_sub_stages.third_party import ThirdPartyAgentSubStage
|
||||
|
||||
|
||||
class AgentRequestSubStage(Stage):
|
||||
async def initialize(self, ctx: PipelineContext) -> None:
|
||||
self.ctx = ctx
|
||||
self.config = ctx.astrbot_config
|
||||
|
||||
self.bot_wake_prefixs: list[str] = self.config["wake_prefix"]
|
||||
self.prov_wake_prefix: str = self.config["provider_settings"]["wake_prefix"]
|
||||
for bwp in self.bot_wake_prefixs:
|
||||
if self.prov_wake_prefix.startswith(bwp):
|
||||
logger.info(
|
||||
f"识别 LLM 聊天额外唤醒前缀 {self.prov_wake_prefix} 以机器人唤醒前缀 {bwp} 开头,已自动去除。",
|
||||
)
|
||||
self.prov_wake_prefix = self.prov_wake_prefix[len(bwp) :]
|
||||
|
||||
agent_runner_type = self.config["provider_settings"]["agent_runner_type"]
|
||||
if agent_runner_type == "local":
|
||||
self.agent_sub_stage = InternalAgentSubStage()
|
||||
else:
|
||||
self.agent_sub_stage = ThirdPartyAgentSubStage()
|
||||
await self.agent_sub_stage.initialize(ctx)
|
||||
|
||||
async def process(self, event: AstrMessageEvent) -> AsyncGenerator[None, None]:
|
||||
if not self.ctx.astrbot_config["provider_settings"]["enable"]:
|
||||
logger.debug(
|
||||
"This pipeline does not enable AI capability, skip processing."
|
||||
)
|
||||
return
|
||||
|
||||
if not SessionServiceManager.should_process_llm_request(event):
|
||||
logger.debug(
|
||||
f"The session {event.unified_msg_origin} has disabled AI capability, skipping processing."
|
||||
)
|
||||
return
|
||||
|
||||
async for resp in self.agent_sub_stage.process(event, self.prov_wake_prefix):
|
||||
yield resp
|
||||
@@ -1,205 +0,0 @@
|
||||
import asyncio
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from astrbot.core import astrbot_config, logger
|
||||
from astrbot.core.agent.runners.coze.coze_agent_runner import CozeAgentRunner
|
||||
from astrbot.core.agent.runners.dashscope.dashscope_agent_runner import (
|
||||
DashscopeAgentRunner,
|
||||
)
|
||||
from astrbot.core.agent.runners.dify.dify_agent_runner import DifyAgentRunner
|
||||
from astrbot.core.message.components import Image
|
||||
from astrbot.core.message.message_event_result import (
|
||||
MessageChain,
|
||||
MessageEventResult,
|
||||
ResultContentType,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from astrbot.core.agent.runners.base import BaseAgentRunner
|
||||
from astrbot.core.platform.astr_message_event import AstrMessageEvent
|
||||
from astrbot.core.provider.entities import (
|
||||
ProviderRequest,
|
||||
)
|
||||
from astrbot.core.star.star_handler import EventType
|
||||
from astrbot.core.utils.metrics import Metric
|
||||
|
||||
from .....astr_agent_context import AgentContextWrapper, AstrAgentContext
|
||||
from .....astr_agent_hooks import MAIN_AGENT_HOOKS
|
||||
from ....context import PipelineContext, call_event_hook
|
||||
from ...stage import Stage
|
||||
|
||||
AGENT_RUNNER_TYPE_KEY = {
|
||||
"dify": "dify_agent_runner_provider_id",
|
||||
"coze": "coze_agent_runner_provider_id",
|
||||
"dashscope": "dashscope_agent_runner_provider_id",
|
||||
}
|
||||
|
||||
|
||||
async def run_third_party_agent(
|
||||
runner: "BaseAgentRunner",
|
||||
stream_to_general: bool = False,
|
||||
) -> AsyncGenerator[MessageChain | None, None]:
|
||||
"""
|
||||
运行第三方 agent runner 并转换响应格式
|
||||
类似于 run_agent 函数,但专门处理第三方 agent runner
|
||||
"""
|
||||
try:
|
||||
async for resp in runner.step_until_done(max_step=30): # type: ignore[misc]
|
||||
if resp.type == "streaming_delta":
|
||||
if stream_to_general:
|
||||
continue
|
||||
yield resp.data["chain"]
|
||||
elif resp.type == "llm_result":
|
||||
if stream_to_general:
|
||||
yield resp.data["chain"]
|
||||
except Exception as e:
|
||||
logger.error(f"Third party agent runner error: {e}")
|
||||
err_msg = (
|
||||
f"\nAstrBot 请求失败。\n错误类型: {type(e).__name__}\n"
|
||||
f"错误信息: {e!s}\n\n请在控制台查看和分享错误详情。\n"
|
||||
)
|
||||
yield MessageChain().message(err_msg)
|
||||
|
||||
|
||||
class ThirdPartyAgentSubStage(Stage):
|
||||
async def initialize(self, ctx: PipelineContext) -> None:
|
||||
self.ctx = ctx
|
||||
self.conf = ctx.astrbot_config
|
||||
self.runner_type = self.conf["provider_settings"]["agent_runner_type"]
|
||||
self.prov_id = self.conf["provider_settings"].get(
|
||||
AGENT_RUNNER_TYPE_KEY.get(self.runner_type, ""),
|
||||
"",
|
||||
)
|
||||
settings = ctx.astrbot_config["provider_settings"]
|
||||
self.streaming_response: bool = settings["streaming_response"]
|
||||
self.unsupported_streaming_strategy: str = settings[
|
||||
"unsupported_streaming_strategy"
|
||||
]
|
||||
|
||||
async def process(
|
||||
self, event: AstrMessageEvent, provider_wake_prefix: str
|
||||
) -> AsyncGenerator[None, None]:
|
||||
req: ProviderRequest | None = None
|
||||
|
||||
if provider_wake_prefix and not event.message_str.startswith(
|
||||
provider_wake_prefix
|
||||
):
|
||||
return
|
||||
|
||||
self.prov_cfg: dict = next(
|
||||
(p for p in astrbot_config["provider"] if p["id"] == self.prov_id),
|
||||
{},
|
||||
)
|
||||
if not self.prov_id:
|
||||
logger.error("没有填写 Agent Runner 提供商 ID,请前往配置页面配置。")
|
||||
return
|
||||
if not self.prov_cfg:
|
||||
logger.error(
|
||||
f"Agent Runner 提供商 {self.prov_id} 配置不存在,请前往配置页面修改配置。"
|
||||
)
|
||||
return
|
||||
|
||||
# make provider request
|
||||
req = ProviderRequest()
|
||||
req.session_id = event.unified_msg_origin
|
||||
req.prompt = event.message_str[len(provider_wake_prefix) :]
|
||||
for comp in event.message_obj.message:
|
||||
if isinstance(comp, Image):
|
||||
image_path = await comp.convert_to_base64()
|
||||
req.image_urls.append(image_path)
|
||||
|
||||
if not req.prompt and not req.image_urls:
|
||||
return
|
||||
|
||||
# call event hook
|
||||
if await call_event_hook(event, EventType.OnLLMRequestEvent, req):
|
||||
return
|
||||
|
||||
if self.runner_type == "dify":
|
||||
runner = DifyAgentRunner[AstrAgentContext]()
|
||||
elif self.runner_type == "coze":
|
||||
runner = CozeAgentRunner[AstrAgentContext]()
|
||||
elif self.runner_type == "dashscope":
|
||||
runner = DashscopeAgentRunner[AstrAgentContext]()
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported third party agent runner type: {self.runner_type}",
|
||||
)
|
||||
|
||||
astr_agent_ctx = AstrAgentContext(
|
||||
context=self.ctx.plugin_manager.context,
|
||||
event=event,
|
||||
)
|
||||
|
||||
streaming_response = self.streaming_response
|
||||
if (enable_streaming := event.get_extra("enable_streaming")) is not None:
|
||||
streaming_response = bool(enable_streaming)
|
||||
|
||||
stream_to_general = (
|
||||
self.unsupported_streaming_strategy == "turn_off"
|
||||
and not event.platform_meta.support_streaming_message
|
||||
)
|
||||
|
||||
await runner.reset(
|
||||
request=req,
|
||||
run_context=AgentContextWrapper(
|
||||
context=astr_agent_ctx,
|
||||
tool_call_timeout=60,
|
||||
),
|
||||
agent_hooks=MAIN_AGENT_HOOKS,
|
||||
provider_config=self.prov_cfg,
|
||||
streaming=streaming_response,
|
||||
)
|
||||
|
||||
if streaming_response and not stream_to_general:
|
||||
# 流式响应
|
||||
event.set_result(
|
||||
MessageEventResult()
|
||||
.set_result_content_type(ResultContentType.STREAMING_RESULT)
|
||||
.set_async_stream(
|
||||
run_third_party_agent(
|
||||
runner,
|
||||
stream_to_general=False,
|
||||
),
|
||||
),
|
||||
)
|
||||
yield
|
||||
if runner.done():
|
||||
final_resp = runner.get_final_llm_resp()
|
||||
if final_resp and final_resp.result_chain:
|
||||
event.set_result(
|
||||
MessageEventResult(
|
||||
chain=final_resp.result_chain.chain or [],
|
||||
result_content_type=ResultContentType.STREAMING_FINISH,
|
||||
),
|
||||
)
|
||||
else:
|
||||
# 非流式响应或转换为普通响应
|
||||
async for _ in run_third_party_agent(
|
||||
runner,
|
||||
stream_to_general=stream_to_general,
|
||||
):
|
||||
yield
|
||||
|
||||
final_resp = runner.get_final_llm_resp()
|
||||
|
||||
if not final_resp or not final_resp.result_chain:
|
||||
logger.warning("Agent Runner 未返回最终结果。")
|
||||
return
|
||||
|
||||
event.set_result(
|
||||
MessageEventResult(
|
||||
chain=final_resp.result_chain.chain or [],
|
||||
result_content_type=ResultContentType.LLM_RESULT,
|
||||
),
|
||||
)
|
||||
yield
|
||||
|
||||
asyncio.create_task(
|
||||
Metric.upload(
|
||||
llm_tick=1,
|
||||
model_name=self.runner_type,
|
||||
provider_type=self.runner_type,
|
||||
),
|
||||
)
|
||||
@@ -9,7 +9,7 @@ from astrbot.core import logger
|
||||
from astrbot.core.agent.tool import ToolSet
|
||||
from astrbot.core.astr_agent_context import AstrAgentContext
|
||||
from astrbot.core.conversation_mgr import Conversation
|
||||
from astrbot.core.message.components import File, Image, Reply
|
||||
from astrbot.core.message.components import Image
|
||||
from astrbot.core.message.message_event_result import (
|
||||
MessageChain,
|
||||
MessageEventResult,
|
||||
@@ -21,25 +21,28 @@ from astrbot.core.provider.entities import (
|
||||
LLMResponse,
|
||||
ProviderRequest,
|
||||
)
|
||||
from astrbot.core.star.session_llm_manager import SessionServiceManager
|
||||
from astrbot.core.star.star_handler import EventType, star_map
|
||||
from astrbot.core.utils.file_extract import extract_file_moonshotai
|
||||
from astrbot.core.utils.metrics import Metric
|
||||
from astrbot.core.utils.session_lock import session_lock_manager
|
||||
|
||||
from .....astr_agent_context import AgentContextWrapper
|
||||
from .....astr_agent_hooks import MAIN_AGENT_HOOKS
|
||||
from .....astr_agent_run_util import AgentRunner, run_agent
|
||||
from .....astr_agent_tool_exec import FunctionToolExecutor
|
||||
from ....context import PipelineContext, call_event_hook
|
||||
from ...stage import Stage
|
||||
from ...utils import KNOWLEDGE_BASE_QUERY_TOOL, retrieve_knowledge_base
|
||||
from ....astr_agent_context import AgentContextWrapper
|
||||
from ....astr_agent_hooks import MAIN_AGENT_HOOKS
|
||||
from ....astr_agent_run_util import AgentRunner, run_agent
|
||||
from ....astr_agent_tool_exec import FunctionToolExecutor
|
||||
from ....memory.tools import ADD_MEMORY_TOOL, QUERY_MEMORY_TOOL
|
||||
from ...context import PipelineContext, call_event_hook
|
||||
from ..stage import Stage
|
||||
from ..utils import KNOWLEDGE_BASE_QUERY_TOOL, retrieve_knowledge_base
|
||||
|
||||
|
||||
class InternalAgentSubStage(Stage):
|
||||
class LLMRequestSubStage(Stage):
|
||||
async def initialize(self, ctx: PipelineContext) -> None:
|
||||
self.ctx = ctx
|
||||
conf = ctx.astrbot_config
|
||||
settings = conf["provider_settings"]
|
||||
self.bot_wake_prefixs: list[str] = conf["wake_prefix"] # list
|
||||
self.provider_wake_prefix: str = settings["wake_prefix"] # str
|
||||
self.max_context_length = settings["max_context_length"] # int
|
||||
self.dequeue_context_length: int = min(
|
||||
max(1, settings["dequeue_context_length"]),
|
||||
@@ -57,12 +60,12 @@ class InternalAgentSubStage(Stage):
|
||||
self.show_reasoning = settings.get("display_reasoning_text", False)
|
||||
self.kb_agentic_mode: bool = conf.get("kb_agentic_mode", False)
|
||||
|
||||
file_extract_conf: dict = settings.get("file_extract", {})
|
||||
self.file_extract_enabled: bool = file_extract_conf.get("enable", False)
|
||||
self.file_extract_prov: str = file_extract_conf.get("provider", "moonshotai")
|
||||
self.file_extract_msh_api_key: str = file_extract_conf.get(
|
||||
"moonshotai_api_key", ""
|
||||
)
|
||||
for bwp in self.bot_wake_prefixs:
|
||||
if self.provider_wake_prefix.startswith(bwp):
|
||||
logger.info(
|
||||
f"识别 LLM 聊天额外唤醒前缀 {self.provider_wake_prefix} 以机器人唤醒前缀 {bwp} 开头,已自动去除。",
|
||||
)
|
||||
self.provider_wake_prefix = self.provider_wake_prefix[len(bwp) :]
|
||||
|
||||
self.conv_manager = ctx.plugin_manager.context.conversation_manager
|
||||
|
||||
@@ -122,49 +125,14 @@ class InternalAgentSubStage(Stage):
|
||||
req.func_tool = ToolSet()
|
||||
req.func_tool.add_tool(KNOWLEDGE_BASE_QUERY_TOOL)
|
||||
|
||||
async def _apply_file_extract(
|
||||
self,
|
||||
event: AstrMessageEvent,
|
||||
req: ProviderRequest,
|
||||
):
|
||||
"""Apply file extract to the provider request"""
|
||||
file_paths = []
|
||||
file_names = []
|
||||
for comp in event.message_obj.message:
|
||||
if isinstance(comp, File):
|
||||
file_paths.append(await comp.get_file())
|
||||
file_names.append(comp.name)
|
||||
elif isinstance(comp, Reply) and comp.chain:
|
||||
for reply_comp in comp.chain:
|
||||
if isinstance(reply_comp, File):
|
||||
file_paths.append(await reply_comp.get_file())
|
||||
file_names.append(reply_comp.name)
|
||||
if not file_paths:
|
||||
async def _apply_memory(self, req: ProviderRequest):
|
||||
mm = self.ctx.plugin_manager.context.memory_manager
|
||||
if not mm or not mm._initialized:
|
||||
return
|
||||
if not req.prompt:
|
||||
req.prompt = "总结一下文件里面讲了什么?"
|
||||
if self.file_extract_prov == "moonshotai":
|
||||
if not self.file_extract_msh_api_key:
|
||||
logger.error("Moonshot AI API key for file extract is not set")
|
||||
return
|
||||
file_contents = await asyncio.gather(
|
||||
*[
|
||||
extract_file_moonshotai(file_path, self.file_extract_msh_api_key)
|
||||
for file_path in file_paths
|
||||
]
|
||||
)
|
||||
else:
|
||||
logger.error(f"Unsupported file extract provider: {self.file_extract_prov}")
|
||||
return
|
||||
|
||||
# add file extract results to contexts
|
||||
for file_content, file_name in zip(file_contents, file_names):
|
||||
req.contexts.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": f"File Extract Results of user uploaded files:\n{file_content}\nFile Name: {file_name or 'Unknown'}",
|
||||
},
|
||||
)
|
||||
if req.func_tool is None:
|
||||
req.func_tool = ToolSet()
|
||||
req.func_tool.add_tool(ADD_MEMORY_TOOL)
|
||||
req.func_tool.add_tool(QUERY_MEMORY_TOOL)
|
||||
|
||||
def _truncate_contexts(
|
||||
self,
|
||||
@@ -346,10 +314,21 @@ class InternalAgentSubStage(Stage):
|
||||
return fixed_messages
|
||||
|
||||
async def process(
|
||||
self, event: AstrMessageEvent, provider_wake_prefix: str
|
||||
) -> AsyncGenerator[None, None]:
|
||||
self,
|
||||
event: AstrMessageEvent,
|
||||
_nested: bool = False,
|
||||
) -> None | AsyncGenerator[None, None]:
|
||||
req: ProviderRequest | None = None
|
||||
|
||||
if not self.ctx.astrbot_config["provider_settings"]["enable"]:
|
||||
logger.debug("未启用 LLM 能力,跳过处理。")
|
||||
return
|
||||
|
||||
# 检查会话级别的LLM启停状态
|
||||
if not SessionServiceManager.should_process_llm_request(event):
|
||||
logger.debug(f"会话 {event.unified_msg_origin} 禁用了 LLM,跳过处理。")
|
||||
return
|
||||
|
||||
provider = self._select_provider(event)
|
||||
if provider is None:
|
||||
return
|
||||
@@ -379,12 +358,12 @@ class InternalAgentSubStage(Stage):
|
||||
req.image_urls = []
|
||||
if sel_model := event.get_extra("selected_model"):
|
||||
req.model = sel_model
|
||||
if provider_wake_prefix and not event.message_str.startswith(
|
||||
provider_wake_prefix
|
||||
if self.provider_wake_prefix and not event.message_str.startswith(
|
||||
self.provider_wake_prefix
|
||||
):
|
||||
return
|
||||
|
||||
req.prompt = event.message_str[len(provider_wake_prefix) :]
|
||||
req.prompt = event.message_str[len(self.provider_wake_prefix) :]
|
||||
# func_tool selection 现在已经转移到 packages/astrbot 插件中进行选择。
|
||||
# req.func_tool = self.ctx.plugin_manager.context.get_llm_tool_manager()
|
||||
for comp in event.message_obj.message:
|
||||
@@ -398,17 +377,6 @@ class InternalAgentSubStage(Stage):
|
||||
|
||||
event.set_extra("provider_request", req)
|
||||
|
||||
# fix contexts json str
|
||||
if isinstance(req.contexts, str):
|
||||
req.contexts = json.loads(req.contexts)
|
||||
|
||||
# apply file extract
|
||||
if self.file_extract_enabled:
|
||||
try:
|
||||
await self._apply_file_extract(event, req)
|
||||
except Exception as e:
|
||||
logger.error(f"Error occurred while applying file extract: {e}")
|
||||
|
||||
if not req.prompt and not req.image_urls:
|
||||
return
|
||||
|
||||
@@ -419,6 +387,13 @@ class InternalAgentSubStage(Stage):
|
||||
# apply knowledge base feature
|
||||
await self._apply_kb(event, req)
|
||||
|
||||
# apply memory feature
|
||||
await self._apply_memory(req)
|
||||
|
||||
# fix contexts json str
|
||||
if isinstance(req.contexts, str):
|
||||
req.contexts = json.loads(req.contexts)
|
||||
|
||||
# truncate contexts to fit max length
|
||||
if req.contexts:
|
||||
req.contexts = self._truncate_contexts(req.contexts)
|
||||
@@ -24,7 +24,7 @@ class StarRequestSubStage(Stage):
|
||||
async def process(
|
||||
self,
|
||||
event: AstrMessageEvent,
|
||||
) -> AsyncGenerator[None, None]:
|
||||
) -> None | AsyncGenerator[None, None]:
|
||||
activated_handlers: list[StarHandlerMetadata] = event.get_extra(
|
||||
"activated_handlers",
|
||||
)
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from astrbot.core import logger
|
||||
from astrbot.core.platform.astr_message_event import AstrMessageEvent
|
||||
from astrbot.core.provider.entities import ProviderRequest
|
||||
from astrbot.core.star.star_handler import StarHandlerMetadata
|
||||
|
||||
from ..context import PipelineContext
|
||||
from ..stage import Stage, register_stage
|
||||
from .method.agent_request import AgentRequestSubStage
|
||||
from .method.llm_request import LLMRequestSubStage
|
||||
from .method.star_request import StarRequestSubStage
|
||||
|
||||
|
||||
@@ -16,12 +17,9 @@ class ProcessStage(Stage):
|
||||
self.ctx = ctx
|
||||
self.config = ctx.astrbot_config
|
||||
self.plugin_manager = ctx.plugin_manager
|
||||
self.llm_request_sub_stage = LLMRequestSubStage()
|
||||
await self.llm_request_sub_stage.initialize(ctx)
|
||||
|
||||
# initialize agent sub stage
|
||||
self.agent_sub_stage = AgentRequestSubStage()
|
||||
await self.agent_sub_stage.initialize(ctx)
|
||||
|
||||
# initialize star request sub stage
|
||||
self.star_request_sub_stage = StarRequestSubStage()
|
||||
await self.star_request_sub_stage.initialize(ctx)
|
||||
|
||||
@@ -41,7 +39,7 @@ class ProcessStage(Stage):
|
||||
# Handler 的 LLM 请求
|
||||
event.set_extra("provider_request", resp)
|
||||
_t = False
|
||||
async for _ in self.agent_sub_stage.process(event):
|
||||
async for _ in self.llm_request_sub_stage.process(event):
|
||||
_t = True
|
||||
yield
|
||||
if not _t:
|
||||
@@ -62,5 +60,12 @@ class ProcessStage(Stage):
|
||||
if (
|
||||
event.get_result() and not event.get_result().is_stopped()
|
||||
) or not event.get_result():
|
||||
async for _ in self.agent_sub_stage.process(event):
|
||||
# 事件没有终止传播
|
||||
provider = self.ctx.plugin_manager.context.get_using_provider()
|
||||
|
||||
if not provider:
|
||||
logger.info("未找到可用的 LLM 提供商,请先前往配置服务提供商。")
|
||||
return
|
||||
|
||||
async for _ in self.llm_request_sub_stage.process(event):
|
||||
yield
|
||||
|
||||
@@ -161,21 +161,11 @@ class ResultDecorateStage(Stage):
|
||||
# 不分段回复
|
||||
new_chain.append(comp)
|
||||
continue
|
||||
try:
|
||||
split_response = re.findall(
|
||||
self.regex,
|
||||
comp.text,
|
||||
re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
except re.error:
|
||||
logger.error(
|
||||
f"分段回复正则表达式错误,使用默认分段方式: {traceback.format_exc()}",
|
||||
)
|
||||
split_response = re.findall(
|
||||
r".*?[。?!~…]+|.+$",
|
||||
comp.text,
|
||||
re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
split_response = re.findall(
|
||||
self.regex,
|
||||
comp.text,
|
||||
re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
if not split_response:
|
||||
new_chain.append(comp)
|
||||
continue
|
||||
|
||||
@@ -246,13 +246,7 @@ class AiocqhttpAdapter(Platform):
|
||||
if m["data"].get("url") and m["data"].get("url").startswith("http"):
|
||||
# Lagrange
|
||||
logger.info("guessing lagrange")
|
||||
# 检查多个可能的文件名字段
|
||||
file_name = (
|
||||
m["data"].get("file_name", "")
|
||||
or m["data"].get("name", "")
|
||||
or m["data"].get("file", "")
|
||||
or "file"
|
||||
)
|
||||
file_name = m["data"].get("file_name", "file")
|
||||
abm.message.append(File(name=file_name, url=m["data"]["url"]))
|
||||
else:
|
||||
try:
|
||||
@@ -271,14 +265,7 @@ class AiocqhttpAdapter(Platform):
|
||||
)
|
||||
if ret and "url" in ret:
|
||||
file_url = ret["url"] # https
|
||||
# 优先从 API 返回值获取文件名,其次从原始消息数据获取
|
||||
file_name = (
|
||||
ret.get("file_name", "")
|
||||
or ret.get("name", "")
|
||||
or m["data"].get("file", "")
|
||||
or m["data"].get("file_name", "")
|
||||
)
|
||||
a = File(name=file_name, url=file_url)
|
||||
a = File(name="", url=file_url)
|
||||
abm.message.append(a)
|
||||
else:
|
||||
logger.error(f"获取文件失败: {ret}")
|
||||
|
||||
@@ -250,7 +250,7 @@ class DingtalkPlatformAdapter(Platform):
|
||||
|
||||
async def terminate(self):
|
||||
def monkey_patch_close():
|
||||
raise KeyboardInterrupt("Graceful shutdown")
|
||||
raise Exception("Graceful shutdown")
|
||||
|
||||
self.client_.open_connection = monkey_patch_close
|
||||
await self.client_.websocket.close(code=1000, reason="Graceful shutdown")
|
||||
|
||||
@@ -381,9 +381,7 @@ class TelegramPlatformAdapter(Platform):
|
||||
f"Telegram document file_path is None, cannot save the file {file_name}.",
|
||||
)
|
||||
else:
|
||||
message.message.append(
|
||||
Comp.File(file=file_path, name=file_name, url=file_path)
|
||||
)
|
||||
message.message.append(Comp.File(file=file_path, name=file_name))
|
||||
|
||||
elif update.message.video:
|
||||
file = await update.message.video.get_file()
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import traceback
|
||||
|
||||
from astrbot.core import astrbot_config, logger, sp
|
||||
from astrbot.core import logger, sp
|
||||
from astrbot.core.astrbot_config_mgr import AstrBotConfigManager
|
||||
from astrbot.core.db import BaseDatabase
|
||||
|
||||
@@ -24,7 +24,6 @@ class ProviderManager:
|
||||
db_helper: BaseDatabase,
|
||||
persona_mgr: PersonaManager,
|
||||
):
|
||||
self.reload_lock = asyncio.Lock()
|
||||
self.persona_mgr = persona_mgr
|
||||
self.acm = acm
|
||||
config = acm.confs["default"]
|
||||
@@ -227,9 +226,6 @@ class ProviderManager:
|
||||
|
||||
async def load_provider(self, provider_config: dict):
|
||||
if not provider_config["enable"]:
|
||||
logger.info(f"Provider {provider_config['id']} is disabled, skipping")
|
||||
return
|
||||
if provider_config.get("provider_type", "") == "agent_runner":
|
||||
return
|
||||
|
||||
logger.info(
|
||||
@@ -251,6 +247,14 @@ class ProviderManager:
|
||||
from .sources.anthropic_source import (
|
||||
ProviderAnthropic as ProviderAnthropic,
|
||||
)
|
||||
case "dify":
|
||||
from .sources.dify_source import ProviderDify as ProviderDify
|
||||
case "coze":
|
||||
from .sources.coze_source import ProviderCoze as ProviderCoze
|
||||
case "dashscope":
|
||||
from .sources.dashscope_source import (
|
||||
ProviderDashscope as ProviderDashscope,
|
||||
)
|
||||
case "googlegenai_chat_completion":
|
||||
from .sources.gemini_source import (
|
||||
ProviderGoogleGenAI as ProviderGoogleGenAI,
|
||||
@@ -327,10 +331,6 @@ class ProviderManager:
|
||||
from .sources.xinference_rerank_source import (
|
||||
XinferenceRerankProvider as XinferenceRerankProvider,
|
||||
)
|
||||
case "bailian_rerank":
|
||||
from .sources.bailian_rerank_source import (
|
||||
BailianRerankProvider as BailianRerankProvider,
|
||||
)
|
||||
except (ImportError, ModuleNotFoundError) as e:
|
||||
logger.critical(
|
||||
f"加载 {provider_config['type']}({provider_config['id']}) 提供商适配器失败:{e}。可能是因为有未安装的依赖。",
|
||||
@@ -436,46 +436,40 @@ class ProviderManager:
|
||||
)
|
||||
|
||||
async def reload(self, provider_config: dict):
|
||||
async with self.reload_lock:
|
||||
await self.terminate_provider(provider_config["id"])
|
||||
if provider_config["enable"]:
|
||||
await self.load_provider(provider_config)
|
||||
await self.terminate_provider(provider_config["id"])
|
||||
if provider_config["enable"]:
|
||||
await self.load_provider(provider_config)
|
||||
|
||||
# 和配置文件保持同步
|
||||
self.providers_config = astrbot_config["provider"]
|
||||
config_ids = [provider["id"] for provider in self.providers_config]
|
||||
logger.info(f"providers in user's config: {config_ids}")
|
||||
for key in list(self.inst_map.keys()):
|
||||
if key not in config_ids:
|
||||
await self.terminate_provider(key)
|
||||
# 和配置文件保持同步
|
||||
config_ids = [provider["id"] for provider in self.providers_config]
|
||||
logger.debug(f"providers in user's config: {config_ids}")
|
||||
for key in list(self.inst_map.keys()):
|
||||
if key not in config_ids:
|
||||
await self.terminate_provider(key)
|
||||
|
||||
if len(self.provider_insts) == 0:
|
||||
self.curr_provider_inst = None
|
||||
elif self.curr_provider_inst is None and len(self.provider_insts) > 0:
|
||||
self.curr_provider_inst = self.provider_insts[0]
|
||||
logger.info(
|
||||
f"自动选择 {self.curr_provider_inst.meta().id} 作为当前提供商适配器。",
|
||||
)
|
||||
if len(self.provider_insts) == 0:
|
||||
self.curr_provider_inst = None
|
||||
elif self.curr_provider_inst is None and len(self.provider_insts) > 0:
|
||||
self.curr_provider_inst = self.provider_insts[0]
|
||||
logger.info(
|
||||
f"自动选择 {self.curr_provider_inst.meta().id} 作为当前提供商适配器。",
|
||||
)
|
||||
|
||||
if len(self.stt_provider_insts) == 0:
|
||||
self.curr_stt_provider_inst = None
|
||||
elif (
|
||||
self.curr_stt_provider_inst is None and len(self.stt_provider_insts) > 0
|
||||
):
|
||||
self.curr_stt_provider_inst = self.stt_provider_insts[0]
|
||||
logger.info(
|
||||
f"自动选择 {self.curr_stt_provider_inst.meta().id} 作为当前语音转文本提供商适配器。",
|
||||
)
|
||||
if len(self.stt_provider_insts) == 0:
|
||||
self.curr_stt_provider_inst = None
|
||||
elif self.curr_stt_provider_inst is None and len(self.stt_provider_insts) > 0:
|
||||
self.curr_stt_provider_inst = self.stt_provider_insts[0]
|
||||
logger.info(
|
||||
f"自动选择 {self.curr_stt_provider_inst.meta().id} 作为当前语音转文本提供商适配器。",
|
||||
)
|
||||
|
||||
if len(self.tts_provider_insts) == 0:
|
||||
self.curr_tts_provider_inst = None
|
||||
elif (
|
||||
self.curr_tts_provider_inst is None and len(self.tts_provider_insts) > 0
|
||||
):
|
||||
self.curr_tts_provider_inst = self.tts_provider_insts[0]
|
||||
logger.info(
|
||||
f"自动选择 {self.curr_tts_provider_inst.meta().id} 作为当前文本转语音提供商适配器。",
|
||||
)
|
||||
if len(self.tts_provider_insts) == 0:
|
||||
self.curr_tts_provider_inst = None
|
||||
elif self.curr_tts_provider_inst is None and len(self.tts_provider_insts) > 0:
|
||||
self.curr_tts_provider_inst = self.tts_provider_insts[0]
|
||||
logger.info(
|
||||
f"自动选择 {self.curr_tts_provider_inst.meta().id} 作为当前文本转语音提供商适配器。",
|
||||
)
|
||||
|
||||
def get_insts(self):
|
||||
return self.provider_insts
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import abc
|
||||
import asyncio
|
||||
import os
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from astrbot.core.agent.message import Message
|
||||
@@ -12,7 +11,6 @@ from astrbot.core.provider.entities import (
|
||||
ToolCallsResult,
|
||||
)
|
||||
from astrbot.core.provider.register import provider_cls_map
|
||||
from astrbot.core.utils.astrbot_path import get_astrbot_path
|
||||
|
||||
|
||||
class AbstractProvider(abc.ABC):
|
||||
@@ -45,14 +43,6 @@ class AbstractProvider(abc.ABC):
|
||||
)
|
||||
return meta
|
||||
|
||||
async def test(self):
|
||||
"""test the provider is a
|
||||
|
||||
raises:
|
||||
Exception: if the provider is not available
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class Provider(AbstractProvider):
|
||||
"""Chat Provider"""
|
||||
@@ -175,12 +165,6 @@ class Provider(AbstractProvider):
|
||||
|
||||
return dicts
|
||||
|
||||
async def test(self, timeout: float = 45.0):
|
||||
await asyncio.wait_for(
|
||||
self.text_chat(prompt="REPLY `PONG` ONLY"),
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
|
||||
class STTProvider(AbstractProvider):
|
||||
def __init__(self, provider_config: dict, provider_settings: dict) -> None:
|
||||
@@ -193,14 +177,6 @@ class STTProvider(AbstractProvider):
|
||||
"""获取音频的文本"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def test(self):
|
||||
sample_audio_path = os.path.join(
|
||||
get_astrbot_path(),
|
||||
"samples",
|
||||
"stt_health_check.wav",
|
||||
)
|
||||
await self.get_text(sample_audio_path)
|
||||
|
||||
|
||||
class TTSProvider(AbstractProvider):
|
||||
def __init__(self, provider_config: dict, provider_settings: dict) -> None:
|
||||
@@ -213,9 +189,6 @@ class TTSProvider(AbstractProvider):
|
||||
"""获取文本的音频,返回音频文件路径"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def test(self):
|
||||
await self.get_audio("hi")
|
||||
|
||||
|
||||
class EmbeddingProvider(AbstractProvider):
|
||||
def __init__(self, provider_config: dict, provider_settings: dict) -> None:
|
||||
@@ -238,9 +211,6 @@ class EmbeddingProvider(AbstractProvider):
|
||||
"""获取向量的维度"""
|
||||
...
|
||||
|
||||
async def test(self):
|
||||
await self.get_embedding("astrbot")
|
||||
|
||||
async def get_embeddings_batch(
|
||||
self,
|
||||
texts: list[str],
|
||||
@@ -324,8 +294,3 @@ class RerankProvider(AbstractProvider):
|
||||
) -> list[RerankResult]:
|
||||
"""获取查询和文档的重排序分数"""
|
||||
...
|
||||
|
||||
async def test(self):
|
||||
result = await self.rerank("Apple", documents=["apple", "banana"])
|
||||
if not result:
|
||||
raise Exception("Rerank provider test failed, no results returned")
|
||||
|
||||
@@ -290,7 +290,7 @@ class ProviderAnthropic(Provider):
|
||||
try:
|
||||
llm_response = await self._query(payloads, func_tool)
|
||||
except Exception as e:
|
||||
# logger.error(f"发生了错误。Provider 配置如下: {model_config}")
|
||||
logger.error(f"发生了错误。Provider 配置如下: {model_config}")
|
||||
raise e
|
||||
|
||||
return llm_response
|
||||
|
||||
@@ -1,236 +0,0 @@
|
||||
import os
|
||||
|
||||
import aiohttp
|
||||
|
||||
from astrbot import logger
|
||||
|
||||
from ..entities import ProviderType, RerankResult
|
||||
from ..provider import RerankProvider
|
||||
from ..register import register_provider_adapter
|
||||
|
||||
|
||||
class BailianRerankError(Exception):
|
||||
"""百炼重排序服务异常基类"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class BailianAPIError(BailianRerankError):
|
||||
"""百炼API返回错误"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class BailianNetworkError(BailianRerankError):
|
||||
"""百炼网络请求错误"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
@register_provider_adapter(
|
||||
"bailian_rerank", "阿里云百炼文本排序适配器", provider_type=ProviderType.RERANK
|
||||
)
|
||||
class BailianRerankProvider(RerankProvider):
|
||||
"""阿里云百炼文本重排序适配器."""
|
||||
|
||||
def __init__(self, provider_config: dict, provider_settings: dict) -> None:
|
||||
super().__init__(provider_config, provider_settings)
|
||||
self.provider_config = provider_config
|
||||
self.provider_settings = provider_settings
|
||||
|
||||
# API配置
|
||||
self.api_key = provider_config.get("rerank_api_key") or os.getenv(
|
||||
"DASHSCOPE_API_KEY", ""
|
||||
)
|
||||
if not self.api_key:
|
||||
raise ValueError("阿里云百炼 API Key 不能为空。")
|
||||
|
||||
self.model = provider_config.get("rerank_model", "qwen3-rerank")
|
||||
self.timeout = provider_config.get("timeout", 30)
|
||||
self.return_documents = provider_config.get("return_documents", False)
|
||||
self.instruct = provider_config.get("instruct", "")
|
||||
|
||||
self.base_url = provider_config.get(
|
||||
"rerank_api_base",
|
||||
"https://dashscope.aliyuncs.com/api/v1/services/rerank/text-rerank/text-rerank",
|
||||
)
|
||||
|
||||
# 设置HTTP客户端
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
self.client = aiohttp.ClientSession(
|
||||
headers=headers, timeout=aiohttp.ClientTimeout(total=self.timeout)
|
||||
)
|
||||
|
||||
# 设置模型名称
|
||||
self.set_model(self.model)
|
||||
|
||||
logger.info(f"AstrBot 百炼 Rerank 初始化完成。模型: {self.model}")
|
||||
|
||||
def _build_payload(
|
||||
self, query: str, documents: list[str], top_n: int | None
|
||||
) -> dict:
|
||||
"""构建请求载荷
|
||||
|
||||
Args:
|
||||
query: 查询文本
|
||||
documents: 文档列表
|
||||
top_n: 返回前N个结果,如果为None则返回所有结果
|
||||
|
||||
Returns:
|
||||
请求载荷字典
|
||||
"""
|
||||
base = {"model": self.model, "input": {"query": query, "documents": documents}}
|
||||
|
||||
params = {
|
||||
k: v
|
||||
for k, v in [
|
||||
("top_n", top_n if top_n is not None and top_n > 0 else None),
|
||||
("return_documents", True if self.return_documents else None),
|
||||
(
|
||||
"instruct",
|
||||
self.instruct
|
||||
if self.instruct and self.model == "qwen3-rerank"
|
||||
else None,
|
||||
),
|
||||
]
|
||||
if v is not None
|
||||
}
|
||||
|
||||
if params:
|
||||
base["parameters"] = params
|
||||
|
||||
return base
|
||||
|
||||
def _parse_results(self, data: dict) -> list[RerankResult]:
|
||||
"""解析API响应结果
|
||||
|
||||
Args:
|
||||
data: API响应数据
|
||||
|
||||
Returns:
|
||||
重排序结果列表
|
||||
|
||||
Raises:
|
||||
BailianAPIError: API返回错误
|
||||
KeyError: 结果缺少必要字段
|
||||
"""
|
||||
# 检查响应状态
|
||||
if data.get("code", "200") != "200":
|
||||
raise BailianAPIError(
|
||||
f"百炼 API 错误: {data.get('code')} – {data.get('message', '')}"
|
||||
)
|
||||
|
||||
results = data.get("output", {}).get("results", [])
|
||||
if not results:
|
||||
logger.warning(f"百炼 Rerank 返回空结果: {data}")
|
||||
return []
|
||||
|
||||
# 转换为RerankResult对象,使用.get()避免KeyError
|
||||
rerank_results = []
|
||||
for idx, result in enumerate(results):
|
||||
try:
|
||||
index = result.get("index", idx)
|
||||
relevance_score = result.get("relevance_score", 0.0)
|
||||
|
||||
if relevance_score is None:
|
||||
logger.warning(f"结果 {idx} 缺少 relevance_score,使用默认值 0.0")
|
||||
relevance_score = 0.0
|
||||
|
||||
rerank_result = RerankResult(
|
||||
index=index, relevance_score=relevance_score
|
||||
)
|
||||
rerank_results.append(rerank_result)
|
||||
except Exception as e:
|
||||
logger.warning(f"解析结果 {idx} 时出错: {e}, result={result}")
|
||||
continue
|
||||
|
||||
return rerank_results
|
||||
|
||||
def _log_usage(self, data: dict) -> None:
|
||||
"""记录使用量信息
|
||||
|
||||
Args:
|
||||
data: API响应数据
|
||||
"""
|
||||
tokens = data.get("usage", {}).get("total_tokens", 0)
|
||||
if tokens > 0:
|
||||
logger.debug(f"百炼 Rerank 消耗 Token: {tokens}")
|
||||
|
||||
async def rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: list[str],
|
||||
top_n: int | None = None,
|
||||
) -> list[RerankResult]:
|
||||
"""
|
||||
对文档进行重排序
|
||||
|
||||
Args:
|
||||
query: 查询文本
|
||||
documents: 待排序的文档列表
|
||||
top_n: 返回前N个结果,如果为None则使用配置中的默认值
|
||||
|
||||
Returns:
|
||||
重排序结果列表
|
||||
"""
|
||||
if not documents:
|
||||
logger.warning("文档列表为空,返回空结果")
|
||||
return []
|
||||
|
||||
if not query.strip():
|
||||
logger.warning("查询文本为空,返回空结果")
|
||||
return []
|
||||
|
||||
# 检查限制
|
||||
if len(documents) > 500:
|
||||
logger.warning(
|
||||
f"文档数量({len(documents)})超过限制(500),将截断前500个文档"
|
||||
)
|
||||
documents = documents[:500]
|
||||
|
||||
try:
|
||||
# 构建请求载荷,如果top_n为None则返回所有重排序结果
|
||||
payload = self._build_payload(query, documents, top_n)
|
||||
|
||||
logger.debug(
|
||||
f"百炼 Rerank 请求: query='{query[:50]}...', 文档数量={len(documents)}"
|
||||
)
|
||||
|
||||
# 发送请求
|
||||
async with self.client.post(self.base_url, json=payload) as response:
|
||||
response.raise_for_status()
|
||||
response_data = await response.json()
|
||||
|
||||
# 解析结果并记录使用量
|
||||
results = self._parse_results(response_data)
|
||||
self._log_usage(response_data)
|
||||
|
||||
logger.debug(f"百炼 Rerank 成功返回 {len(results)} 个结果")
|
||||
|
||||
return results
|
||||
|
||||
except aiohttp.ClientError as e:
|
||||
error_msg = f"网络请求失败: {e}"
|
||||
logger.error(f"百炼 Rerank 网络请求失败: {e}")
|
||||
raise BailianNetworkError(error_msg) from e
|
||||
except BailianRerankError:
|
||||
raise
|
||||
except Exception as e:
|
||||
error_msg = f"重排序失败: {e}"
|
||||
logger.error(f"百炼 Rerank 处理失败: {e}")
|
||||
raise BailianRerankError(error_msg) from e
|
||||
|
||||
async def terminate(self) -> None:
|
||||
"""关闭HTTP客户端会话."""
|
||||
if self.client:
|
||||
logger.info("关闭 百炼 Rerank 客户端会话")
|
||||
try:
|
||||
await self.client.close()
|
||||
except Exception as e:
|
||||
logger.error(f"关闭 百炼 Rerank 客户端时出错: {e}")
|
||||
finally:
|
||||
self.client = None
|
||||
650
astrbot/core/provider/sources/coze_source.py
Normal file
650
astrbot/core/provider/sources/coze_source.py
Normal file
@@ -0,0 +1,650 @@
|
||||
import base64
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
import astrbot.core.message.components as Comp
|
||||
from astrbot import logger
|
||||
from astrbot.api.provider import Provider
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
from astrbot.core.provider.entities import LLMResponse
|
||||
|
||||
from ..register import register_provider_adapter
|
||||
from .coze_api_client import CozeAPIClient
|
||||
|
||||
|
||||
@register_provider_adapter("coze", "Coze (扣子) 智能体适配器")
|
||||
class ProviderCoze(Provider):
|
||||
def __init__(
|
||||
self,
|
||||
provider_config,
|
||||
provider_settings,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
provider_config,
|
||||
provider_settings,
|
||||
)
|
||||
self.api_key = provider_config.get("coze_api_key", "")
|
||||
if not self.api_key:
|
||||
raise Exception("Coze API Key 不能为空。")
|
||||
self.bot_id = provider_config.get("bot_id", "")
|
||||
if not self.bot_id:
|
||||
raise Exception("Coze Bot ID 不能为空。")
|
||||
self.api_base: str = provider_config.get("coze_api_base", "https://api.coze.cn")
|
||||
|
||||
if not isinstance(self.api_base, str) or not self.api_base.startswith(
|
||||
("http://", "https://"),
|
||||
):
|
||||
raise Exception(
|
||||
"Coze API Base URL 格式不正确,必须以 http:// 或 https:// 开头。",
|
||||
)
|
||||
|
||||
self.timeout = provider_config.get("timeout", 120)
|
||||
if isinstance(self.timeout, str):
|
||||
self.timeout = int(self.timeout)
|
||||
self.auto_save_history = provider_config.get("auto_save_history", True)
|
||||
self.conversation_ids: dict[str, str] = {}
|
||||
self.file_id_cache: dict[str, dict[str, str]] = {}
|
||||
|
||||
# 创建 API 客户端
|
||||
self.api_client = CozeAPIClient(api_key=self.api_key, api_base=self.api_base)
|
||||
|
||||
def _generate_cache_key(self, data: str, is_base64: bool = False) -> str:
|
||||
"""生成统一的缓存键
|
||||
|
||||
Args:
|
||||
data: 图片数据或路径
|
||||
is_base64: 是否是 base64 数据
|
||||
|
||||
Returns:
|
||||
str: 缓存键
|
||||
|
||||
"""
|
||||
try:
|
||||
if is_base64 and data.startswith("data:image/"):
|
||||
try:
|
||||
header, encoded = data.split(",", 1)
|
||||
image_bytes = base64.b64decode(encoded)
|
||||
cache_key = hashlib.md5(image_bytes).hexdigest()
|
||||
return cache_key
|
||||
except Exception:
|
||||
cache_key = hashlib.md5(encoded.encode("utf-8")).hexdigest()
|
||||
return cache_key
|
||||
elif data.startswith(("http://", "https://")):
|
||||
# URL图片,使用URL作为缓存键
|
||||
cache_key = hashlib.md5(data.encode("utf-8")).hexdigest()
|
||||
return cache_key
|
||||
else:
|
||||
clean_path = (
|
||||
data.split("_")[0]
|
||||
if "_" in data and len(data.split("_")) >= 3
|
||||
else data
|
||||
)
|
||||
|
||||
if os.path.exists(clean_path):
|
||||
with open(clean_path, "rb") as f:
|
||||
file_content = f.read()
|
||||
cache_key = hashlib.md5(file_content).hexdigest()
|
||||
return cache_key
|
||||
cache_key = hashlib.md5(clean_path.encode("utf-8")).hexdigest()
|
||||
return cache_key
|
||||
|
||||
except Exception as e:
|
||||
cache_key = hashlib.md5(data.encode("utf-8")).hexdigest()
|
||||
logger.debug(f"[Coze] 异常文件缓存键: {cache_key}, error={e}")
|
||||
return cache_key
|
||||
|
||||
async def _upload_file(
|
||||
self,
|
||||
file_data: bytes,
|
||||
session_id: str | None = None,
|
||||
cache_key: str | None = None,
|
||||
) -> str:
|
||||
"""上传文件到 Coze 并返回 file_id"""
|
||||
# 使用 API 客户端上传文件
|
||||
file_id = await self.api_client.upload_file(file_data)
|
||||
|
||||
# 缓存 file_id
|
||||
if session_id and cache_key:
|
||||
if session_id not in self.file_id_cache:
|
||||
self.file_id_cache[session_id] = {}
|
||||
self.file_id_cache[session_id][cache_key] = file_id
|
||||
logger.debug(f"[Coze] 图片上传成功并缓存,file_id: {file_id}")
|
||||
|
||||
return file_id
|
||||
|
||||
async def _download_and_upload_image(
|
||||
self,
|
||||
image_url: str,
|
||||
session_id: str | None = None,
|
||||
) -> str:
|
||||
"""下载图片并上传到 Coze,返回 file_id"""
|
||||
# 计算哈希实现缓存
|
||||
cache_key = self._generate_cache_key(image_url) if session_id else None
|
||||
|
||||
if session_id and cache_key:
|
||||
if session_id not in self.file_id_cache:
|
||||
self.file_id_cache[session_id] = {}
|
||||
|
||||
if cache_key in self.file_id_cache[session_id]:
|
||||
file_id = self.file_id_cache[session_id][cache_key]
|
||||
return file_id
|
||||
|
||||
try:
|
||||
image_data = await self.api_client.download_image(image_url)
|
||||
|
||||
file_id = await self._upload_file(image_data, session_id, cache_key)
|
||||
|
||||
if session_id and cache_key:
|
||||
self.file_id_cache[session_id][cache_key] = file_id
|
||||
|
||||
return file_id
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理图片失败 {image_url}: {e!s}")
|
||||
raise Exception(f"处理图片失败: {e!s}")
|
||||
|
||||
async def _process_context_images(
|
||||
self,
|
||||
content: str | list,
|
||||
session_id: str,
|
||||
) -> str:
|
||||
"""处理上下文中的图片内容,将 base64 图片上传并替换为 file_id"""
|
||||
try:
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
|
||||
processed_content = []
|
||||
if session_id not in self.file_id_cache:
|
||||
self.file_id_cache[session_id] = {}
|
||||
|
||||
for item in content:
|
||||
if not isinstance(item, dict):
|
||||
processed_content.append(item)
|
||||
continue
|
||||
if item.get("type") == "text":
|
||||
processed_content.append(item)
|
||||
elif item.get("type") == "image_url":
|
||||
# 处理图片逻辑
|
||||
if "file_id" in item:
|
||||
# 已经有 file_id
|
||||
logger.debug(f"[Coze] 图片已有file_id: {item['file_id']}")
|
||||
processed_content.append(item)
|
||||
else:
|
||||
# 获取图片数据
|
||||
image_data = ""
|
||||
if "image_url" in item and isinstance(item["image_url"], dict):
|
||||
image_data = item["image_url"].get("url", "")
|
||||
elif "data" in item:
|
||||
image_data = item.get("data", "")
|
||||
elif "url" in item:
|
||||
image_data = item.get("url", "")
|
||||
|
||||
if not image_data:
|
||||
continue
|
||||
# 计算哈希用于缓存
|
||||
cache_key = self._generate_cache_key(
|
||||
image_data,
|
||||
is_base64=image_data.startswith("data:image/"),
|
||||
)
|
||||
|
||||
# 检查缓存
|
||||
if cache_key in self.file_id_cache[session_id]:
|
||||
file_id = self.file_id_cache[session_id][cache_key]
|
||||
processed_content.append(
|
||||
{"type": "image", "file_id": file_id},
|
||||
)
|
||||
else:
|
||||
# 上传图片并缓存
|
||||
if image_data.startswith("data:image/"):
|
||||
# base64 处理
|
||||
_, encoded = image_data.split(",", 1)
|
||||
image_bytes = base64.b64decode(encoded)
|
||||
file_id = await self._upload_file(
|
||||
image_bytes,
|
||||
session_id,
|
||||
cache_key,
|
||||
)
|
||||
elif image_data.startswith(("http://", "https://")):
|
||||
# URL 图片
|
||||
file_id = await self._download_and_upload_image(
|
||||
image_data,
|
||||
session_id,
|
||||
)
|
||||
# 为URL图片也添加缓存
|
||||
self.file_id_cache[session_id][cache_key] = file_id
|
||||
elif os.path.exists(image_data):
|
||||
# 本地文件
|
||||
with open(image_data, "rb") as f:
|
||||
image_bytes = f.read()
|
||||
file_id = await self._upload_file(
|
||||
image_bytes,
|
||||
session_id,
|
||||
cache_key,
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"无法处理的图片格式: {image_data[:50]}...",
|
||||
)
|
||||
continue
|
||||
|
||||
processed_content.append(
|
||||
{"type": "image", "file_id": file_id},
|
||||
)
|
||||
|
||||
result = json.dumps(processed_content, ensure_ascii=False)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error(f"处理上下文图片失败: {e!s}")
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
return json.dumps(content, ensure_ascii=False)
|
||||
|
||||
async def text_chat(
|
||||
self,
|
||||
prompt: str,
|
||||
session_id=None,
|
||||
image_urls=None,
|
||||
func_tool=None,
|
||||
contexts=None,
|
||||
system_prompt=None,
|
||||
tool_calls_result=None,
|
||||
model=None,
|
||||
**kwargs,
|
||||
) -> LLMResponse:
|
||||
"""文本对话, 内部使用流式接口实现非流式
|
||||
|
||||
Args:
|
||||
prompt (str): 用户提示词
|
||||
session_id (str): 会话ID
|
||||
image_urls (List[str]): 图片URL列表
|
||||
func_tool (FuncCall): 函数调用工具(不支持)
|
||||
contexts (List): 上下文列表
|
||||
system_prompt (str): 系统提示语
|
||||
tool_calls_result (ToolCallsResult | List[ToolCallsResult]): 工具调用结果(不支持)
|
||||
model (str): 模型名称(不支持)
|
||||
|
||||
Returns:
|
||||
LLMResponse: LLM响应对象
|
||||
|
||||
"""
|
||||
accumulated_content = ""
|
||||
final_response = None
|
||||
|
||||
async for llm_response in self.text_chat_stream(
|
||||
prompt=prompt,
|
||||
session_id=session_id,
|
||||
image_urls=image_urls,
|
||||
func_tool=func_tool,
|
||||
contexts=contexts,
|
||||
system_prompt=system_prompt,
|
||||
tool_calls_result=tool_calls_result,
|
||||
model=model,
|
||||
**kwargs,
|
||||
):
|
||||
if llm_response.is_chunk:
|
||||
if llm_response.completion_text:
|
||||
accumulated_content += llm_response.completion_text
|
||||
else:
|
||||
final_response = llm_response
|
||||
|
||||
if final_response:
|
||||
return final_response
|
||||
|
||||
if accumulated_content:
|
||||
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
|
||||
return LLMResponse(role="assistant", result_chain=chain)
|
||||
return LLMResponse(role="assistant", completion_text="")
|
||||
|
||||
async def text_chat_stream(
|
||||
self,
|
||||
prompt: str,
|
||||
session_id=None,
|
||||
image_urls=None,
|
||||
func_tool=None,
|
||||
contexts=None,
|
||||
system_prompt=None,
|
||||
tool_calls_result=None,
|
||||
model=None,
|
||||
**kwargs,
|
||||
) -> AsyncGenerator[LLMResponse, None]:
|
||||
"""流式对话接口"""
|
||||
# 用户ID参数(参考文档, 可以自定义)
|
||||
user_id = session_id or kwargs.get("user", "default_user")
|
||||
|
||||
# 获取或创建会话ID
|
||||
conversation_id = self.conversation_ids.get(user_id)
|
||||
|
||||
# 构建消息
|
||||
additional_messages = []
|
||||
|
||||
if system_prompt:
|
||||
if not self.auto_save_history or not conversation_id:
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt,
|
||||
"content_type": "text",
|
||||
},
|
||||
)
|
||||
|
||||
contexts = self._ensure_message_to_dicts(contexts)
|
||||
if not self.auto_save_history and contexts:
|
||||
# 如果关闭了自动保存历史,传入上下文
|
||||
for ctx in contexts:
|
||||
if isinstance(ctx, dict) and "role" in ctx and "content" in ctx:
|
||||
content = ctx["content"]
|
||||
content_type = ctx.get("content_type", "text")
|
||||
|
||||
# 处理可能包含图片的上下文
|
||||
if (
|
||||
content_type == "object_string"
|
||||
or (isinstance(content, str) and content.startswith("["))
|
||||
or (
|
||||
isinstance(content, list)
|
||||
and any(
|
||||
isinstance(item, dict)
|
||||
and item.get("type") == "image_url"
|
||||
for item in content
|
||||
)
|
||||
)
|
||||
):
|
||||
processed_content = await self._process_context_images(
|
||||
content,
|
||||
user_id,
|
||||
)
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": ctx["role"],
|
||||
"content": processed_content,
|
||||
"content_type": "object_string",
|
||||
},
|
||||
)
|
||||
else:
|
||||
# 纯文本
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": ctx["role"],
|
||||
"content": (
|
||||
content
|
||||
if isinstance(content, str)
|
||||
else json.dumps(content, ensure_ascii=False)
|
||||
),
|
||||
"content_type": "text",
|
||||
},
|
||||
)
|
||||
else:
|
||||
logger.info(f"[Coze] 跳过格式不正确的上下文: {ctx}")
|
||||
|
||||
if prompt or image_urls:
|
||||
if image_urls:
|
||||
# 多模态
|
||||
object_string_content = []
|
||||
if prompt:
|
||||
object_string_content.append({"type": "text", "text": prompt})
|
||||
|
||||
for url in image_urls:
|
||||
try:
|
||||
if url.startswith(("http://", "https://")):
|
||||
# 网络图片
|
||||
file_id = await self._download_and_upload_image(
|
||||
url,
|
||||
user_id,
|
||||
)
|
||||
else:
|
||||
# 本地文件或 base64
|
||||
if url.startswith("data:image/"):
|
||||
# base64
|
||||
_, encoded = url.split(",", 1)
|
||||
image_data = base64.b64decode(encoded)
|
||||
cache_key = self._generate_cache_key(
|
||||
url,
|
||||
is_base64=True,
|
||||
)
|
||||
file_id = await self._upload_file(
|
||||
image_data,
|
||||
user_id,
|
||||
cache_key,
|
||||
)
|
||||
# 本地文件
|
||||
elif os.path.exists(url):
|
||||
with open(url, "rb") as f:
|
||||
image_data = f.read()
|
||||
# 用文件路径和修改时间来缓存
|
||||
file_stat = os.stat(url)
|
||||
cache_key = self._generate_cache_key(
|
||||
f"{url}_{file_stat.st_mtime}_{file_stat.st_size}",
|
||||
is_base64=False,
|
||||
)
|
||||
file_id = await self._upload_file(
|
||||
image_data,
|
||||
user_id,
|
||||
cache_key,
|
||||
)
|
||||
else:
|
||||
logger.warning(f"图片文件不存在: {url}")
|
||||
continue
|
||||
|
||||
object_string_content.append(
|
||||
{
|
||||
"type": "image",
|
||||
"file_id": file_id,
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"处理图片失败 {url}: {e!s}")
|
||||
continue
|
||||
|
||||
if object_string_content:
|
||||
content = json.dumps(object_string_content, ensure_ascii=False)
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": content,
|
||||
"content_type": "object_string",
|
||||
},
|
||||
)
|
||||
# 纯文本
|
||||
elif prompt:
|
||||
additional_messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
"content_type": "text",
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
accumulated_content = ""
|
||||
message_started = False
|
||||
|
||||
async for chunk in self.api_client.chat_messages(
|
||||
bot_id=self.bot_id,
|
||||
user_id=user_id,
|
||||
additional_messages=additional_messages,
|
||||
conversation_id=conversation_id,
|
||||
auto_save_history=self.auto_save_history,
|
||||
stream=True,
|
||||
timeout=self.timeout,
|
||||
):
|
||||
event_type = chunk.get("event")
|
||||
data = chunk.get("data", {})
|
||||
|
||||
if event_type == "conversation.chat.created":
|
||||
if isinstance(data, dict) and "conversation_id" in data:
|
||||
self.conversation_ids[user_id] = data["conversation_id"]
|
||||
|
||||
elif event_type == "conversation.message.delta":
|
||||
if isinstance(data, dict):
|
||||
content = data.get("content", "")
|
||||
if not content and "delta" in data:
|
||||
content = data["delta"].get("content", "")
|
||||
if not content and "text" in data:
|
||||
content = data.get("text", "")
|
||||
|
||||
if content:
|
||||
message_started = True
|
||||
accumulated_content += content
|
||||
yield LLMResponse(
|
||||
role="assistant",
|
||||
completion_text=content,
|
||||
is_chunk=True,
|
||||
)
|
||||
|
||||
elif event_type == "conversation.message.completed":
|
||||
if isinstance(data, dict):
|
||||
msg_type = data.get("type")
|
||||
if msg_type == "answer" and data.get("role") == "assistant":
|
||||
final_content = data.get("content", "")
|
||||
if not accumulated_content and final_content:
|
||||
chain = MessageChain(chain=[Comp.Plain(final_content)])
|
||||
yield LLMResponse(
|
||||
role="assistant",
|
||||
result_chain=chain,
|
||||
is_chunk=False,
|
||||
)
|
||||
|
||||
elif event_type == "conversation.chat.completed":
|
||||
if accumulated_content:
|
||||
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
|
||||
yield LLMResponse(
|
||||
role="assistant",
|
||||
result_chain=chain,
|
||||
is_chunk=False,
|
||||
)
|
||||
break
|
||||
|
||||
elif event_type == "done":
|
||||
break
|
||||
|
||||
elif event_type == "error":
|
||||
error_msg = (
|
||||
data.get("message", "未知错误")
|
||||
if isinstance(data, dict)
|
||||
else str(data)
|
||||
)
|
||||
logger.error(f"Coze 流式响应错误: {error_msg}")
|
||||
yield LLMResponse(
|
||||
role="err",
|
||||
completion_text=f"Coze 错误: {error_msg}",
|
||||
is_chunk=False,
|
||||
)
|
||||
break
|
||||
|
||||
if not message_started and not accumulated_content:
|
||||
yield LLMResponse(
|
||||
role="assistant",
|
||||
completion_text="LLM 未响应任何内容。",
|
||||
is_chunk=False,
|
||||
)
|
||||
elif message_started and accumulated_content:
|
||||
chain = MessageChain(chain=[Comp.Plain(accumulated_content)])
|
||||
yield LLMResponse(
|
||||
role="assistant",
|
||||
result_chain=chain,
|
||||
is_chunk=False,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Coze 流式请求失败: {e!s}")
|
||||
yield LLMResponse(
|
||||
role="err",
|
||||
completion_text=f"Coze 流式请求失败: {e!s}",
|
||||
is_chunk=False,
|
||||
)
|
||||
|
||||
async def forget(self, session_id: str):
|
||||
"""清空指定会话的上下文"""
|
||||
user_id = session_id
|
||||
conversation_id = self.conversation_ids.get(user_id)
|
||||
|
||||
if user_id in self.file_id_cache:
|
||||
self.file_id_cache.pop(user_id, None)
|
||||
|
||||
if not conversation_id:
|
||||
return True
|
||||
|
||||
try:
|
||||
response = await self.api_client.clear_context(conversation_id)
|
||||
|
||||
if "code" in response and response["code"] == 0:
|
||||
self.conversation_ids.pop(user_id, None)
|
||||
return True
|
||||
logger.warning(f"清空 Coze 会话上下文失败: {response}")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"清空 Coze 会话失败: {e!s}")
|
||||
return False
|
||||
|
||||
async def get_current_key(self):
|
||||
"""获取当前API Key"""
|
||||
return self.api_key
|
||||
|
||||
async def set_key(self, key: str):
|
||||
"""设置新的API Key"""
|
||||
raise NotImplementedError("Coze 适配器不支持设置 API Key。")
|
||||
|
||||
async def get_models(self):
|
||||
"""获取可用模型列表"""
|
||||
return [f"bot_{self.bot_id}"]
|
||||
|
||||
def get_model(self):
|
||||
"""获取当前模型"""
|
||||
return f"bot_{self.bot_id}"
|
||||
|
||||
def set_model(self, model: str):
|
||||
"""设置模型(在Coze中是Bot ID)"""
|
||||
if model.startswith("bot_"):
|
||||
self.bot_id = model[4:]
|
||||
else:
|
||||
self.bot_id = model
|
||||
|
||||
async def get_human_readable_context(
|
||||
self,
|
||||
session_id: str,
|
||||
page: int = 1,
|
||||
page_size: int = 10,
|
||||
):
|
||||
"""获取人类可读的上下文历史"""
|
||||
user_id = session_id
|
||||
conversation_id = self.conversation_ids.get(user_id)
|
||||
|
||||
if not conversation_id:
|
||||
return []
|
||||
|
||||
try:
|
||||
data = await self.api_client.get_message_list(
|
||||
conversation_id=conversation_id,
|
||||
order="desc",
|
||||
limit=page_size,
|
||||
offset=(page - 1) * page_size,
|
||||
)
|
||||
|
||||
if data.get("code") != 0:
|
||||
logger.warning(f"获取 Coze 消息历史失败: {data}")
|
||||
return []
|
||||
|
||||
messages = data.get("data", {}).get("messages", [])
|
||||
|
||||
readable_history = []
|
||||
for msg in messages:
|
||||
role = msg.get("role", "unknown")
|
||||
content = msg.get("content", "")
|
||||
msg_type = msg.get("type", "")
|
||||
|
||||
if role == "user":
|
||||
readable_history.append(f"用户: {content}")
|
||||
elif role == "assistant" and msg_type == "answer":
|
||||
readable_history.append(f"助手: {content}")
|
||||
|
||||
return readable_history
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取 Coze 消息历史失败: {e!s}")
|
||||
return []
|
||||
|
||||
async def terminate(self):
|
||||
"""清理资源"""
|
||||
await self.api_client.close()
|
||||
207
astrbot/core/provider/sources/dashscope_source.py
Normal file
207
astrbot/core/provider/sources/dashscope_source.py
Normal file
@@ -0,0 +1,207 @@
|
||||
import asyncio
|
||||
import functools
|
||||
import re
|
||||
|
||||
from dashscope import Application
|
||||
from dashscope.app.application_response import ApplicationResponse
|
||||
|
||||
from astrbot.core import logger, sp
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
|
||||
from .. import Provider
|
||||
from ..entities import LLMResponse
|
||||
from ..register import register_provider_adapter
|
||||
from .openai_source import ProviderOpenAIOfficial
|
||||
|
||||
|
||||
@register_provider_adapter("dashscope", "Dashscope APP 适配器。")
|
||||
class ProviderDashscope(ProviderOpenAIOfficial):
|
||||
def __init__(
|
||||
self,
|
||||
provider_config: dict,
|
||||
provider_settings: dict,
|
||||
) -> None:
|
||||
Provider.__init__(
|
||||
self,
|
||||
provider_config,
|
||||
provider_settings,
|
||||
)
|
||||
self.api_key = provider_config.get("dashscope_api_key", "")
|
||||
if not self.api_key:
|
||||
raise Exception("阿里云百炼 API Key 不能为空。")
|
||||
self.app_id = provider_config.get("dashscope_app_id", "")
|
||||
if not self.app_id:
|
||||
raise Exception("阿里云百炼 APP ID 不能为空。")
|
||||
self.dashscope_app_type = provider_config.get("dashscope_app_type", "")
|
||||
if not self.dashscope_app_type:
|
||||
raise Exception("阿里云百炼 APP 类型不能为空。")
|
||||
self.model_name = "dashscope"
|
||||
self.variables: dict = provider_config.get("variables", {})
|
||||
self.rag_options: dict = provider_config.get("rag_options", {})
|
||||
self.output_reference = self.rag_options.get("output_reference", False)
|
||||
self.rag_options = self.rag_options.copy()
|
||||
self.rag_options.pop("output_reference", None)
|
||||
|
||||
self.timeout = provider_config.get("timeout", 120)
|
||||
if isinstance(self.timeout, str):
|
||||
self.timeout = int(self.timeout)
|
||||
|
||||
def has_rag_options(self):
|
||||
"""判断是否有 RAG 选项
|
||||
|
||||
Returns:
|
||||
bool: 是否有 RAG 选项
|
||||
|
||||
"""
|
||||
if self.rag_options and (
|
||||
len(self.rag_options.get("pipeline_ids", [])) > 0
|
||||
or len(self.rag_options.get("file_ids", [])) > 0
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
||||
async def text_chat(
|
||||
self,
|
||||
prompt: str,
|
||||
session_id=None,
|
||||
image_urls=None,
|
||||
func_tool=None,
|
||||
contexts=None,
|
||||
system_prompt=None,
|
||||
model=None,
|
||||
**kwargs,
|
||||
) -> LLMResponse:
|
||||
if image_urls is None:
|
||||
image_urls = []
|
||||
if contexts is None:
|
||||
contexts = []
|
||||
# 获得会话变量
|
||||
payload_vars = self.variables.copy()
|
||||
# 动态变量
|
||||
session_var = await sp.session_get(session_id, "session_variables", default={})
|
||||
payload_vars.update(session_var)
|
||||
|
||||
if (
|
||||
self.dashscope_app_type in ["agent", "dialog-workflow"]
|
||||
and not self.has_rag_options()
|
||||
):
|
||||
# 支持多轮对话的
|
||||
new_record = {"role": "user", "content": prompt}
|
||||
if image_urls:
|
||||
logger.warning("阿里云百炼暂不支持图片输入,将自动忽略图片内容。")
|
||||
contexts_no_img = await self._remove_image_from_context(contexts)
|
||||
context_query = [*contexts_no_img, new_record]
|
||||
if system_prompt:
|
||||
context_query.insert(0, {"role": "system", "content": system_prompt})
|
||||
for part in context_query:
|
||||
if "_no_save" in part:
|
||||
del part["_no_save"]
|
||||
# 调用阿里云百炼 API
|
||||
payload = {
|
||||
"app_id": self.app_id,
|
||||
"api_key": self.api_key,
|
||||
"messages": context_query,
|
||||
"biz_params": payload_vars or None,
|
||||
}
|
||||
partial = functools.partial(
|
||||
Application.call,
|
||||
**payload,
|
||||
)
|
||||
response = await asyncio.get_event_loop().run_in_executor(None, partial)
|
||||
else:
|
||||
# 不支持多轮对话的
|
||||
# 调用阿里云百炼 API
|
||||
payload = {
|
||||
"app_id": self.app_id,
|
||||
"prompt": prompt,
|
||||
"api_key": self.api_key,
|
||||
"biz_params": payload_vars or None,
|
||||
}
|
||||
if self.rag_options:
|
||||
payload["rag_options"] = self.rag_options
|
||||
partial = functools.partial(
|
||||
Application.call,
|
||||
**payload,
|
||||
)
|
||||
response = await asyncio.get_event_loop().run_in_executor(None, partial)
|
||||
|
||||
assert isinstance(response, ApplicationResponse)
|
||||
|
||||
logger.debug(f"dashscope resp: {response}")
|
||||
|
||||
if response.status_code != 200:
|
||||
logger.error(
|
||||
f"阿里云百炼请求失败: request_id={response.request_id}, code={response.status_code}, message={response.message}, 请参考文档:https://help.aliyun.com/zh/model-studio/developer-reference/error-code",
|
||||
)
|
||||
return LLMResponse(
|
||||
role="err",
|
||||
result_chain=MessageChain().message(
|
||||
f"阿里云百炼请求失败: message={response.message} code={response.status_code}",
|
||||
),
|
||||
)
|
||||
|
||||
output_text = response.output.get("text", "") or ""
|
||||
# RAG 引用脚标格式化
|
||||
output_text = re.sub(r"<ref>\[(\d+)\]</ref>", r"[\1]", output_text)
|
||||
if self.output_reference and response.output.get("doc_references", None):
|
||||
ref_parts = []
|
||||
for ref in response.output.get("doc_references", []) or []:
|
||||
ref_title = (
|
||||
ref.get("title", "")
|
||||
if ref.get("title")
|
||||
else ref.get("doc_name", "")
|
||||
)
|
||||
ref_parts.append(f"{ref['index_id']}. {ref_title}\n")
|
||||
ref_str = "".join(ref_parts)
|
||||
output_text += f"\n\n回答来源:\n{ref_str}"
|
||||
|
||||
llm_response = LLMResponse("assistant")
|
||||
llm_response.result_chain = MessageChain().message(output_text)
|
||||
|
||||
return llm_response
|
||||
|
||||
async def text_chat_stream(
|
||||
self,
|
||||
prompt,
|
||||
session_id=None,
|
||||
image_urls=...,
|
||||
func_tool=None,
|
||||
contexts=...,
|
||||
system_prompt=None,
|
||||
tool_calls_result=None,
|
||||
model=None,
|
||||
**kwargs,
|
||||
):
|
||||
# raise NotImplementedError("This method is not implemented yet.")
|
||||
# 调用 text_chat 模拟流式
|
||||
llm_response = await self.text_chat(
|
||||
prompt=prompt,
|
||||
session_id=session_id,
|
||||
image_urls=image_urls,
|
||||
func_tool=func_tool,
|
||||
contexts=contexts,
|
||||
system_prompt=system_prompt,
|
||||
tool_calls_result=tool_calls_result,
|
||||
)
|
||||
llm_response.is_chunk = True
|
||||
yield llm_response
|
||||
llm_response.is_chunk = False
|
||||
yield llm_response
|
||||
|
||||
async def forget(self, session_id):
|
||||
return True
|
||||
|
||||
async def get_current_key(self):
|
||||
return self.api_key
|
||||
|
||||
async def set_key(self, key):
|
||||
raise Exception("阿里云百炼 适配器不支持设置 API Key。")
|
||||
|
||||
async def get_models(self):
|
||||
return [self.get_model()]
|
||||
|
||||
async def get_human_readable_context(self, session_id, page, page_size):
|
||||
raise Exception("暂不支持获得 阿里云百炼 的历史消息记录。")
|
||||
|
||||
async def terminate(self):
|
||||
pass
|
||||
285
astrbot/core/provider/sources/dify_source.py
Normal file
285
astrbot/core/provider/sources/dify_source.py
Normal file
@@ -0,0 +1,285 @@
|
||||
import os
|
||||
|
||||
import astrbot.core.message.components as Comp
|
||||
from astrbot.core import logger, sp
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
from astrbot.core.utils.astrbot_path import get_astrbot_data_path
|
||||
from astrbot.core.utils.dify_api_client import DifyAPIClient
|
||||
from astrbot.core.utils.io import download_file, download_image_by_url
|
||||
|
||||
from .. import Provider
|
||||
from ..entities import LLMResponse
|
||||
from ..register import register_provider_adapter
|
||||
|
||||
|
||||
@register_provider_adapter("dify", "Dify APP 适配器。")
|
||||
class ProviderDify(Provider):
|
||||
def __init__(
|
||||
self,
|
||||
provider_config,
|
||||
provider_settings,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
provider_config,
|
||||
provider_settings,
|
||||
)
|
||||
self.api_key = provider_config.get("dify_api_key", "")
|
||||
if not self.api_key:
|
||||
raise Exception("Dify API Key 不能为空。")
|
||||
api_base = provider_config.get("dify_api_base", "https://api.dify.ai/v1")
|
||||
self.api_type = provider_config.get("dify_api_type", "")
|
||||
if not self.api_type:
|
||||
raise Exception("Dify API 类型不能为空。")
|
||||
self.model_name = "dify"
|
||||
self.workflow_output_key = provider_config.get(
|
||||
"dify_workflow_output_key",
|
||||
"astrbot_wf_output",
|
||||
)
|
||||
self.dify_query_input_key = provider_config.get(
|
||||
"dify_query_input_key",
|
||||
"astrbot_text_query",
|
||||
)
|
||||
if not self.dify_query_input_key:
|
||||
self.dify_query_input_key = "astrbot_text_query"
|
||||
if not self.workflow_output_key:
|
||||
self.workflow_output_key = "astrbot_wf_output"
|
||||
self.variables: dict = provider_config.get("variables", {})
|
||||
self.timeout = provider_config.get("timeout", 120)
|
||||
if isinstance(self.timeout, str):
|
||||
self.timeout = int(self.timeout)
|
||||
self.conversation_ids = {}
|
||||
"""记录当前 session id 的对话 ID"""
|
||||
|
||||
self.api_client = DifyAPIClient(self.api_key, api_base)
|
||||
|
||||
async def text_chat(
|
||||
self,
|
||||
prompt: str,
|
||||
session_id=None,
|
||||
image_urls=None,
|
||||
func_tool=None,
|
||||
contexts=None,
|
||||
system_prompt=None,
|
||||
tool_calls_result=None,
|
||||
model=None,
|
||||
**kwargs,
|
||||
) -> LLMResponse:
|
||||
if image_urls is None:
|
||||
image_urls = []
|
||||
result = ""
|
||||
session_id = session_id or kwargs.get("user") or "unknown" # 1734
|
||||
conversation_id = self.conversation_ids.get(session_id, "")
|
||||
|
||||
files_payload = []
|
||||
for image_url in image_urls:
|
||||
image_path = (
|
||||
await download_image_by_url(image_url)
|
||||
if image_url.startswith("http")
|
||||
else image_url
|
||||
)
|
||||
file_response = await self.api_client.file_upload(
|
||||
image_path,
|
||||
user=session_id,
|
||||
)
|
||||
logger.debug(f"Dify 上传图片响应:{file_response}")
|
||||
if "id" not in file_response:
|
||||
logger.warning(
|
||||
f"上传图片后得到未知的 Dify 响应:{file_response},图片将忽略。",
|
||||
)
|
||||
continue
|
||||
files_payload.append(
|
||||
{
|
||||
"type": "image",
|
||||
"transfer_method": "local_file",
|
||||
"upload_file_id": file_response["id"],
|
||||
},
|
||||
)
|
||||
|
||||
# 获得会话变量
|
||||
payload_vars = self.variables.copy()
|
||||
# 动态变量
|
||||
session_var = await sp.session_get(session_id, "session_variables", default={})
|
||||
payload_vars.update(session_var)
|
||||
payload_vars["system_prompt"] = system_prompt
|
||||
|
||||
try:
|
||||
match self.api_type:
|
||||
case "chat" | "agent" | "chatflow":
|
||||
if not prompt:
|
||||
prompt = "请描述这张图片。"
|
||||
|
||||
async for chunk in self.api_client.chat_messages(
|
||||
inputs={
|
||||
**payload_vars,
|
||||
},
|
||||
query=prompt,
|
||||
user=session_id,
|
||||
conversation_id=conversation_id,
|
||||
files=files_payload,
|
||||
timeout=self.timeout,
|
||||
):
|
||||
logger.debug(f"dify resp chunk: {chunk}")
|
||||
if (
|
||||
chunk["event"] == "message"
|
||||
or chunk["event"] == "agent_message"
|
||||
):
|
||||
result += chunk["answer"]
|
||||
if not conversation_id:
|
||||
self.conversation_ids[session_id] = chunk[
|
||||
"conversation_id"
|
||||
]
|
||||
conversation_id = chunk["conversation_id"]
|
||||
elif chunk["event"] == "message_end":
|
||||
logger.debug("Dify message end")
|
||||
break
|
||||
elif chunk["event"] == "error":
|
||||
logger.error(f"Dify 出现错误:{chunk}")
|
||||
raise Exception(
|
||||
f"Dify 出现错误 status: {chunk['status']} message: {chunk['message']}",
|
||||
)
|
||||
|
||||
case "workflow":
|
||||
async for chunk in self.api_client.workflow_run(
|
||||
inputs={
|
||||
self.dify_query_input_key: prompt,
|
||||
"astrbot_session_id": session_id,
|
||||
**payload_vars,
|
||||
},
|
||||
user=session_id,
|
||||
files=files_payload,
|
||||
timeout=self.timeout,
|
||||
):
|
||||
match chunk["event"]:
|
||||
case "workflow_started":
|
||||
logger.info(
|
||||
f"Dify 工作流(ID: {chunk['workflow_run_id']})开始运行。",
|
||||
)
|
||||
case "node_finished":
|
||||
logger.debug(
|
||||
f"Dify 工作流节点(ID: {chunk['data']['node_id']} Title: {chunk['data'].get('title', '')})运行结束。",
|
||||
)
|
||||
case "workflow_finished":
|
||||
logger.info(
|
||||
f"Dify 工作流(ID: {chunk['workflow_run_id']})运行结束",
|
||||
)
|
||||
logger.debug(f"Dify 工作流结果:{chunk}")
|
||||
if chunk["data"]["error"]:
|
||||
logger.error(
|
||||
f"Dify 工作流出现错误:{chunk['data']['error']}",
|
||||
)
|
||||
raise Exception(
|
||||
f"Dify 工作流出现错误:{chunk['data']['error']}",
|
||||
)
|
||||
if (
|
||||
self.workflow_output_key
|
||||
not in chunk["data"]["outputs"]
|
||||
):
|
||||
raise Exception(
|
||||
f"Dify 工作流的输出不包含指定的键名:{self.workflow_output_key}",
|
||||
)
|
||||
result = chunk
|
||||
case _:
|
||||
raise Exception(f"未知的 Dify API 类型:{self.api_type}")
|
||||
except Exception as e:
|
||||
logger.error(f"Dify 请求失败:{e!s}")
|
||||
return LLMResponse(role="err", completion_text=f"Dify 请求失败:{e!s}")
|
||||
|
||||
if not result:
|
||||
logger.warning("Dify 请求结果为空,请查看 Debug 日志。")
|
||||
|
||||
chain = await self.parse_dify_result(result)
|
||||
|
||||
return LLMResponse(role="assistant", result_chain=chain)
|
||||
|
||||
async def text_chat_stream(
|
||||
self,
|
||||
prompt,
|
||||
session_id=None,
|
||||
image_urls=...,
|
||||
func_tool=None,
|
||||
contexts=...,
|
||||
system_prompt=None,
|
||||
tool_calls_result=None,
|
||||
model=None,
|
||||
**kwargs,
|
||||
):
|
||||
# raise NotImplementedError("This method is not implemented yet.")
|
||||
# 调用 text_chat 模拟流式
|
||||
llm_response = await self.text_chat(
|
||||
prompt=prompt,
|
||||
session_id=session_id,
|
||||
image_urls=image_urls,
|
||||
func_tool=func_tool,
|
||||
contexts=contexts,
|
||||
system_prompt=system_prompt,
|
||||
tool_calls_result=tool_calls_result,
|
||||
)
|
||||
llm_response.is_chunk = True
|
||||
yield llm_response
|
||||
llm_response.is_chunk = False
|
||||
yield llm_response
|
||||
|
||||
async def parse_dify_result(self, chunk: dict | str) -> MessageChain:
|
||||
if isinstance(chunk, str):
|
||||
# Chat
|
||||
return MessageChain(chain=[Comp.Plain(chunk)])
|
||||
|
||||
async def parse_file(item: dict):
|
||||
match item["type"]:
|
||||
case "image":
|
||||
return Comp.Image(file=item["url"], url=item["url"])
|
||||
case "audio":
|
||||
# 仅支持 wav
|
||||
temp_dir = os.path.join(get_astrbot_data_path(), "temp")
|
||||
path = os.path.join(temp_dir, f"{item['filename']}.wav")
|
||||
await download_file(item["url"], path)
|
||||
return Comp.Image(file=item["url"], url=item["url"])
|
||||
case "video":
|
||||
return Comp.Video(file=item["url"])
|
||||
case _:
|
||||
return Comp.File(name=item["filename"], file=item["url"])
|
||||
|
||||
output = chunk["data"]["outputs"][self.workflow_output_key]
|
||||
chains = []
|
||||
if isinstance(output, str):
|
||||
# 纯文本输出
|
||||
chains.append(Comp.Plain(output))
|
||||
elif isinstance(output, list):
|
||||
# 主要适配 Dify 的 HTTP 请求结点的多模态输出
|
||||
for item in output:
|
||||
# handle Array[File]
|
||||
if (
|
||||
not isinstance(item, dict)
|
||||
or item.get("dify_model_identity", "") != "__dify__file__"
|
||||
):
|
||||
chains.append(Comp.Plain(str(output)))
|
||||
break
|
||||
else:
|
||||
chains.append(Comp.Plain(str(output)))
|
||||
|
||||
# scan file
|
||||
files = chunk["data"].get("files", [])
|
||||
for item in files:
|
||||
comp = await parse_file(item)
|
||||
chains.append(comp)
|
||||
|
||||
return MessageChain(chain=chains)
|
||||
|
||||
async def forget(self, session_id):
|
||||
self.conversation_ids[session_id] = ""
|
||||
return True
|
||||
|
||||
async def get_current_key(self):
|
||||
return self.api_key
|
||||
|
||||
async def set_key(self, key):
|
||||
raise Exception("Dify 适配器不支持设置 API Key。")
|
||||
|
||||
async def get_models(self):
|
||||
return [self.get_model()]
|
||||
|
||||
async def get_human_readable_context(self, session_id, page, page_size):
|
||||
raise Exception("暂不支持获得 Dify 的历史消息记录。")
|
||||
|
||||
async def terminate(self):
|
||||
await self.api_client.close()
|
||||
@@ -111,9 +111,9 @@ class ProviderGoogleGenAI(Provider):
|
||||
f"检测到 Key 异常({e.message}),且已没有可用的 Key。 当前 Key: {self.chosen_api_key[:12]}...",
|
||||
)
|
||||
raise Exception("达到了 Gemini 速率限制, 请稍后再试...")
|
||||
# logger.error(
|
||||
# f"发生了错误(gemini_source)。Provider 配置如下: {self.provider_config}",
|
||||
# )
|
||||
logger.error(
|
||||
f"发生了错误(gemini_source)。Provider 配置如下: {self.provider_config}",
|
||||
)
|
||||
raise e
|
||||
|
||||
async def _prepare_query_config(
|
||||
|
||||
@@ -433,7 +433,7 @@ class ProviderOpenAIOfficial(Provider):
|
||||
)
|
||||
payloads.pop("tools", None)
|
||||
return False, chosen_key, available_api_keys, payloads, context_query, None
|
||||
# logger.error(f"发生了错误。Provider 配置如下: {self.provider_config}")
|
||||
logger.error(f"发生了错误。Provider 配置如下: {self.provider_config}")
|
||||
|
||||
if "tool" in str(e).lower() and "support" in str(e).lower():
|
||||
logger.error("疑似该模型不支持函数调用工具调用。请输入 /tool off_all")
|
||||
|
||||
@@ -14,6 +14,7 @@ from astrbot.core.config.astrbot_config import AstrBotConfig
|
||||
from astrbot.core.conversation_mgr import ConversationManager
|
||||
from astrbot.core.db import BaseDatabase
|
||||
from astrbot.core.knowledge_base.kb_mgr import KnowledgeBaseManager
|
||||
from astrbot.core.memory.memory_manager import MemoryManager
|
||||
from astrbot.core.message.message_event_result import MessageChain
|
||||
from astrbot.core.persona_mgr import PersonaManager
|
||||
from astrbot.core.platform import Platform
|
||||
@@ -65,6 +66,7 @@ class Context:
|
||||
persona_manager: PersonaManager,
|
||||
astrbot_config_mgr: AstrBotConfigManager,
|
||||
knowledge_base_manager: KnowledgeBaseManager,
|
||||
memory_manager: MemoryManager,
|
||||
):
|
||||
self._event_queue = event_queue
|
||||
"""事件队列。消息平台通过事件队列传递消息事件。"""
|
||||
@@ -79,6 +81,7 @@ class Context:
|
||||
self.persona_manager = persona_manager
|
||||
self.astrbot_config_mgr = astrbot_config_mgr
|
||||
self.kb_manager = knowledge_base_manager
|
||||
self.memory_manager = memory_manager
|
||||
|
||||
async def llm_generate(
|
||||
self,
|
||||
|
||||
@@ -171,3 +171,110 @@ class SessionServiceManager:
|
||||
|
||||
# 如果没有配置,默认为启用(兼容性考虑)
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def set_session_status(session_id: str, enabled: bool) -> None:
|
||||
"""设置会话的整体启停状态
|
||||
|
||||
Args:
|
||||
session_id: 会话ID (unified_msg_origin)
|
||||
enabled: True表示启用,False表示禁用
|
||||
|
||||
"""
|
||||
session_config = (
|
||||
sp.get("session_service_config", {}, scope="umo", scope_id=session_id) or {}
|
||||
)
|
||||
session_config["session_enabled"] = enabled
|
||||
sp.put(
|
||||
"session_service_config",
|
||||
session_config,
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"会话 {session_id} 的整体状态已更新为: {'启用' if enabled else '禁用'}",
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def should_process_session_request(event: AstrMessageEvent) -> bool:
|
||||
"""检查是否应该处理会话请求(会话整体启停检查)
|
||||
|
||||
Args:
|
||||
event: 消息事件
|
||||
|
||||
Returns:
|
||||
bool: True表示应该处理,False表示跳过
|
||||
|
||||
"""
|
||||
session_id = event.unified_msg_origin
|
||||
return SessionServiceManager.is_session_enabled(session_id)
|
||||
|
||||
# =============================================================================
|
||||
# 会话命名相关方法
|
||||
# =============================================================================
|
||||
|
||||
@staticmethod
|
||||
def get_session_custom_name(session_id: str) -> str | None:
|
||||
"""获取会话的自定义名称
|
||||
|
||||
Args:
|
||||
session_id: 会话ID (unified_msg_origin)
|
||||
|
||||
Returns:
|
||||
str: 自定义名称,如果没有设置则返回None
|
||||
|
||||
"""
|
||||
session_services = sp.get(
|
||||
"session_service_config",
|
||||
{},
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
)
|
||||
return session_services.get("custom_name")
|
||||
|
||||
@staticmethod
|
||||
def set_session_custom_name(session_id: str, custom_name: str) -> None:
|
||||
"""设置会话的自定义名称
|
||||
|
||||
Args:
|
||||
session_id: 会话ID (unified_msg_origin)
|
||||
custom_name: 自定义名称,可以为空字符串来清除名称
|
||||
|
||||
"""
|
||||
session_config = (
|
||||
sp.get("session_service_config", {}, scope="umo", scope_id=session_id) or {}
|
||||
)
|
||||
if custom_name and custom_name.strip():
|
||||
session_config["custom_name"] = custom_name.strip()
|
||||
else:
|
||||
# 如果传入空名称,则删除自定义名称
|
||||
session_config.pop("custom_name", None)
|
||||
sp.put(
|
||||
"session_service_config",
|
||||
session_config,
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"会话 {session_id} 的自定义名称已更新为: {custom_name.strip() if custom_name and custom_name.strip() else '已清除'}",
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def get_session_display_name(session_id: str) -> str:
|
||||
"""获取会话的显示名称(优先显示自定义名称,否则显示原始session_id的最后一段)
|
||||
|
||||
Args:
|
||||
session_id: 会话ID (unified_msg_origin)
|
||||
|
||||
Returns:
|
||||
str: 显示名称
|
||||
|
||||
"""
|
||||
custom_name = SessionServiceManager.get_session_custom_name(session_id)
|
||||
if custom_name:
|
||||
return custom_name
|
||||
|
||||
# 如果没有自定义名称,返回session_id的最后一段
|
||||
return session_id.split(":")[2] if session_id.count(":") >= 2 else session_id
|
||||
|
||||
@@ -42,6 +42,87 @@ class SessionPluginManager:
|
||||
# 如果都没有配置,默认为启用(兼容性考虑)
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def set_plugin_status_for_session(
|
||||
session_id: str,
|
||||
plugin_name: str,
|
||||
enabled: bool,
|
||||
) -> None:
|
||||
"""设置插件在指定会话中的启停状态
|
||||
|
||||
Args:
|
||||
session_id: 会话ID (unified_msg_origin)
|
||||
plugin_name: 插件名称
|
||||
enabled: True表示启用,False表示禁用
|
||||
|
||||
"""
|
||||
# 获取当前配置
|
||||
session_plugin_config = sp.get(
|
||||
"session_plugin_config",
|
||||
{},
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
)
|
||||
if session_id not in session_plugin_config:
|
||||
session_plugin_config[session_id] = {
|
||||
"enabled_plugins": [],
|
||||
"disabled_plugins": [],
|
||||
}
|
||||
|
||||
session_config = session_plugin_config[session_id]
|
||||
enabled_plugins = session_config.get("enabled_plugins", [])
|
||||
disabled_plugins = session_config.get("disabled_plugins", [])
|
||||
|
||||
if enabled:
|
||||
# 启用插件
|
||||
if plugin_name in disabled_plugins:
|
||||
disabled_plugins.remove(plugin_name)
|
||||
if plugin_name not in enabled_plugins:
|
||||
enabled_plugins.append(plugin_name)
|
||||
else:
|
||||
# 禁用插件
|
||||
if plugin_name in enabled_plugins:
|
||||
enabled_plugins.remove(plugin_name)
|
||||
if plugin_name not in disabled_plugins:
|
||||
disabled_plugins.append(plugin_name)
|
||||
|
||||
# 保存配置
|
||||
session_config["enabled_plugins"] = enabled_plugins
|
||||
session_config["disabled_plugins"] = disabled_plugins
|
||||
session_plugin_config[session_id] = session_config
|
||||
sp.put(
|
||||
"session_plugin_config",
|
||||
session_plugin_config,
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"会话 {session_id} 的插件 {plugin_name} 状态已更新为: {'启用' if enabled else '禁用'}",
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def get_session_plugin_config(session_id: str) -> dict[str, list[str]]:
|
||||
"""获取指定会话的插件配置
|
||||
|
||||
Args:
|
||||
session_id: 会话ID (unified_msg_origin)
|
||||
|
||||
Returns:
|
||||
Dict[str, List[str]]: 包含enabled_plugins和disabled_plugins的字典
|
||||
|
||||
"""
|
||||
session_plugin_config = sp.get(
|
||||
"session_plugin_config",
|
||||
{},
|
||||
scope="umo",
|
||||
scope_id=session_id,
|
||||
)
|
||||
return session_plugin_config.get(
|
||||
session_id,
|
||||
{"enabled_plugins": [], "disabled_plugins": []},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def filter_handlers_by_session(event: AstrMessageEvent, handlers: list) -> list:
|
||||
"""根据会话配置过滤处理器列表
|
||||
|
||||
@@ -85,22 +85,3 @@ class UmopConfigRouter:
|
||||
|
||||
self.umop_to_conf_id[umo] = conf_id
|
||||
await self.sp.global_put("umop_config_routing", self.umop_to_conf_id)
|
||||
|
||||
async def delete_route(self, umo: str):
|
||||
"""删除一条路由
|
||||
|
||||
Args:
|
||||
umo (str): 需要删除的 UMO 字符串
|
||||
|
||||
Raises:
|
||||
ValueError: 当 umo 格式不正确时抛出
|
||||
"""
|
||||
|
||||
if not isinstance(umo, str) or len(umo.split(":")) != 3:
|
||||
raise ValueError(
|
||||
"umop must be a string in the format [platform_id]:[message_type]:[session_id], with optional wildcards * or empty for all",
|
||||
)
|
||||
|
||||
if umo in self.umop_to_conf_id:
|
||||
del self.umop_to_conf_id[umo]
|
||||
await self.sp.global_put("umop_config_routing", self.umop_to_conf_id)
|
||||
|
||||
@@ -3,7 +3,7 @@ import json
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
from aiohttp import ClientResponse, ClientSession, FormData
|
||||
from aiohttp import ClientResponse, ClientSession
|
||||
|
||||
from astrbot.core import logger
|
||||
|
||||
@@ -101,59 +101,21 @@ class DifyAPIClient:
|
||||
|
||||
async def file_upload(
|
||||
self,
|
||||
file_path: str,
|
||||
user: str,
|
||||
file_path: str | None = None,
|
||||
file_data: bytes | None = None,
|
||||
file_name: str | None = None,
|
||||
mime_type: str | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Upload a file to Dify. Must provide either file_path or file_data.
|
||||
|
||||
Args:
|
||||
user: The user ID.
|
||||
file_path: The path to the file to upload.
|
||||
file_data: The file data in bytes.
|
||||
file_name: Optional file name when using file_data.
|
||||
Returns:
|
||||
A dictionary containing the uploaded file information.
|
||||
"""
|
||||
url = f"{self.api_base}/files/upload"
|
||||
|
||||
form = FormData()
|
||||
form.add_field("user", user)
|
||||
|
||||
if file_data is not None:
|
||||
# 使用 bytes 数据
|
||||
form.add_field(
|
||||
"file",
|
||||
file_data,
|
||||
filename=file_name or "uploaded_file",
|
||||
content_type=mime_type or "application/octet-stream",
|
||||
)
|
||||
elif file_path is not None:
|
||||
# 使用文件路径
|
||||
import os
|
||||
|
||||
with open(file_path, "rb") as f:
|
||||
file_content = f.read()
|
||||
form.add_field(
|
||||
"file",
|
||||
file_content,
|
||||
filename=os.path.basename(file_path),
|
||||
content_type=mime_type or "application/octet-stream",
|
||||
)
|
||||
else:
|
||||
raise ValueError("file_path 和 file_data 不能同时为 None")
|
||||
|
||||
async with self.session.post(
|
||||
url,
|
||||
data=form,
|
||||
headers=self.headers, # 不包含 Content-Type,让 aiohttp 自动设置
|
||||
) as resp:
|
||||
if resp.status != 200 and resp.status != 201:
|
||||
text = await resp.text()
|
||||
raise Exception(f"Dify 文件上传失败:{resp.status}. {text}")
|
||||
return await resp.json() # {"id": "xxx", ...}
|
||||
with open(file_path, "rb") as f:
|
||||
payload = {
|
||||
"user": user,
|
||||
"file": f,
|
||||
}
|
||||
async with self.session.post(
|
||||
url,
|
||||
data=payload,
|
||||
headers=self.headers,
|
||||
) as resp:
|
||||
return await resp.json() # {"id": "xxx", ...}
|
||||
|
||||
async def close(self):
|
||||
await self.session.close()
|
||||
@@ -1,23 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
|
||||
async def extract_file_moonshotai(file_path: str, api_key: str) -> str:
|
||||
"""Extract text from a file using Moonshot AI API"""
|
||||
"""
|
||||
Args:
|
||||
file_path: The path to the file to extract text from
|
||||
api_key: The API key to use to extract text from the file
|
||||
Returns:
|
||||
The text extracted from the file
|
||||
"""
|
||||
client = AsyncOpenAI(
|
||||
api_key=api_key,
|
||||
base_url="https://api.moonshot.cn/v1",
|
||||
)
|
||||
file_object = await client.files.create(
|
||||
file=Path(file_path),
|
||||
purpose="file-extract", # type: ignore
|
||||
)
|
||||
return (await client.files.content(file_id=file_object.id)).text
|
||||
@@ -1,73 +0,0 @@
|
||||
import traceback
|
||||
|
||||
from astrbot.core import astrbot_config, logger
|
||||
from astrbot.core.astrbot_config_mgr import AstrBotConfig, AstrBotConfigManager
|
||||
from astrbot.core.db.migration.migra_45_to_46 import migrate_45_to_46
|
||||
from astrbot.core.db.migration.migra_webchat_session import migrate_webchat_session
|
||||
|
||||
|
||||
def _migra_agent_runner_configs(conf: AstrBotConfig, ids_map: dict) -> None:
|
||||
"""
|
||||
Migra agent runner configs from provider configs.
|
||||
"""
|
||||
try:
|
||||
default_prov_id = conf["provider_settings"]["default_provider_id"]
|
||||
if default_prov_id in ids_map:
|
||||
conf["provider_settings"]["default_provider_id"] = ""
|
||||
p = ids_map[default_prov_id]
|
||||
if p["type"] == "dify":
|
||||
conf["provider_settings"]["dify_agent_runner_provider_id"] = p["id"]
|
||||
conf["provider_settings"]["agent_runner_type"] = "dify"
|
||||
elif p["type"] == "coze":
|
||||
conf["provider_settings"]["coze_agent_runner_provider_id"] = p["id"]
|
||||
conf["provider_settings"]["agent_runner_type"] = "coze"
|
||||
elif p["type"] == "dashscope":
|
||||
conf["provider_settings"]["dashscope_agent_runner_provider_id"] = p[
|
||||
"id"
|
||||
]
|
||||
conf["provider_settings"]["agent_runner_type"] = "dashscope"
|
||||
conf.save_config()
|
||||
except Exception as e:
|
||||
logger.error(f"Migration for third party agent runner configs failed: {e!s}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
|
||||
async def migra(
|
||||
db, astrbot_config_mgr, umop_config_router, acm: AstrBotConfigManager
|
||||
) -> None:
|
||||
"""
|
||||
Stores the migration logic here.
|
||||
btw, i really don't like migration :(
|
||||
"""
|
||||
# 4.5 to 4.6 migration for umop_config_router
|
||||
try:
|
||||
await migrate_45_to_46(astrbot_config_mgr, umop_config_router)
|
||||
except Exception as e:
|
||||
logger.error(f"Migration from version 4.5 to 4.6 failed: {e!s}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
# migration for webchat session
|
||||
try:
|
||||
await migrate_webchat_session(db)
|
||||
except Exception as e:
|
||||
logger.error(f"Migration for webchat session failed: {e!s}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
# migra third party agent runner configs
|
||||
_c = False
|
||||
providers = astrbot_config["provider"]
|
||||
ids_map = {}
|
||||
for prov in providers:
|
||||
type_ = prov.get("type")
|
||||
if type_ in ["dify", "coze", "dashscope"]:
|
||||
prov["provider_type"] = "agent_runner"
|
||||
ids_map[prov["id"]] = {
|
||||
"type": type_,
|
||||
"id": prov["id"],
|
||||
}
|
||||
_c = True
|
||||
if _c:
|
||||
astrbot_config.save_config()
|
||||
|
||||
for conf in acm.confs.values():
|
||||
_migra_agent_runner_configs(conf, ids_map)
|
||||
@@ -40,6 +40,9 @@ class SharedPreferences:
|
||||
else:
|
||||
ret = default
|
||||
return ret
|
||||
raise ValueError(
|
||||
"scope_id and key cannot be None when getting a specific preference.",
|
||||
)
|
||||
|
||||
async def range_get_async(
|
||||
self,
|
||||
@@ -53,6 +56,30 @@ class SharedPreferences:
|
||||
ret = await self.db_helper.get_preferences(scope, scope_id, key)
|
||||
return ret
|
||||
|
||||
@overload
|
||||
async def session_get(
|
||||
self,
|
||||
umo: None,
|
||||
key: str,
|
||||
default: Any = None,
|
||||
) -> list[Preference]: ...
|
||||
|
||||
@overload
|
||||
async def session_get(
|
||||
self,
|
||||
umo: str,
|
||||
key: None,
|
||||
default: Any = None,
|
||||
) -> list[Preference]: ...
|
||||
|
||||
@overload
|
||||
async def session_get(
|
||||
self,
|
||||
umo: None,
|
||||
key: None,
|
||||
default: Any = None,
|
||||
) -> list[Preference]: ...
|
||||
|
||||
async def session_get(
|
||||
self,
|
||||
umo: str | None,
|
||||
@@ -61,7 +88,7 @@ class SharedPreferences:
|
||||
) -> _VT | list[Preference]:
|
||||
"""获取会话范围的偏好设置
|
||||
|
||||
Note: 当 umo 或者 key 为 None,时,返回 Preference 列表,其中的 value 属性是一个 dict,value["val"] 为值。
|
||||
Note: 当 scope_id 或者 key 为 None,时,返回 Preference 列表,其中的 value 属性是一个 dict,value["val"] 为值。
|
||||
"""
|
||||
if umo is None or key is None:
|
||||
return await self.range_get_async("umo", umo, key)
|
||||
|
||||
@@ -5,6 +5,7 @@ from .conversation import ConversationRoute
|
||||
from .file import FileRoute
|
||||
from .knowledge_base import KnowledgeBaseRoute
|
||||
from .log import LogRoute
|
||||
from .memory import MemoryRoute
|
||||
from .persona import PersonaRoute
|
||||
from .plugin import PluginRoute
|
||||
from .session_management import SessionManagementRoute
|
||||
@@ -21,6 +22,7 @@ __all__ = [
|
||||
"FileRoute",
|
||||
"KnowledgeBaseRoute",
|
||||
"LogRoute",
|
||||
"MemoryRoute",
|
||||
"PersonaRoute",
|
||||
"PluginRoute",
|
||||
"SessionManagementRoute",
|
||||
|
||||
@@ -56,7 +56,6 @@ class ChatRoute(Route):
|
||||
self.conv_mgr = core_lifecycle.conversation_manager
|
||||
self.platform_history_mgr = core_lifecycle.platform_message_history_manager
|
||||
self.db = db
|
||||
self.umop_config_router = core_lifecycle.umop_config_router
|
||||
|
||||
self.running_convs: dict[str, bool] = {}
|
||||
|
||||
@@ -267,8 +266,7 @@ class ChatRoute(Route):
|
||||
return Response().error("Permission denied").__dict__
|
||||
|
||||
# 删除该会话下的所有对话
|
||||
message_type = "GroupMessage" if session.is_group else "FriendMessage"
|
||||
unified_msg_origin = f"{session.platform_id}:{message_type}:{session.platform_id}!{username}!{session_id}"
|
||||
unified_msg_origin = f"{session.platform_id}:FriendMessage:{session.platform_id}!{username}!{session_id}"
|
||||
await self.conv_mgr.delete_conversations_by_user_id(unified_msg_origin)
|
||||
|
||||
# 删除消息历史
|
||||
@@ -278,16 +276,6 @@ class ChatRoute(Route):
|
||||
offset_sec=99999999,
|
||||
)
|
||||
|
||||
# 删除与会话关联的配置路由
|
||||
try:
|
||||
await self.umop_config_router.delete_route(unified_msg_origin)
|
||||
except ValueError as exc:
|
||||
logger.warning(
|
||||
"Failed to delete UMO route %s during session cleanup: %s",
|
||||
unified_msg_origin,
|
||||
exc,
|
||||
)
|
||||
|
||||
# 清理队列(仅对 webchat)
|
||||
if session.platform_id == "webchat":
|
||||
webchat_queue_mgr.remove_queues(session_id)
|
||||
|
||||
@@ -14,12 +14,14 @@ from astrbot.core.config.default import (
|
||||
DEFAULT_CONFIG,
|
||||
DEFAULT_VALUE_MAP,
|
||||
)
|
||||
from astrbot.core.config.i18n_utils import ConfigMetadataI18n
|
||||
from astrbot.core.core_lifecycle import AstrBotCoreLifecycle
|
||||
from astrbot.core.platform.register import platform_cls_map, platform_registry
|
||||
from astrbot.core.provider import Provider
|
||||
from astrbot.core.provider.entities import ProviderType
|
||||
from astrbot.core.provider.provider import RerankProvider
|
||||
from astrbot.core.provider.register import provider_registry
|
||||
from astrbot.core.star.star import star_registry
|
||||
from astrbot.core.utils.astrbot_path import get_astrbot_path
|
||||
|
||||
from .route import Response, Route, RouteContext
|
||||
|
||||
@@ -131,9 +133,7 @@ def save_config(post_config: dict, config: AstrBotConfig, is_core: bool = False)
|
||||
is_core,
|
||||
)
|
||||
else:
|
||||
errors, post_config = validate_config(
|
||||
post_config, getattr(config, "schema", {}), is_core
|
||||
)
|
||||
errors, post_config = validate_config(post_config, config.schema, is_core)
|
||||
except BaseException as e:
|
||||
logger.error(traceback.format_exc())
|
||||
logger.warning(f"验证配置时出现异常: {e}")
|
||||
@@ -247,8 +247,11 @@ class ConfigRoute(Route):
|
||||
|
||||
async def get_default_config(self):
|
||||
"""获取默认配置文件"""
|
||||
metadata = ConfigMetadataI18n.convert_to_i18n_keys(CONFIG_METADATA_3)
|
||||
return Response().ok({"config": DEFAULT_CONFIG, "metadata": metadata}).__dict__
|
||||
return (
|
||||
Response()
|
||||
.ok({"config": DEFAULT_CONFIG, "metadata": CONFIG_METADATA_3})
|
||||
.__dict__
|
||||
)
|
||||
|
||||
async def get_abconf_list(self):
|
||||
"""获取所有 AstrBot 配置文件的列表"""
|
||||
@@ -279,15 +282,17 @@ class ConfigRoute(Route):
|
||||
try:
|
||||
if system_config:
|
||||
abconf = self.acm.confs["default"]
|
||||
metadata = ConfigMetadataI18n.convert_to_i18n_keys(
|
||||
CONFIG_METADATA_3_SYSTEM
|
||||
return (
|
||||
Response()
|
||||
.ok({"config": abconf, "metadata": CONFIG_METADATA_3_SYSTEM})
|
||||
.__dict__
|
||||
)
|
||||
return Response().ok({"config": abconf, "metadata": metadata}).__dict__
|
||||
if abconf_id is None:
|
||||
raise ValueError("abconf_id cannot be None")
|
||||
abconf = self.acm.confs[abconf_id]
|
||||
metadata = ConfigMetadataI18n.convert_to_i18n_keys(CONFIG_METADATA_3)
|
||||
return Response().ok({"config": abconf, "metadata": metadata}).__dict__
|
||||
return (
|
||||
Response()
|
||||
.ok({"config": abconf, "metadata": CONFIG_METADATA_3})
|
||||
.__dict__
|
||||
)
|
||||
except ValueError as e:
|
||||
return Response().error(str(e)).__dict__
|
||||
|
||||
@@ -353,20 +358,169 @@ class ConfigRoute(Route):
|
||||
f"Attempting to check provider: {status_info['name']} (ID: {status_info['id']}, Type: {status_info['type']}, Model: {status_info['model']})",
|
||||
)
|
||||
|
||||
try:
|
||||
await provider.test()
|
||||
status_info["status"] = "available"
|
||||
logger.info(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) is available.",
|
||||
)
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
status_info["error"] = error_message
|
||||
logger.warning(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) is unavailable. Error: {error_message}",
|
||||
)
|
||||
if provider_capability_type == ProviderType.CHAT_COMPLETION:
|
||||
try:
|
||||
logger.debug(f"Sending 'Ping' to provider: {status_info['name']}")
|
||||
response = await asyncio.wait_for(
|
||||
provider.text_chat(prompt="REPLY `PONG` ONLY"),
|
||||
timeout=45.0,
|
||||
)
|
||||
logger.debug(
|
||||
f"Received response from {status_info['name']}: {response}",
|
||||
)
|
||||
if response is not None:
|
||||
status_info["status"] = "available"
|
||||
response_text_snippet = ""
|
||||
if (
|
||||
hasattr(response, "completion_text")
|
||||
and response.completion_text
|
||||
):
|
||||
response_text_snippet = (
|
||||
response.completion_text[:70] + "..."
|
||||
if len(response.completion_text) > 70
|
||||
else response.completion_text
|
||||
)
|
||||
elif hasattr(response, "result_chain") and response.result_chain:
|
||||
try:
|
||||
response_text_snippet = (
|
||||
response.result_chain.get_plain_text()[:70] + "..."
|
||||
if len(response.result_chain.get_plain_text()) > 70
|
||||
else response.result_chain.get_plain_text()
|
||||
)
|
||||
except Exception as _:
|
||||
pass
|
||||
logger.info(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) is available. Response snippet: '{response_text_snippet}'",
|
||||
)
|
||||
else:
|
||||
status_info["error"] = (
|
||||
"Test call returned None, but expected an LLMResponse object."
|
||||
)
|
||||
logger.warning(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) test call returned None.",
|
||||
)
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
status_info["error"] = (
|
||||
"Connection timed out after 45 seconds during test call."
|
||||
)
|
||||
logger.warning(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) timed out.",
|
||||
)
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
status_info["error"] = error_message
|
||||
logger.warning(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) is unavailable. Error: {error_message}",
|
||||
)
|
||||
logger.debug(
|
||||
f"Traceback for {status_info['name']}:\n{traceback.format_exc()}",
|
||||
)
|
||||
|
||||
elif provider_capability_type == ProviderType.EMBEDDING:
|
||||
try:
|
||||
# For embedding, we can call the get_embedding method with a short prompt.
|
||||
embedding_result = await provider.get_embedding("health_check")
|
||||
if isinstance(embedding_result, list) and (
|
||||
not embedding_result or isinstance(embedding_result[0], float)
|
||||
):
|
||||
status_info["status"] = "available"
|
||||
else:
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = (
|
||||
f"Embedding test failed: unexpected result type {type(embedding_result)}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error testing embedding provider {provider_name}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = f"Embedding test failed: {e!s}"
|
||||
|
||||
elif provider_capability_type == ProviderType.TEXT_TO_SPEECH:
|
||||
try:
|
||||
# For TTS, we can call the get_audio method with a short prompt.
|
||||
audio_result = await provider.get_audio("你好")
|
||||
if isinstance(audio_result, str) and audio_result:
|
||||
status_info["status"] = "available"
|
||||
else:
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = (
|
||||
f"TTS test failed: unexpected result type {type(audio_result)}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error testing TTS provider {provider_name}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = f"TTS test failed: {e!s}"
|
||||
elif provider_capability_type == ProviderType.SPEECH_TO_TEXT:
|
||||
try:
|
||||
logger.debug(
|
||||
f"Sending health check audio to provider: {status_info['name']}",
|
||||
)
|
||||
sample_audio_path = os.path.join(
|
||||
get_astrbot_path(),
|
||||
"samples",
|
||||
"stt_health_check.wav",
|
||||
)
|
||||
if not os.path.exists(sample_audio_path):
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = (
|
||||
"STT test failed: sample audio file not found."
|
||||
)
|
||||
logger.warning(
|
||||
f"STT test for {status_info['name']} failed: sample audio file not found at {sample_audio_path}",
|
||||
)
|
||||
else:
|
||||
text_result = await provider.get_text(sample_audio_path)
|
||||
if isinstance(text_result, str) and text_result:
|
||||
status_info["status"] = "available"
|
||||
snippet = (
|
||||
text_result[:70] + "..."
|
||||
if len(text_result) > 70
|
||||
else text_result
|
||||
)
|
||||
logger.info(
|
||||
f"Provider {status_info['name']} (ID: {status_info['id']}) is available. Response snippet: '{snippet}'",
|
||||
)
|
||||
else:
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = (
|
||||
f"STT test failed: unexpected result type {type(text_result)}"
|
||||
)
|
||||
logger.warning(
|
||||
f"STT test for {status_info['name']} failed: unexpected result type {type(text_result)}",
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error testing STT provider {provider_name}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = f"STT test failed: {e!s}"
|
||||
elif provider_capability_type == ProviderType.RERANK:
|
||||
try:
|
||||
assert isinstance(provider, RerankProvider)
|
||||
await provider.rerank("Apple", documents=["apple", "banana"])
|
||||
status_info["status"] = "available"
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error testing rerank provider {provider_name}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
status_info["status"] = "unavailable"
|
||||
status_info["error"] = f"Rerank test failed: {e!s}"
|
||||
|
||||
else:
|
||||
logger.debug(
|
||||
f"Traceback for {status_info['name']}:\n{traceback.format_exc()}",
|
||||
f"Provider {provider_name} is not a Chat Completion or Embedding provider. Marking as available without test. Meta: {meta}",
|
||||
)
|
||||
status_info["status"] = "available"
|
||||
status_info["error"] = (
|
||||
"This provider type is not tested and is assumed to be available."
|
||||
)
|
||||
|
||||
return status_info
|
||||
@@ -444,15 +598,9 @@ class ConfigRoute(Route):
|
||||
return Response().error("缺少参数 provider_id").__dict__
|
||||
|
||||
prov_mgr = self.core_lifecycle.provider_manager
|
||||
provider = prov_mgr.inst_map.get(provider_id, None)
|
||||
provider: Provider | None = prov_mgr.inst_map.get(provider_id, None)
|
||||
if not provider:
|
||||
return Response().error(f"未找到 ID 为 {provider_id} 的提供商").__dict__
|
||||
if not isinstance(provider, Provider):
|
||||
return (
|
||||
Response()
|
||||
.error(f"提供商 {provider_id} 类型不支持获取模型列表")
|
||||
.__dict__
|
||||
)
|
||||
|
||||
try:
|
||||
models = await provider.get_models()
|
||||
|
||||
@@ -60,6 +60,10 @@ class KnowledgeBaseRoute(Route):
|
||||
# "/kb/media/delete": ("POST", self.delete_media),
|
||||
# 检索
|
||||
"/kb/retrieve": ("POST", self.retrieve),
|
||||
# 会话知识库配置
|
||||
"/kb/session/config/get": ("GET", self.get_session_kb_config),
|
||||
"/kb/session/config/set": ("POST", self.set_session_kb_config),
|
||||
"/kb/session/config/delete": ("POST", self.delete_session_kb_config),
|
||||
}
|
||||
self.register_routes()
|
||||
|
||||
@@ -916,6 +920,158 @@ class KnowledgeBaseRoute(Route):
|
||||
logger.error(traceback.format_exc())
|
||||
return Response().error(f"检索失败: {e!s}").__dict__
|
||||
|
||||
# ===== 会话知识库配置 API =====
|
||||
|
||||
async def get_session_kb_config(self):
|
||||
"""获取会话的知识库配置
|
||||
|
||||
Query 参数:
|
||||
- session_id: 会话 ID (必填)
|
||||
|
||||
返回:
|
||||
- kb_ids: 知识库 ID 列表
|
||||
- top_k: 返回结果数量
|
||||
- enable_rerank: 是否启用重排序
|
||||
"""
|
||||
try:
|
||||
from astrbot.core import sp
|
||||
|
||||
session_id = request.args.get("session_id")
|
||||
|
||||
if not session_id:
|
||||
return Response().error("缺少参数 session_id").__dict__
|
||||
|
||||
# 从 SharedPreferences 获取配置
|
||||
config = await sp.session_get(session_id, "kb_config", default={})
|
||||
|
||||
logger.debug(f"[KB配置] 读取到配置: session_id={session_id}")
|
||||
|
||||
# 如果没有配置,返回默认值
|
||||
if not config:
|
||||
config = {"kb_ids": [], "top_k": 5, "enable_rerank": True}
|
||||
|
||||
return Response().ok(config).__dict__
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[KB配置] 获取配置时出错: {e}", exc_info=True)
|
||||
return Response().error(f"获取会话知识库配置失败: {e!s}").__dict__
|
||||
|
||||
async def set_session_kb_config(self):
|
||||
"""设置会话的知识库配置
|
||||
|
||||
Body:
|
||||
- scope: 配置范围 (目前只支持 "session")
|
||||
- scope_id: 会话 ID (必填)
|
||||
- kb_ids: 知识库 ID 列表 (必填)
|
||||
- top_k: 返回结果数量 (可选, 默认 5)
|
||||
- enable_rerank: 是否启用重排序 (可选, 默认 true)
|
||||
"""
|
||||
try:
|
||||
from astrbot.core import sp
|
||||
|
||||
data = await request.json
|
||||
|
||||
scope = data.get("scope")
|
||||
scope_id = data.get("scope_id")
|
||||
kb_ids = data.get("kb_ids", [])
|
||||
top_k = data.get("top_k", 5)
|
||||
enable_rerank = data.get("enable_rerank", True)
|
||||
|
||||
# 验证参数
|
||||
if scope != "session":
|
||||
return Response().error("目前仅支持 session 范围的配置").__dict__
|
||||
|
||||
if not scope_id:
|
||||
return Response().error("缺少参数 scope_id").__dict__
|
||||
|
||||
if not isinstance(kb_ids, list):
|
||||
return Response().error("kb_ids 必须是列表").__dict__
|
||||
|
||||
# 验证知识库是否存在
|
||||
kb_mgr = self._get_kb_manager()
|
||||
invalid_ids = []
|
||||
valid_ids = []
|
||||
for kb_id in kb_ids:
|
||||
kb_helper = await kb_mgr.get_kb(kb_id)
|
||||
if kb_helper:
|
||||
valid_ids.append(kb_id)
|
||||
else:
|
||||
invalid_ids.append(kb_id)
|
||||
logger.warning(f"[KB配置] 知识库不存在: {kb_id}")
|
||||
|
||||
if invalid_ids:
|
||||
logger.warning(f"[KB配置] 以下知识库ID无效: {invalid_ids}")
|
||||
|
||||
# 允许保存空列表,表示明确不使用任何知识库
|
||||
if kb_ids and not valid_ids:
|
||||
# 只有当用户提供了 kb_ids 但全部无效时才报错
|
||||
return Response().error(f"所有提供的知识库ID都无效: {kb_ids}").__dict__
|
||||
|
||||
# 如果 kb_ids 为空列表,表示用户想清空配置
|
||||
if not kb_ids:
|
||||
valid_ids = []
|
||||
|
||||
# 构建配置对象(只保存有效的ID)
|
||||
config = {
|
||||
"kb_ids": valid_ids,
|
||||
"top_k": top_k,
|
||||
"enable_rerank": enable_rerank,
|
||||
}
|
||||
|
||||
# 保存到 SharedPreferences
|
||||
await sp.session_put(scope_id, "kb_config", config)
|
||||
|
||||
# 立即验证是否保存成功
|
||||
verify_config = await sp.session_get(scope_id, "kb_config", default={})
|
||||
|
||||
if verify_config == config:
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{"valid_ids": valid_ids, "invalid_ids": invalid_ids},
|
||||
"保存知识库配置成功",
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
logger.error("[KB配置] 配置保存失败,验证不匹配")
|
||||
return Response().error("配置保存失败").__dict__
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[KB配置] 设置配置时出错: {e}", exc_info=True)
|
||||
return Response().error(f"设置会话知识库配置失败: {e!s}").__dict__
|
||||
|
||||
async def delete_session_kb_config(self):
|
||||
"""删除会话的知识库配置
|
||||
|
||||
Body:
|
||||
- scope: 配置范围 (目前只支持 "session")
|
||||
- scope_id: 会话 ID (必填)
|
||||
"""
|
||||
try:
|
||||
from astrbot.core import sp
|
||||
|
||||
data = await request.json
|
||||
|
||||
scope = data.get("scope")
|
||||
scope_id = data.get("scope_id")
|
||||
|
||||
# 验证参数
|
||||
if scope != "session":
|
||||
return Response().error("目前仅支持 session 范围的配置").__dict__
|
||||
|
||||
if not scope_id:
|
||||
return Response().error("缺少参数 scope_id").__dict__
|
||||
|
||||
# 从 SharedPreferences 删除配置
|
||||
await sp.session_remove(scope_id, "kb_config")
|
||||
|
||||
return Response().ok(message="删除知识库配置成功").__dict__
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"删除会话知识库配置失败: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
return Response().error(f"删除会话知识库配置失败: {e!s}").__dict__
|
||||
|
||||
async def upload_document_from_url(self):
|
||||
"""从 URL 上传文档
|
||||
|
||||
|
||||
174
astrbot/dashboard/routes/memory.py
Normal file
174
astrbot/dashboard/routes/memory.py
Normal file
@@ -0,0 +1,174 @@
|
||||
"""Memory management API routes"""
|
||||
|
||||
from quart import jsonify, request
|
||||
|
||||
from astrbot.core import logger
|
||||
from astrbot.core.core_lifecycle import AstrBotCoreLifecycle
|
||||
from astrbot.core.db import BaseDatabase
|
||||
|
||||
from .route import Response, Route, RouteContext
|
||||
|
||||
|
||||
class MemoryRoute(Route):
|
||||
"""Memory management routes"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
context: RouteContext,
|
||||
db: BaseDatabase,
|
||||
core_lifecycle: AstrBotCoreLifecycle,
|
||||
):
|
||||
super().__init__(context)
|
||||
self.db = db
|
||||
self.core_lifecycle = core_lifecycle
|
||||
self.memory_manager = core_lifecycle.memory_manager
|
||||
self.provider_manager = core_lifecycle.provider_manager
|
||||
self.routes = [
|
||||
("/memory/status", ("GET", self.get_status)),
|
||||
("/memory/initialize", ("POST", self.initialize)),
|
||||
("/memory/update_merge_llm", ("POST", self.update_merge_llm)),
|
||||
]
|
||||
self.register_routes()
|
||||
|
||||
async def get_status(self):
|
||||
"""Get memory system status"""
|
||||
try:
|
||||
is_initialized = self.memory_manager._initialized
|
||||
|
||||
status_data = {
|
||||
"initialized": is_initialized,
|
||||
"embedding_provider_id": None,
|
||||
"merge_llm_provider_id": None,
|
||||
}
|
||||
|
||||
if is_initialized:
|
||||
# Get embedding provider info
|
||||
if self.memory_manager.embedding_provider:
|
||||
status_data["embedding_provider_id"] = (
|
||||
self.memory_manager.embedding_provider.provider_config["id"]
|
||||
)
|
||||
# Get merge LLM provider info
|
||||
if self.memory_manager.merge_llm_provider:
|
||||
status_data["merge_llm_provider_id"] = (
|
||||
self.memory_manager.merge_llm_provider.provider_config["id"]
|
||||
)
|
||||
|
||||
return jsonify(Response().ok(status_data).__dict__)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get memory status: {e}")
|
||||
return jsonify(Response().error(str(e)).__dict__)
|
||||
|
||||
async def initialize(self):
|
||||
"""Initialize memory system with embedding and merge LLM providers"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
embedding_provider_id = data.get("embedding_provider_id")
|
||||
merge_llm_provider_id = data.get("merge_llm_provider_id")
|
||||
|
||||
if not embedding_provider_id or not merge_llm_provider_id:
|
||||
return jsonify(
|
||||
Response()
|
||||
.error(
|
||||
"embedding_provider_id and merge_llm_provider_id are required"
|
||||
)
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
# Check if already initialized
|
||||
if self.memory_manager._initialized:
|
||||
return jsonify(
|
||||
Response()
|
||||
.error(
|
||||
"Memory system already initialized. Embedding provider cannot be changed.",
|
||||
)
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
# Get providers
|
||||
embedding_provider = await self.provider_manager.get_provider_by_id(
|
||||
embedding_provider_id,
|
||||
)
|
||||
merge_llm_provider = await self.provider_manager.get_provider_by_id(
|
||||
merge_llm_provider_id,
|
||||
)
|
||||
|
||||
if not embedding_provider:
|
||||
return jsonify(
|
||||
Response()
|
||||
.error(f"Embedding provider {embedding_provider_id} not found")
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
if not merge_llm_provider:
|
||||
return jsonify(
|
||||
Response()
|
||||
.error(f"Merge LLM provider {merge_llm_provider_id} not found")
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
# Initialize memory manager
|
||||
await self.memory_manager.initialize(
|
||||
embedding_provider=embedding_provider,
|
||||
merge_llm_provider=merge_llm_provider,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Memory system initialized with embedding: {embedding_provider_id}, "
|
||||
f"merge LLM: {merge_llm_provider_id}",
|
||||
)
|
||||
|
||||
return jsonify(
|
||||
Response()
|
||||
.ok({"message": "Memory system initialized successfully"})
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize memory system: {e}")
|
||||
return jsonify(Response().error(str(e)).__dict__)
|
||||
|
||||
async def update_merge_llm(self):
|
||||
"""Update merge LLM provider (only allowed after initialization)"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
merge_llm_provider_id = data.get("merge_llm_provider_id")
|
||||
|
||||
if not merge_llm_provider_id:
|
||||
return jsonify(
|
||||
Response().error("merge_llm_provider_id is required").__dict__,
|
||||
)
|
||||
|
||||
# Check if initialized
|
||||
if not self.memory_manager._initialized:
|
||||
return jsonify(
|
||||
Response()
|
||||
.error("Memory system not initialized. Please initialize first.")
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
# Get new merge LLM provider
|
||||
merge_llm_provider = await self.provider_manager.get_provider_by_id(
|
||||
merge_llm_provider_id,
|
||||
)
|
||||
|
||||
if not merge_llm_provider:
|
||||
return jsonify(
|
||||
Response()
|
||||
.error(f"Merge LLM provider {merge_llm_provider_id} not found")
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
# Update merge LLM provider
|
||||
self.memory_manager.merge_llm_provider = merge_llm_provider
|
||||
|
||||
logger.info(f"Updated merge LLM provider to: {merge_llm_provider_id}")
|
||||
|
||||
return jsonify(
|
||||
Response()
|
||||
.ok({"message": "Merge LLM provider updated successfully"})
|
||||
.__dict__,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update merge LLM provider: {e}")
|
||||
return jsonify(Response().error(str(e)).__dict__)
|
||||
@@ -1,4 +1,3 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import ssl
|
||||
@@ -20,10 +19,6 @@ from astrbot.core.star.star_manager import PluginManager
|
||||
|
||||
from .route import Response, Route, RouteContext
|
||||
|
||||
PLUGIN_UPDATE_CONCURRENCY = (
|
||||
3 # limit concurrent updates to avoid overwhelming plugin sources
|
||||
)
|
||||
|
||||
|
||||
class PluginRoute(Route):
|
||||
def __init__(
|
||||
@@ -38,7 +33,6 @@ class PluginRoute(Route):
|
||||
"/plugin/install": ("POST", self.install_plugin),
|
||||
"/plugin/install-upload": ("POST", self.install_plugin_upload),
|
||||
"/plugin/update": ("POST", self.update_plugin),
|
||||
"/plugin/update-all": ("POST", self.update_all_plugins),
|
||||
"/plugin/uninstall": ("POST", self.uninstall_plugin),
|
||||
"/plugin/market_list": ("GET", self.get_online_plugins),
|
||||
"/plugin/off": ("POST", self.off_plugin),
|
||||
@@ -69,7 +63,7 @@ class PluginRoute(Route):
|
||||
.__dict__
|
||||
)
|
||||
|
||||
data = await request.get_json()
|
||||
data = await request.json
|
||||
plugin_name = data.get("name", None)
|
||||
try:
|
||||
success, message = await self.plugin_manager.reload(plugin_name)
|
||||
@@ -352,7 +346,7 @@ class PluginRoute(Route):
|
||||
.__dict__
|
||||
)
|
||||
|
||||
post_data = await request.get_json()
|
||||
post_data = await request.json
|
||||
repo_url = post_data["url"]
|
||||
|
||||
proxy: str = post_data.get("proxy", None)
|
||||
@@ -399,7 +393,7 @@ class PluginRoute(Route):
|
||||
.__dict__
|
||||
)
|
||||
|
||||
post_data = await request.get_json()
|
||||
post_data = await request.json
|
||||
plugin_name = post_data["name"]
|
||||
delete_config = post_data.get("delete_config", False)
|
||||
delete_data = post_data.get("delete_data", False)
|
||||
@@ -424,7 +418,7 @@ class PluginRoute(Route):
|
||||
.__dict__
|
||||
)
|
||||
|
||||
post_data = await request.get_json()
|
||||
post_data = await request.json
|
||||
plugin_name = post_data["name"]
|
||||
proxy: str = post_data.get("proxy", None)
|
||||
try:
|
||||
@@ -438,59 +432,6 @@ class PluginRoute(Route):
|
||||
logger.error(f"/api/plugin/update: {traceback.format_exc()}")
|
||||
return Response().error(str(e)).__dict__
|
||||
|
||||
async def update_all_plugins(self):
|
||||
if DEMO_MODE:
|
||||
return (
|
||||
Response()
|
||||
.error("You are not permitted to do this operation in demo mode")
|
||||
.__dict__
|
||||
)
|
||||
|
||||
post_data = await request.get_json()
|
||||
plugin_names: list[str] = post_data.get("names") or []
|
||||
proxy: str = post_data.get("proxy", "")
|
||||
|
||||
if not isinstance(plugin_names, list) or not plugin_names:
|
||||
return Response().error("插件列表不能为空").__dict__
|
||||
|
||||
results = []
|
||||
sem = asyncio.Semaphore(PLUGIN_UPDATE_CONCURRENCY)
|
||||
|
||||
async def _update_one(name: str):
|
||||
async with sem:
|
||||
try:
|
||||
logger.info(f"批量更新插件 {name}")
|
||||
await self.plugin_manager.update_plugin(name, proxy)
|
||||
return {"name": name, "status": "ok", "message": "更新成功"}
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"/api/plugin/update-all: 更新插件 {name} 失败: {traceback.format_exc()}",
|
||||
)
|
||||
return {"name": name, "status": "error", "message": str(e)}
|
||||
|
||||
raw_results = await asyncio.gather(
|
||||
*(_update_one(name) for name in plugin_names),
|
||||
return_exceptions=True,
|
||||
)
|
||||
for name, result in zip(plugin_names, raw_results):
|
||||
if isinstance(result, asyncio.CancelledError):
|
||||
raise result
|
||||
if isinstance(result, BaseException):
|
||||
results.append(
|
||||
{"name": name, "status": "error", "message": str(result)}
|
||||
)
|
||||
else:
|
||||
results.append(result)
|
||||
|
||||
failed = [r for r in results if r["status"] == "error"]
|
||||
message = (
|
||||
"批量更新完成,全部成功。"
|
||||
if not failed
|
||||
else f"批量更新完成,其中 {len(failed)}/{len(results)} 个插件失败。"
|
||||
)
|
||||
|
||||
return Response().ok({"results": results}, message).__dict__
|
||||
|
||||
async def off_plugin(self):
|
||||
if DEMO_MODE:
|
||||
return (
|
||||
@@ -499,7 +440,7 @@ class PluginRoute(Route):
|
||||
.__dict__
|
||||
)
|
||||
|
||||
post_data = await request.get_json()
|
||||
post_data = await request.json
|
||||
plugin_name = post_data["name"]
|
||||
try:
|
||||
await self.plugin_manager.turn_off_plugin(plugin_name)
|
||||
@@ -517,7 +458,7 @@ class PluginRoute(Route):
|
||||
.__dict__
|
||||
)
|
||||
|
||||
post_data = await request.get_json()
|
||||
post_data = await request.json
|
||||
plugin_name = post_data["name"]
|
||||
try:
|
||||
await self.plugin_manager.turn_on_plugin(plugin_name)
|
||||
|
||||
@@ -1,24 +1,16 @@
|
||||
import traceback
|
||||
|
||||
from quart import request
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlmodel import col, select
|
||||
|
||||
from astrbot.core import logger, sp
|
||||
from astrbot.core.core_lifecycle import AstrBotCoreLifecycle
|
||||
from astrbot.core.db import BaseDatabase
|
||||
from astrbot.core.db.po import ConversationV2, Preference
|
||||
from astrbot.core.provider.entities import ProviderType
|
||||
from astrbot.core.star.session_llm_manager import SessionServiceManager
|
||||
from astrbot.core.star.session_plugin_manager import SessionPluginManager
|
||||
|
||||
from .route import Response, Route, RouteContext
|
||||
|
||||
AVAILABLE_SESSION_RULE_KEYS = [
|
||||
"session_service_config",
|
||||
"session_plugin_config",
|
||||
"kb_config",
|
||||
f"provider_perf_{ProviderType.CHAT_COMPLETION.value}",
|
||||
f"provider_perf_{ProviderType.SPEECH_TO_TEXT.value}",
|
||||
f"provider_perf_{ProviderType.TEXT_TO_SPEECH.value}",
|
||||
]
|
||||
|
||||
|
||||
class SessionManagementRoute(Route):
|
||||
def __init__(
|
||||
@@ -30,364 +22,667 @@ class SessionManagementRoute(Route):
|
||||
super().__init__(context)
|
||||
self.db_helper = db_helper
|
||||
self.routes = {
|
||||
"/session/list-rule": ("GET", self.list_session_rule),
|
||||
"/session/update-rule": ("POST", self.update_session_rule),
|
||||
"/session/delete-rule": ("POST", self.delete_session_rule),
|
||||
"/session/batch-delete-rule": ("POST", self.batch_delete_session_rule),
|
||||
"/session/active-umos": ("GET", self.list_umos),
|
||||
"/session/list": ("GET", self.list_sessions),
|
||||
"/session/update_persona": ("POST", self.update_session_persona),
|
||||
"/session/update_provider": ("POST", self.update_session_provider),
|
||||
"/session/plugins": ("GET", self.get_session_plugins),
|
||||
"/session/update_plugin": ("POST", self.update_session_plugin),
|
||||
"/session/update_llm": ("POST", self.update_session_llm),
|
||||
"/session/update_tts": ("POST", self.update_session_tts),
|
||||
"/session/update_name": ("POST", self.update_session_name),
|
||||
"/session/update_status": ("POST", self.update_session_status),
|
||||
"/session/delete": ("POST", self.delete_session),
|
||||
}
|
||||
self.conv_mgr = core_lifecycle.conversation_manager
|
||||
self.core_lifecycle = core_lifecycle
|
||||
self.register_routes()
|
||||
|
||||
async def _get_umo_rules(
|
||||
self, page: int = 1, page_size: int = 10, search: str = ""
|
||||
) -> tuple[dict, int]:
|
||||
"""获取所有带有自定义规则的 umo 及其规则内容(支持分页和搜索)。
|
||||
|
||||
如果某个 umo 在 preference 中有以下字段,则表示有自定义规则:
|
||||
|
||||
1. session_service_config (包含了 是否启用这个umo, 这个umo是否启用 llm, 这个umo是否启用tts, umo自定义名称。)
|
||||
2. session_plugin_config (包含了 这个 umo 的 plugin set)
|
||||
3. provider_perf_{ProviderType.value} (包含了这个 umo 所选择使用的 provider 信息)
|
||||
4. kb_config (包含了这个 umo 的知识库相关配置)
|
||||
|
||||
Args:
|
||||
page: 页码,从 1 开始
|
||||
page_size: 每页数量
|
||||
search: 搜索关键词,匹配 umo 或 custom_name
|
||||
|
||||
Returns:
|
||||
tuple[dict, int]: (umo_rules, total) - 分页后的 umo 规则和总数
|
||||
"""
|
||||
umo_rules = {}
|
||||
async with self.db_helper.get_db() as session:
|
||||
session: AsyncSession
|
||||
result = await session.execute(
|
||||
select(Preference).where(
|
||||
col(Preference.scope) == "umo",
|
||||
col(Preference.key).in_(AVAILABLE_SESSION_RULE_KEYS),
|
||||
)
|
||||
)
|
||||
prefs = result.scalars().all()
|
||||
for pref in prefs:
|
||||
umo_id = pref.scope_id
|
||||
if umo_id not in umo_rules:
|
||||
umo_rules[umo_id] = {}
|
||||
if pref.key == "session_plugin_config" and umo_id in pref.value["val"]:
|
||||
umo_rules[umo_id][pref.key] = pref.value["val"][umo_id]
|
||||
else:
|
||||
umo_rules[umo_id][pref.key] = pref.value["val"]
|
||||
|
||||
# 搜索过滤
|
||||
if search:
|
||||
search_lower = search.lower()
|
||||
filtered_rules = {}
|
||||
for umo_id, rules in umo_rules.items():
|
||||
# 匹配 umo
|
||||
if search_lower in umo_id.lower():
|
||||
filtered_rules[umo_id] = rules
|
||||
continue
|
||||
# 匹配 custom_name
|
||||
svc_config = rules.get("session_service_config", {})
|
||||
custom_name = svc_config.get("custom_name", "") if svc_config else ""
|
||||
if custom_name and search_lower in custom_name.lower():
|
||||
filtered_rules[umo_id] = rules
|
||||
umo_rules = filtered_rules
|
||||
|
||||
# 获取总数
|
||||
total = len(umo_rules)
|
||||
|
||||
# 分页处理
|
||||
all_umo_ids = list(umo_rules.keys())
|
||||
start_idx = (page - 1) * page_size
|
||||
end_idx = start_idx + page_size
|
||||
paginated_umo_ids = all_umo_ids[start_idx:end_idx]
|
||||
|
||||
# 只返回分页后的数据
|
||||
paginated_rules = {umo_id: umo_rules[umo_id] for umo_id in paginated_umo_ids}
|
||||
|
||||
return paginated_rules, total
|
||||
|
||||
async def list_session_rule(self):
|
||||
"""获取所有自定义的规则(支持分页和搜索)
|
||||
|
||||
返回已配置规则的 umo 列表及其规则内容,以及可用的 personas 和 providers
|
||||
|
||||
Query 参数:
|
||||
page: 页码,默认为 1
|
||||
page_size: 每页数量,默认为 10
|
||||
search: 搜索关键词,匹配 umo 或 custom_name
|
||||
"""
|
||||
async def list_sessions(self):
|
||||
"""获取所有会话的列表,包括 persona 和 provider 信息"""
|
||||
try:
|
||||
# 获取分页和搜索参数
|
||||
page = request.args.get("page", 1, type=int)
|
||||
page_size = request.args.get("page_size", 10, type=int)
|
||||
search = request.args.get("search", "", type=str).strip()
|
||||
page = int(request.args.get("page", 1))
|
||||
page_size = int(request.args.get("page_size", 20))
|
||||
search_query = request.args.get("search", "")
|
||||
platform = request.args.get("platform", "")
|
||||
|
||||
# 参数校验
|
||||
if page < 1:
|
||||
page = 1
|
||||
if page_size < 1:
|
||||
page_size = 10
|
||||
if page_size > 100:
|
||||
page_size = 100
|
||||
|
||||
umo_rules, total = await self._get_umo_rules(
|
||||
page=page, page_size=page_size, search=search
|
||||
# 获取活跃的会话数据(处于对话内的会话)
|
||||
sessions_data, total = await self.db_helper.get_session_conversations(
|
||||
page,
|
||||
page_size,
|
||||
search_query,
|
||||
platform,
|
||||
)
|
||||
|
||||
# 构建规则列表
|
||||
rules_list = []
|
||||
for umo, rules in umo_rules.items():
|
||||
rule_info = {
|
||||
"umo": umo,
|
||||
"rules": rules,
|
||||
}
|
||||
# 解析 umo 格式: 平台:消息类型:会话ID
|
||||
parts = umo.split(":")
|
||||
if len(parts) >= 3:
|
||||
rule_info["platform"] = parts[0]
|
||||
rule_info["message_type"] = parts[1]
|
||||
rule_info["session_id"] = parts[2]
|
||||
rules_list.append(rule_info)
|
||||
|
||||
# 获取可用的 providers 和 personas
|
||||
provider_manager = self.core_lifecycle.provider_manager
|
||||
persona_mgr = self.core_lifecycle.persona_mgr
|
||||
personas = persona_mgr.personas_v3
|
||||
|
||||
sessions = []
|
||||
|
||||
# 循环补充非数据库信息,如 provider 和 session 状态
|
||||
for data in sessions_data:
|
||||
session_id = data["session_id"]
|
||||
conversation_id = data["conversation_id"]
|
||||
conv_persona_id = data["persona_id"]
|
||||
title = data["title"]
|
||||
persona_name = data["persona_name"]
|
||||
|
||||
# 处理 persona 显示
|
||||
if persona_name is None:
|
||||
if conv_persona_id is None:
|
||||
if default_persona := persona_mgr.selected_default_persona_v3:
|
||||
persona_name = default_persona["name"]
|
||||
else:
|
||||
persona_name = "[%None]"
|
||||
|
||||
session_info = {
|
||||
"session_id": session_id,
|
||||
"conversation_id": conversation_id,
|
||||
"persona_id": persona_name,
|
||||
"chat_provider_id": None,
|
||||
"stt_provider_id": None,
|
||||
"tts_provider_id": None,
|
||||
"session_enabled": SessionServiceManager.is_session_enabled(
|
||||
session_id,
|
||||
),
|
||||
"llm_enabled": SessionServiceManager.is_llm_enabled_for_session(
|
||||
session_id,
|
||||
),
|
||||
"tts_enabled": SessionServiceManager.is_tts_enabled_for_session(
|
||||
session_id,
|
||||
),
|
||||
"platform": session_id.split(":")[0]
|
||||
if ":" in session_id
|
||||
else "unknown",
|
||||
"message_type": session_id.split(":")[1]
|
||||
if session_id.count(":") >= 1
|
||||
else "unknown",
|
||||
"session_name": SessionServiceManager.get_session_display_name(
|
||||
session_id,
|
||||
),
|
||||
"session_raw_name": session_id.split(":")[2]
|
||||
if session_id.count(":") >= 2
|
||||
else session_id,
|
||||
"title": title,
|
||||
}
|
||||
|
||||
# 获取 provider 信息
|
||||
chat_provider = provider_manager.get_using_provider(
|
||||
provider_type=ProviderType.CHAT_COMPLETION,
|
||||
umo=session_id,
|
||||
)
|
||||
tts_provider = provider_manager.get_using_provider(
|
||||
provider_type=ProviderType.TEXT_TO_SPEECH,
|
||||
umo=session_id,
|
||||
)
|
||||
stt_provider = provider_manager.get_using_provider(
|
||||
provider_type=ProviderType.SPEECH_TO_TEXT,
|
||||
umo=session_id,
|
||||
)
|
||||
if chat_provider:
|
||||
meta = chat_provider.meta()
|
||||
session_info["chat_provider_id"] = meta.id
|
||||
if tts_provider:
|
||||
meta = tts_provider.meta()
|
||||
session_info["tts_provider_id"] = meta.id
|
||||
if stt_provider:
|
||||
meta = stt_provider.meta()
|
||||
session_info["stt_provider_id"] = meta.id
|
||||
|
||||
sessions.append(session_info)
|
||||
|
||||
# 获取可用的 personas 和 providers 列表
|
||||
available_personas = [
|
||||
{"name": p["name"], "prompt": p.get("prompt", "")}
|
||||
for p in persona_mgr.personas_v3
|
||||
{"name": p["name"], "prompt": p.get("prompt", "")} for p in personas
|
||||
]
|
||||
|
||||
available_chat_providers = [
|
||||
available_chat_providers = []
|
||||
for provider in provider_manager.provider_insts:
|
||||
meta = provider.meta()
|
||||
available_chat_providers.append(
|
||||
{
|
||||
"id": meta.id,
|
||||
"name": meta.id,
|
||||
"model": meta.model,
|
||||
"type": meta.type,
|
||||
},
|
||||
)
|
||||
|
||||
available_stt_providers = []
|
||||
for provider in provider_manager.stt_provider_insts:
|
||||
meta = provider.meta()
|
||||
available_stt_providers.append(
|
||||
{
|
||||
"id": meta.id,
|
||||
"name": meta.id,
|
||||
"model": meta.model,
|
||||
"type": meta.type,
|
||||
},
|
||||
)
|
||||
|
||||
available_tts_providers = []
|
||||
for provider in provider_manager.tts_provider_insts:
|
||||
meta = provider.meta()
|
||||
available_tts_providers.append(
|
||||
{
|
||||
"id": meta.id,
|
||||
"name": meta.id,
|
||||
"model": meta.model,
|
||||
"type": meta.type,
|
||||
},
|
||||
)
|
||||
|
||||
result = {
|
||||
"sessions": sessions,
|
||||
"available_personas": available_personas,
|
||||
"available_chat_providers": available_chat_providers,
|
||||
"available_stt_providers": available_stt_providers,
|
||||
"available_tts_providers": available_tts_providers,
|
||||
"pagination": {
|
||||
"page": page,
|
||||
"page_size": page_size,
|
||||
"total": total,
|
||||
"total_pages": (total + page_size - 1) // page_size
|
||||
if page_size > 0
|
||||
else 0,
|
||||
},
|
||||
}
|
||||
|
||||
return Response().ok(result).__dict__
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"获取会话列表失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"获取会话列表失败: {e!s}").__dict__
|
||||
|
||||
async def _update_single_session_persona(self, session_id: str, persona_name: str):
|
||||
"""更新单个会话的 persona 的内部方法"""
|
||||
conversation_manager = self.core_lifecycle.star_context.conversation_manager
|
||||
conversation_id = await conversation_manager.get_curr_conversation_id(
|
||||
session_id,
|
||||
)
|
||||
|
||||
conv = None
|
||||
if conversation_id:
|
||||
conv = await conversation_manager.get_conversation(
|
||||
unified_msg_origin=session_id,
|
||||
conversation_id=conversation_id,
|
||||
)
|
||||
if not conv or not conversation_id:
|
||||
conversation_id = await conversation_manager.new_conversation(session_id)
|
||||
|
||||
# 更新 persona
|
||||
await conversation_manager.update_conversation_persona_id(
|
||||
session_id,
|
||||
persona_name,
|
||||
)
|
||||
|
||||
async def _handle_batch_operation(
|
||||
self,
|
||||
session_ids: list,
|
||||
operation_func,
|
||||
operation_name: str,
|
||||
**kwargs,
|
||||
):
|
||||
"""通用的批量操作处理方法"""
|
||||
success_count = 0
|
||||
error_sessions = []
|
||||
|
||||
for session_id in session_ids:
|
||||
try:
|
||||
await operation_func(session_id, **kwargs)
|
||||
success_count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"批量{operation_name} 会话 {session_id} 失败: {e!s}")
|
||||
error_sessions.append(session_id)
|
||||
|
||||
if error_sessions:
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"批量更新完成,成功: {success_count},失败: {len(error_sessions)}",
|
||||
"success_count": success_count,
|
||||
"error_count": len(error_sessions),
|
||||
"error_sessions": error_sessions,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"id": p.meta().id,
|
||||
"name": p.meta().id,
|
||||
"model": p.meta().model,
|
||||
}
|
||||
for p in provider_manager.provider_insts
|
||||
]
|
||||
"message": f"成功批量{operation_name} {success_count} 个会话",
|
||||
"success_count": success_count,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
available_stt_providers = [
|
||||
{
|
||||
"id": p.meta().id,
|
||||
"name": p.meta().id,
|
||||
"model": p.meta().model,
|
||||
}
|
||||
for p in provider_manager.stt_provider_insts
|
||||
]
|
||||
async def update_session_persona(self):
|
||||
"""更新指定会话的 persona,支持批量操作"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
is_batch = data.get("is_batch", False)
|
||||
persona_name = data.get("persona_name")
|
||||
|
||||
available_tts_providers = [
|
||||
{
|
||||
"id": p.meta().id,
|
||||
"name": p.meta().id,
|
||||
"model": p.meta().model,
|
||||
}
|
||||
for p in provider_manager.tts_provider_insts
|
||||
]
|
||||
if persona_name is None:
|
||||
return Response().error("缺少必要参数: persona_name").__dict__
|
||||
|
||||
# 获取可用的插件列表(排除 reserved 的系统插件)
|
||||
if is_batch:
|
||||
session_ids = data.get("session_ids", [])
|
||||
if not session_ids:
|
||||
return Response().error("缺少必要参数: session_ids").__dict__
|
||||
|
||||
return await self._handle_batch_operation(
|
||||
session_ids,
|
||||
self._update_single_session_persona,
|
||||
"更新人格",
|
||||
persona_name=persona_name,
|
||||
)
|
||||
session_id = data.get("session_id")
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
await self._update_single_session_persona(session_id, persona_name)
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"成功更新会话 {session_id} 的人格为 {persona_name}",
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"更新会话人格失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话人格失败: {e!s}").__dict__
|
||||
|
||||
async def _update_single_session_provider(
|
||||
self,
|
||||
session_id: str,
|
||||
provider_id: str,
|
||||
provider_type_enum,
|
||||
):
|
||||
"""更新单个会话的 provider 的内部方法"""
|
||||
provider_manager = self.core_lifecycle.star_context.provider_manager
|
||||
await provider_manager.set_provider(
|
||||
provider_id=provider_id,
|
||||
provider_type=provider_type_enum,
|
||||
umo=session_id,
|
||||
)
|
||||
|
||||
async def update_session_provider(self):
|
||||
"""更新指定会话的 provider,支持批量操作"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
is_batch = data.get("is_batch", False)
|
||||
provider_id = data.get("provider_id")
|
||||
provider_type = data.get("provider_type")
|
||||
|
||||
if not provider_id or not provider_type:
|
||||
return (
|
||||
Response()
|
||||
.error("缺少必要参数: provider_id, provider_type")
|
||||
.__dict__
|
||||
)
|
||||
|
||||
# 转换 provider_type 字符串为枚举
|
||||
if provider_type == "chat_completion":
|
||||
provider_type_enum = ProviderType.CHAT_COMPLETION
|
||||
elif provider_type == "speech_to_text":
|
||||
provider_type_enum = ProviderType.SPEECH_TO_TEXT
|
||||
elif provider_type == "text_to_speech":
|
||||
provider_type_enum = ProviderType.TEXT_TO_SPEECH
|
||||
else:
|
||||
return (
|
||||
Response()
|
||||
.error(f"不支持的 provider_type: {provider_type}")
|
||||
.__dict__
|
||||
)
|
||||
|
||||
if is_batch:
|
||||
session_ids = data.get("session_ids", [])
|
||||
if not session_ids:
|
||||
return Response().error("缺少必要参数: session_ids").__dict__
|
||||
|
||||
return await self._handle_batch_operation(
|
||||
session_ids,
|
||||
self._update_single_session_provider,
|
||||
f"更新 {provider_type} 提供商",
|
||||
provider_id=provider_id,
|
||||
provider_type_enum=provider_type_enum,
|
||||
)
|
||||
session_id = data.get("session_id")
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
await self._update_single_session_provider(
|
||||
session_id,
|
||||
provider_id,
|
||||
provider_type_enum,
|
||||
)
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"成功更新会话 {session_id} 的 {provider_type} 提供商为 {provider_id}",
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"更新会话提供商失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话提供商失败: {e!s}").__dict__
|
||||
|
||||
async def get_session_plugins(self):
|
||||
"""获取指定会话的插件配置信息"""
|
||||
try:
|
||||
session_id = request.args.get("session_id")
|
||||
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
# 获取所有已激活的插件
|
||||
all_plugins = []
|
||||
plugin_manager = self.core_lifecycle.plugin_manager
|
||||
available_plugins = [
|
||||
{
|
||||
"name": p.name,
|
||||
"display_name": p.display_name or p.name,
|
||||
"desc": p.desc,
|
||||
}
|
||||
for p in plugin_manager.context.get_all_stars()
|
||||
if not p.reserved and p.name
|
||||
]
|
||||
|
||||
# 获取可用的知识库列表
|
||||
available_kbs = []
|
||||
kb_manager = self.core_lifecycle.kb_manager
|
||||
if kb_manager:
|
||||
try:
|
||||
kbs = await kb_manager.list_kbs()
|
||||
available_kbs = [
|
||||
for plugin in plugin_manager.context.get_all_stars():
|
||||
# 只显示已激活的插件,不包括保留插件
|
||||
if plugin.activated and not plugin.reserved:
|
||||
plugin_name = plugin.name or ""
|
||||
plugin_enabled = SessionPluginManager.is_plugin_enabled_for_session(
|
||||
session_id,
|
||||
plugin_name,
|
||||
)
|
||||
|
||||
all_plugins.append(
|
||||
{
|
||||
"kb_id": kb.kb_id,
|
||||
"kb_name": kb.kb_name,
|
||||
"emoji": kb.emoji,
|
||||
}
|
||||
for kb in kbs
|
||||
]
|
||||
except Exception as e:
|
||||
logger.warning(f"获取知识库列表失败: {e!s}")
|
||||
"name": plugin_name,
|
||||
"author": plugin.author,
|
||||
"desc": plugin.desc,
|
||||
"enabled": plugin_enabled,
|
||||
},
|
||||
)
|
||||
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"rules": rules_list,
|
||||
"total": total,
|
||||
"page": page,
|
||||
"page_size": page_size,
|
||||
"available_personas": available_personas,
|
||||
"available_chat_providers": available_chat_providers,
|
||||
"available_stt_providers": available_stt_providers,
|
||||
"available_tts_providers": available_tts_providers,
|
||||
"available_plugins": available_plugins,
|
||||
"available_kbs": available_kbs,
|
||||
"available_rule_keys": AVAILABLE_SESSION_RULE_KEYS,
|
||||
}
|
||||
"session_id": session_id,
|
||||
"plugins": all_plugins,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取规则列表失败: {e!s}")
|
||||
return Response().error(f"获取规则列表失败: {e!s}").__dict__
|
||||
error_msg = f"获取会话插件配置失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"获取会话插件配置失败: {e!s}").__dict__
|
||||
|
||||
async def update_session_rule(self):
|
||||
"""更新某个 umo 的自定义规则
|
||||
|
||||
请求体:
|
||||
{
|
||||
"umo": "平台:消息类型:会话ID",
|
||||
"rule_key": "session_service_config" | "session_plugin_config" | "kb_config" | "provider_perf_xxx",
|
||||
"rule_value": {...} // 规则值,具体结构根据 rule_key 不同而不同
|
||||
}
|
||||
"""
|
||||
async def update_session_plugin(self):
|
||||
"""更新指定会话的插件启停状态"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
umo = data.get("umo")
|
||||
rule_key = data.get("rule_key")
|
||||
rule_value = data.get("rule_value")
|
||||
session_id = data.get("session_id")
|
||||
plugin_name = data.get("plugin_name")
|
||||
enabled = data.get("enabled")
|
||||
|
||||
if not umo:
|
||||
return Response().error("缺少必要参数: umo").__dict__
|
||||
if not rule_key:
|
||||
return Response().error("缺少必要参数: rule_key").__dict__
|
||||
if rule_key not in AVAILABLE_SESSION_RULE_KEYS:
|
||||
return Response().error(f"不支持的规则键: {rule_key}").__dict__
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
if rule_key == "session_plugin_config":
|
||||
rule_value = {
|
||||
umo: rule_value,
|
||||
}
|
||||
if not plugin_name:
|
||||
return Response().error("缺少必要参数: plugin_name").__dict__
|
||||
|
||||
# 使用 shared preferences 更新规则
|
||||
await sp.session_put(umo, rule_key, rule_value)
|
||||
if enabled is None:
|
||||
return Response().error("缺少必要参数: enabled").__dict__
|
||||
|
||||
# 验证插件是否存在且已激活
|
||||
plugin_manager = self.core_lifecycle.plugin_manager
|
||||
plugin = plugin_manager.context.get_registered_star(plugin_name)
|
||||
|
||||
if not plugin:
|
||||
return Response().error(f"插件 {plugin_name} 不存在").__dict__
|
||||
|
||||
if not plugin.activated:
|
||||
return Response().error(f"插件 {plugin_name} 未激活").__dict__
|
||||
|
||||
if plugin.reserved:
|
||||
return (
|
||||
Response()
|
||||
.error(f"插件 {plugin_name} 是系统保留插件,无法管理")
|
||||
.__dict__
|
||||
)
|
||||
|
||||
# 使用 SessionPluginManager 更新插件状态
|
||||
SessionPluginManager.set_plugin_status_for_session(
|
||||
session_id,
|
||||
plugin_name,
|
||||
enabled,
|
||||
)
|
||||
|
||||
return (
|
||||
Response()
|
||||
.ok({"message": f"规则 {rule_key} 已更新", "umo": umo})
|
||||
.ok(
|
||||
{
|
||||
"message": f"插件 {plugin_name} 已{'启用' if enabled else '禁用'}",
|
||||
"session_id": session_id,
|
||||
"plugin_name": plugin_name,
|
||||
"enabled": enabled,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"更新会话规则失败: {e!s}")
|
||||
return Response().error(f"更新会话规则失败: {e!s}").__dict__
|
||||
error_msg = f"更新会话插件状态失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话插件状态失败: {e!s}").__dict__
|
||||
|
||||
async def delete_session_rule(self):
|
||||
"""删除某个 umo 的自定义规则
|
||||
async def _update_single_session_llm(self, session_id: str, enabled: bool):
|
||||
"""更新单个会话的LLM状态的内部方法"""
|
||||
SessionServiceManager.set_llm_status_for_session(session_id, enabled)
|
||||
|
||||
请求体:
|
||||
{
|
||||
"umo": "平台:消息类型:会话ID",
|
||||
"rule_key": "session_service_config" | "session_plugin_config" | ... (可选,不传则删除所有规则)
|
||||
}
|
||||
"""
|
||||
async def update_session_llm(self):
|
||||
"""更新指定会话的LLM启停状态,支持批量操作"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
umo = data.get("umo")
|
||||
rule_key = data.get("rule_key")
|
||||
is_batch = data.get("is_batch", False)
|
||||
enabled = data.get("enabled")
|
||||
|
||||
if not umo:
|
||||
return Response().error("缺少必要参数: umo").__dict__
|
||||
if enabled is None:
|
||||
return Response().error("缺少必要参数: enabled").__dict__
|
||||
|
||||
if rule_key:
|
||||
# 删除单个规则
|
||||
if rule_key not in AVAILABLE_SESSION_RULE_KEYS:
|
||||
return Response().error(f"不支持的规则键: {rule_key}").__dict__
|
||||
await sp.session_remove(umo, rule_key)
|
||||
return (
|
||||
Response()
|
||||
.ok({"message": f"规则 {rule_key} 已删除", "umo": umo})
|
||||
.__dict__
|
||||
if is_batch:
|
||||
session_ids = data.get("session_ids", [])
|
||||
if not session_ids:
|
||||
return Response().error("缺少必要参数: session_ids").__dict__
|
||||
|
||||
result = await self._handle_batch_operation(
|
||||
session_ids,
|
||||
self._update_single_session_llm,
|
||||
f"{'启用' if enabled else '禁用'}LLM",
|
||||
enabled=enabled,
|
||||
)
|
||||
else:
|
||||
# 删除该 umo 的所有规则
|
||||
await sp.clear_async("umo", umo)
|
||||
return Response().ok({"message": "所有规则已删除", "umo": umo}).__dict__
|
||||
return result
|
||||
session_id = data.get("session_id")
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
await self._update_single_session_llm(session_id, enabled)
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"LLM已{'启用' if enabled else '禁用'}",
|
||||
"session_id": session_id,
|
||||
"llm_enabled": enabled,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"删除会话规则失败: {e!s}")
|
||||
return Response().error(f"删除会话规则失败: {e!s}").__dict__
|
||||
error_msg = f"更新会话LLM状态失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话LLM状态失败: {e!s}").__dict__
|
||||
|
||||
async def batch_delete_session_rule(self):
|
||||
"""批量删除多个 umo 的自定义规则
|
||||
async def _update_single_session_tts(self, session_id: str, enabled: bool):
|
||||
"""更新单个会话的TTS状态的内部方法"""
|
||||
SessionServiceManager.set_tts_status_for_session(session_id, enabled)
|
||||
|
||||
请求体:
|
||||
{
|
||||
"umos": ["平台:消息类型:会话ID", ...] // umo 列表
|
||||
}
|
||||
"""
|
||||
async def update_session_tts(self):
|
||||
"""更新指定会话的TTS启停状态,支持批量操作"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
umos = data.get("umos", [])
|
||||
is_batch = data.get("is_batch", False)
|
||||
enabled = data.get("enabled")
|
||||
|
||||
if not umos:
|
||||
return Response().error("缺少必要参数: umos").__dict__
|
||||
if enabled is None:
|
||||
return Response().error("缺少必要参数: enabled").__dict__
|
||||
|
||||
if not isinstance(umos, list):
|
||||
return Response().error("参数 umos 必须是数组").__dict__
|
||||
if is_batch:
|
||||
session_ids = data.get("session_ids", [])
|
||||
if not session_ids:
|
||||
return Response().error("缺少必要参数: session_ids").__dict__
|
||||
|
||||
# 批量删除
|
||||
deleted_count = 0
|
||||
failed_umos = []
|
||||
for umo in umos:
|
||||
try:
|
||||
await sp.clear_async("umo", umo)
|
||||
deleted_count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"删除 umo {umo} 的规则失败: {e!s}")
|
||||
failed_umos.append(umo)
|
||||
|
||||
if failed_umos:
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"已删除 {deleted_count} 条规则,{len(failed_umos)} 条删除失败",
|
||||
"deleted_count": deleted_count,
|
||||
"failed_umos": failed_umos,
|
||||
}
|
||||
)
|
||||
.__dict__
|
||||
result = await self._handle_batch_operation(
|
||||
session_ids,
|
||||
self._update_single_session_tts,
|
||||
f"{'启用' if enabled else '禁用'}TTS",
|
||||
enabled=enabled,
|
||||
)
|
||||
else:
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"已删除 {deleted_count} 条规则",
|
||||
"deleted_count": deleted_count,
|
||||
}
|
||||
)
|
||||
.__dict__
|
||||
return result
|
||||
session_id = data.get("session_id")
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
await self._update_single_session_tts(session_id, enabled)
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"TTS已{'启用' if enabled else '禁用'}",
|
||||
"session_id": session_id,
|
||||
"tts_enabled": enabled,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"批量删除会话规则失败: {e!s}")
|
||||
return Response().error(f"批量删除会话规则失败: {e!s}").__dict__
|
||||
error_msg = f"更新会话TTS状态失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话TTS状态失败: {e!s}").__dict__
|
||||
|
||||
async def list_umos(self):
|
||||
"""列出所有有对话记录的 umo,从 Conversations 表中找
|
||||
|
||||
仅返回 umo 字符串列表,用于用户在创建规则时选择 umo
|
||||
"""
|
||||
async def update_session_name(self):
|
||||
"""更新指定会话的自定义名称"""
|
||||
try:
|
||||
# 从 Conversation 表获取所有 distinct user_id (即 umo)
|
||||
async with self.db_helper.get_db() as session:
|
||||
session: AsyncSession
|
||||
result = await session.execute(
|
||||
select(ConversationV2.user_id)
|
||||
.distinct()
|
||||
.order_by(ConversationV2.user_id)
|
||||
)
|
||||
umos = [row[0] for row in result.fetchall()]
|
||||
data = await request.get_json()
|
||||
session_id = data.get("session_id")
|
||||
custom_name = data.get("custom_name", "")
|
||||
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
# 使用 SessionServiceManager 更新会话名称
|
||||
SessionServiceManager.set_session_custom_name(session_id, custom_name)
|
||||
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"会话名称已更新为: {custom_name if custom_name.strip() else '已清除自定义名称'}",
|
||||
"session_id": session_id,
|
||||
"custom_name": custom_name,
|
||||
"display_name": SessionServiceManager.get_session_display_name(
|
||||
session_id,
|
||||
),
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
return Response().ok({"umos": umos}).__dict__
|
||||
except Exception as e:
|
||||
logger.error(f"获取 UMO 列表失败: {e!s}")
|
||||
return Response().error(f"获取 UMO 列表失败: {e!s}").__dict__
|
||||
error_msg = f"更新会话名称失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话名称失败: {e!s}").__dict__
|
||||
|
||||
async def update_session_status(self):
|
||||
"""更新指定会话的整体启停状态"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
session_id = data.get("session_id")
|
||||
session_enabled = data.get("session_enabled")
|
||||
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
if session_enabled is None:
|
||||
return Response().error("缺少必要参数: session_enabled").__dict__
|
||||
|
||||
# 使用 SessionServiceManager 更新会话整体状态
|
||||
SessionServiceManager.set_session_status(session_id, session_enabled)
|
||||
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"会话整体状态已更新为: {'启用' if session_enabled else '禁用'}",
|
||||
"session_id": session_id,
|
||||
"session_enabled": session_enabled,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"更新会话整体状态失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"更新会话整体状态失败: {e!s}").__dict__
|
||||
|
||||
async def delete_session(self):
|
||||
"""删除指定会话及其所有相关数据"""
|
||||
try:
|
||||
data = await request.get_json()
|
||||
session_id = data.get("session_id")
|
||||
|
||||
if not session_id:
|
||||
return Response().error("缺少必要参数: session_id").__dict__
|
||||
|
||||
# 删除会话的所有相关数据
|
||||
conversation_manager = self.core_lifecycle.conversation_manager
|
||||
|
||||
# 1. 删除会话的所有对话
|
||||
try:
|
||||
await conversation_manager.delete_conversations_by_user_id(session_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"删除会话 {session_id} 的对话失败: {e!s}")
|
||||
|
||||
# 2. 清除会话的偏好设置数据(清空该会话的所有配置)
|
||||
try:
|
||||
await sp.clear_async("umo", session_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"清除会话 {session_id} 的偏好设置失败: {e!s}")
|
||||
|
||||
return (
|
||||
Response()
|
||||
.ok(
|
||||
{
|
||||
"message": f"会话 {session_id} 及其相关所有对话数据已成功删除",
|
||||
"session_id": session_id,
|
||||
},
|
||||
)
|
||||
.__dict__
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"删除会话失败: {e!s}\n{traceback.format_exc()}"
|
||||
logger.error(error_msg)
|
||||
return Response().error(f"删除会话失败: {e!s}").__dict__
|
||||
|
||||
@@ -79,6 +79,7 @@ class AstrBotDashboard:
|
||||
self.persona_route = PersonaRoute(self.context, db, core_lifecycle)
|
||||
self.t2i_route = T2iRoute(self.context, core_lifecycle)
|
||||
self.kb_route = KnowledgeBaseRoute(self.context, core_lifecycle)
|
||||
self.memory_route = MemoryRoute(self.context, db, core_lifecycle)
|
||||
|
||||
self.app.add_url_rule(
|
||||
"/api/plug/<path:subpath>",
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
## What's Changed
|
||||
|
||||
**hot fix of v4.6.0**
|
||||
|
||||
fix(core.db): 修复升级后 webchat 相关对话数据未正确迁移的问题 ([#3745](https://github.com/AstrBotDevs/AstrBot/issues/3745))
|
||||
|
||||
---
|
||||
|
||||
1. 新增: 支持 gemini-3 系列的 thought signature ([#3698](https://github.com/AstrBotDevs/AstrBot/issues/3698))
|
||||
2. 新增: 支持知识库的 Agentic 检索功能 ([#3667](https://github.com/AstrBotDevs/AstrBot/issues/3667))
|
||||
3. 新增: 为知识库添加 URL 文档解析器 ([#3622](https://github.com/AstrBotDevs/AstrBot/issues/3622))
|
||||
4. 修复(core.platform): 修复启用多个企业微信智能机器人适配器时消息混乱的问题 ([#3693](https://github.com/AstrBotDevs/AstrBot/issues/3693))
|
||||
5. 修复: MCP Server 连接成功一段时间后,调用 mcp 工具时可能出现 `anyio.ClosedResourceError` 错误 ([#3700](https://github.com/AstrBotDevs/AstrBot/issues/3700))
|
||||
6. 新增(chat): 重构聊天组件结构并添加新功能 ([#3701](https://github.com/AstrBotDevs/AstrBot/issues/3701))
|
||||
7. 修复(dashboard.i18n): 完善缺失的英文国际化键值 ([#3699](https://github.com/AstrBotDevs/AstrBot/issues/3699))
|
||||
8. 重构: 实现 WebChat 会话管理及从版本 4.6 迁移到 4.7
|
||||
9. 持续集成(docker-build): 每日构建 Nightly 版本 Docker 镜像 ([#3120](https://github.com/AstrBotDevs/AstrBot/issues/3120))
|
||||
|
||||
---
|
||||
|
||||
1. feat: add supports for gemini-3 series thought signature ([#3698](https://github.com/AstrBotDevs/AstrBot/issues/3698))
|
||||
2. feat: supports knowledge base agentic search ([#3667](https://github.com/AstrBotDevs/AstrBot/issues/3667))
|
||||
3. feat: Add URL document parser for knowledge base ([#3622](https://github.com/AstrBotDevs/AstrBot/issues/3622))
|
||||
4. fix(core.platform): fix message mix-up issue when enabling multiple WeCom AI Bot adapters ([#3693](https://github.com/AstrBotDevs/AstrBot/issues/3693))
|
||||
5. fix: fix `anyio.ClosedResourceError` that may occur when calling mcp tools after a period of successful connection to MCP Server ([#3700](https://github.com/AstrBotDevs/AstrBot/issues/3700))
|
||||
6. feat(chat): refactor chat component structure and add new features ([#3701](https://github.com/AstrBotDevs/AstrBot/issues/3701))
|
||||
7. fix(dashboard.i18n): complete the missing i18n keys for en([#3699](https://github.com/AstrBotDevs/AstrBot/issues/3699))
|
||||
8. refactor: Implement WebChat session management and migration from version 4.6 to 4.7
|
||||
9. ci(docker-build): build nightly image everyday ([#3120](https://github.com/AstrBotDevs/AstrBot/issues/3120))
|
||||
@@ -1,18 +0,0 @@
|
||||
## What's Changed
|
||||
|
||||
重构:
|
||||
- 将 Dify、Coze、阿里云百炼应用等 LLMOps 提供商迁移到 Agent 执行器层,理清和本地 Agent 执行器的边界
|
||||
- 将「会话管理」功能重构为「自定义规则」功能,理清和多配置文件功能的边界。详见:[自定义规则](https://docs.astrbot.app/use/custom-rules.html)
|
||||
|
||||
优化:
|
||||
- Dify、阿里云百炼应用支持流式输出
|
||||
- 防止分段回复正则表达式解析错误导致消息不发送
|
||||
- 群聊上下文感知记录 At 信息
|
||||
- 优化模型提供商页面的测试提供商功能
|
||||
|
||||
新增:
|
||||
- 支持在配置文件页面快速测试对话
|
||||
- 为配置文件配置项内容添加国际化支持
|
||||
|
||||
修复:
|
||||
- 在更新 MCP Server 配置后,MCP 无法正常重启的问题
|
||||
@@ -1,22 +0,0 @@
|
||||
## What's Changed
|
||||
|
||||
### 修复了自定义规则页面无法设置插件和知识库的规则的问题
|
||||
|
||||
---
|
||||
|
||||
重构:
|
||||
- 将 Dify、Coze、阿里云百炼应用等 LLMOps 提供商迁移到 Agent 执行器层,理清和本地 Agent 执行器的边界。详见:[Agent 执行器](https://docs.astrbot.app/use/agent-runner.html)
|
||||
- 将「会话管理」功能重构为「自定义规则」功能,理清和多配置文件功能的边界。详见:[自定义规则](https://docs.astrbot.app/use/custom-rules.html)
|
||||
|
||||
优化:
|
||||
- Dify、阿里云百炼应用支持流式输出
|
||||
- 防止分段回复正则表达式解析错误导致消息不发送
|
||||
- 群聊上下文感知记录 At 信息
|
||||
- 优化模型提供商页面的测试提供商功能
|
||||
|
||||
新增:
|
||||
- 支持在配置文件页面快速测试对话
|
||||
- 为配置文件配置项内容添加国际化支持
|
||||
|
||||
修复:
|
||||
- 在更新 MCP Server 配置后,MCP 无法正常重启的问题
|
||||
@@ -1,25 +0,0 @@
|
||||
## What's Changed
|
||||
|
||||
1. 修复使用非默认配置文件情况下时,第三方 Agent Runner (Dify、Coze、阿里云百炼应用等)无法正常工作的问题
|
||||
2. 修复当“聊天模型”未设置,并且模型提供商中仅有 Agent Runner 时,无法正常使用 Agent Runner 的问题
|
||||
3. 修复部分情况下报错 `pydantic_core._pydantic_core.ValidationError: 1 validation error for Message content` 的问题
|
||||
4. 新增群聊模式下的专用图片转述模型配置 ([#3822](https://github.com/AstrBotDevs/AstrBot/issues/3822))
|
||||
|
||||
---
|
||||
|
||||
重构:
|
||||
- 将 Dify、Coze、阿里云百炼应用等 LLMOps 提供商迁移到 Agent 执行器层,理清和本地 Agent 执行器的边界。详见:[Agent 执行器](https://docs.astrbot.app/use/agent-runner.html)
|
||||
- 将「会话管理」功能重构为「自定义规则」功能,理清和多配置文件功能的边界。详见:[自定义规则](https://docs.astrbot.app/use/custom-rules.html)
|
||||
|
||||
优化:
|
||||
- Dify、阿里云百炼应用支持流式输出
|
||||
- 防止分段回复正则表达式解析错误导致消息不发送
|
||||
- 群聊上下文感知记录 At 信息
|
||||
- 优化模型提供商页面的测试提供商功能
|
||||
|
||||
新增:
|
||||
- 支持在配置文件页面快速测试对话
|
||||
- 为配置文件配置项内容添加国际化支持
|
||||
|
||||
修复:
|
||||
- 在更新 MCP Server 配置后,MCP 无法正常重启的问题
|
||||
@@ -1,7 +0,0 @@
|
||||
## What's Changed
|
||||
|
||||
1. 修复:assistant message 中 tool_call 存在但 content 不存在时,导致验证错误的问题 ([#3862](https://github.com/AstrBotDevs/AstrBot/issues/3862))
|
||||
2. 修复:fix: aiocqhttp 适配器 NapCat 文件名获取为空 ([#3853](https://github.com/AstrBotDevs/AstrBot/issues/3853))
|
||||
3. 新增:升级所有插件按钮
|
||||
4. 新增:/provider 指令支持同时测试提供商可用性
|
||||
5. 优化:主动回复的 prompt
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 11 KiB |
@@ -84,11 +84,9 @@
|
||||
v-model:prompt="prompt"
|
||||
:stagedImagesUrl="stagedImagesUrl"
|
||||
:stagedAudioUrl="stagedAudioUrl"
|
||||
:disabled="isStreaming"
|
||||
:disabled="isStreaming || isConvRunning"
|
||||
:enableStreaming="enableStreaming"
|
||||
:isRecording="isRecording"
|
||||
:session-id="currSessionId || null"
|
||||
:current-session="getCurrentSession"
|
||||
@send="handleSendMessage"
|
||||
@toggleStreaming="toggleStreaming"
|
||||
@removeImage="removeImage"
|
||||
|
||||
@@ -11,14 +11,7 @@
|
||||
style="width: 100%; resize: none; outline: none; border: 1px solid var(--v-theme-border); border-radius: 12px; padding: 8px 16px; min-height: 40px; font-family: inherit; font-size: 16px; background-color: var(--v-theme-surface);"></textarea>
|
||||
<div style="display: flex; justify-content: space-between; align-items: center; padding: 0px 12px;">
|
||||
<div style="display: flex; justify-content: flex-start; margin-top: 4px; align-items: center; gap: 8px;">
|
||||
<ConfigSelector
|
||||
:session-id="sessionId || null"
|
||||
:platform-id="sessionPlatformId"
|
||||
:is-group="sessionIsGroup"
|
||||
:initial-config-id="props.configId"
|
||||
@config-changed="handleConfigChange"
|
||||
/>
|
||||
<ProviderModelSelector v-if="showProviderSelector" ref="providerModelSelectorRef" />
|
||||
<ProviderModelSelector ref="providerModelSelectorRef" />
|
||||
|
||||
<v-tooltip :text="enableStreaming ? tm('streaming.enabled') : tm('streaming.disabled')" location="top">
|
||||
<template v-slot:activator="{ props }">
|
||||
@@ -65,11 +58,9 @@
|
||||
</template>
|
||||
|
||||
<script setup lang="ts">
|
||||
import { ref, computed, onMounted, onBeforeUnmount } from 'vue';
|
||||
import { ref, computed, onMounted, onBeforeUnmount, watch } from 'vue';
|
||||
import { useModuleI18n } from '@/i18n/composables';
|
||||
import ProviderModelSelector from './ProviderModelSelector.vue';
|
||||
import ConfigSelector from './ConfigSelector.vue';
|
||||
import type { Session } from '@/composables/useSessions';
|
||||
|
||||
interface Props {
|
||||
prompt: string;
|
||||
@@ -78,16 +69,9 @@ interface Props {
|
||||
disabled: boolean;
|
||||
enableStreaming: boolean;
|
||||
isRecording: boolean;
|
||||
sessionId?: string | null;
|
||||
currentSession?: Session | null;
|
||||
configId?: string | null;
|
||||
}
|
||||
|
||||
const props = withDefaults(defineProps<Props>(), {
|
||||
sessionId: null,
|
||||
currentSession: null,
|
||||
configId: null
|
||||
});
|
||||
const props = defineProps<Props>();
|
||||
|
||||
const emit = defineEmits<{
|
||||
'update:prompt': [value: string];
|
||||
@@ -106,16 +90,12 @@ const { tm } = useModuleI18n('features/chat');
|
||||
const inputField = ref<HTMLTextAreaElement | null>(null);
|
||||
const imageInputRef = ref<HTMLInputElement | null>(null);
|
||||
const providerModelSelectorRef = ref<InstanceType<typeof ProviderModelSelector> | null>(null);
|
||||
const showProviderSelector = ref(true);
|
||||
|
||||
const localPrompt = computed({
|
||||
get: () => props.prompt,
|
||||
set: (value) => emit('update:prompt', value)
|
||||
});
|
||||
|
||||
const sessionPlatformId = computed(() => props.currentSession?.platform_id || 'webchat');
|
||||
const sessionIsGroup = computed(() => Boolean(props.currentSession?.is_group));
|
||||
|
||||
const canSend = computed(() => {
|
||||
return (props.prompt && props.prompt.trim()) || props.stagedImagesUrl.length > 0 || props.stagedAudioUrl;
|
||||
});
|
||||
@@ -188,16 +168,7 @@ function handleRecordClick() {
|
||||
}
|
||||
}
|
||||
|
||||
function handleConfigChange(payload: { configId: string; agentRunnerType: string }) {
|
||||
const runnerType = (payload.agentRunnerType || '').toLowerCase();
|
||||
const isInternal = runnerType === 'internal' || runnerType === 'local';
|
||||
showProviderSelector.value = isInternal;
|
||||
}
|
||||
|
||||
function getCurrentSelection() {
|
||||
if (!showProviderSelector.value) {
|
||||
return null;
|
||||
}
|
||||
return providerModelSelectorRef.value?.getCurrentSelection();
|
||||
}
|
||||
|
||||
|
||||
@@ -1,313 +0,0 @@
|
||||
<template>
|
||||
<div>
|
||||
<v-tooltip text="选择用于当前会话的配置文件" location="top">
|
||||
<template #activator="{ props: tooltipProps }">
|
||||
<v-chip
|
||||
v-bind="tooltipProps"
|
||||
class="text-none config-chip"
|
||||
variant="tonal"
|
||||
size="x-small"
|
||||
rounded="lg"
|
||||
@click="openDialog"
|
||||
:disabled="loadingConfigs || saving"
|
||||
>
|
||||
<v-icon start size="14">mdi-cog</v-icon>
|
||||
{{ selectedConfigLabel }}
|
||||
</v-chip>
|
||||
</template>
|
||||
</v-tooltip>
|
||||
|
||||
<v-dialog v-model="dialog" max-width="480" persistent>
|
||||
<v-card>
|
||||
<v-card-title class="d-flex align-center justify-space-between">
|
||||
<span>选择配置文件</span>
|
||||
<v-btn icon variant="text" @click="closeDialog">
|
||||
<v-icon>mdi-close</v-icon>
|
||||
</v-btn>
|
||||
</v-card-title>
|
||||
<v-card-text>
|
||||
<div v-if="loadingConfigs" class="text-center py-6">
|
||||
<v-progress-circular indeterminate color="primary"></v-progress-circular>
|
||||
</div>
|
||||
|
||||
<v-list v-else class="config-list" density="comfortable">
|
||||
<v-list-item
|
||||
v-for="config in configOptions"
|
||||
:key="config.id"
|
||||
:active="tempSelectedConfig === config.id"
|
||||
rounded="lg"
|
||||
variant="text"
|
||||
@click="tempSelectedConfig = config.id"
|
||||
>
|
||||
<v-list-item-title>{{ config.name }}</v-list-item-title>
|
||||
<v-list-item-subtitle class="text-caption text-grey">
|
||||
{{ config.id }}
|
||||
</v-list-item-subtitle>
|
||||
<template #append>
|
||||
<v-icon v-if="tempSelectedConfig === config.id" color="primary">mdi-check</v-icon>
|
||||
</template>
|
||||
</v-list-item>
|
||||
<div v-if="configOptions.length === 0" class="text-center text-body-2 text-medium-emphasis">
|
||||
暂无可选配置,请先在配置页创建。
|
||||
</div>
|
||||
</v-list>
|
||||
</v-card-text>
|
||||
<v-card-actions>
|
||||
<v-spacer></v-spacer>
|
||||
<v-btn variant="text" @click="closeDialog">取消</v-btn>
|
||||
<v-btn
|
||||
color="primary"
|
||||
@click="confirmSelection"
|
||||
:disabled="!tempSelectedConfig"
|
||||
:loading="saving"
|
||||
>
|
||||
应用
|
||||
</v-btn>
|
||||
</v-card-actions>
|
||||
</v-card>
|
||||
</v-dialog>
|
||||
</div>
|
||||
</template>
|
||||
|
||||
<script setup lang="ts">
|
||||
import { computed, onMounted, ref, watch } from 'vue';
|
||||
import axios from 'axios';
|
||||
import { useToast } from '@/utils/toast';
|
||||
|
||||
interface ConfigInfo {
|
||||
id: string;
|
||||
name: string;
|
||||
}
|
||||
|
||||
interface ConfigChangedPayload {
|
||||
configId: string;
|
||||
agentRunnerType: string;
|
||||
}
|
||||
|
||||
const STORAGE_KEY = 'chat.selectedConfigId';
|
||||
|
||||
const props = withDefaults(defineProps<{
|
||||
sessionId?: string | null;
|
||||
platformId?: string;
|
||||
isGroup?: boolean;
|
||||
initialConfigId?: string | null;
|
||||
}>(), {
|
||||
sessionId: null,
|
||||
platformId: 'webchat',
|
||||
isGroup: false,
|
||||
initialConfigId: null
|
||||
});
|
||||
|
||||
const emit = defineEmits<{ 'config-changed': [ConfigChangedPayload] }>();
|
||||
|
||||
const configOptions = ref<ConfigInfo[]>([]);
|
||||
const loadingConfigs = ref(false);
|
||||
const dialog = ref(false);
|
||||
const tempSelectedConfig = ref('');
|
||||
const selectedConfigId = ref('default');
|
||||
const agentRunnerType = ref('local');
|
||||
const saving = ref(false);
|
||||
const pendingSync = ref(false);
|
||||
const routingEntries = ref<Array<{ pattern: string; confId: string }>>([]);
|
||||
const configCache = ref<Record<string, string>>({});
|
||||
|
||||
const toast = useToast();
|
||||
|
||||
const normalizedSessionId = computed(() => {
|
||||
const id = props.sessionId?.trim();
|
||||
return id ? id : null;
|
||||
});
|
||||
|
||||
const hasActiveSession = computed(() => !!normalizedSessionId.value);
|
||||
|
||||
const messageType = computed(() => (props.isGroup ? 'GroupMessage' : 'FriendMessage'));
|
||||
|
||||
const username = computed(() => localStorage.getItem('user') || 'guest');
|
||||
|
||||
const sessionKey = computed(() => {
|
||||
if (!normalizedSessionId.value) {
|
||||
return null;
|
||||
}
|
||||
return `${props.platformId}!${username.value}!${normalizedSessionId.value}`;
|
||||
});
|
||||
|
||||
const targetUmo = computed(() => {
|
||||
if (!sessionKey.value) {
|
||||
return null;
|
||||
}
|
||||
return `${props.platformId}:${messageType.value}:${sessionKey.value}`;
|
||||
});
|
||||
|
||||
const selectedConfigLabel = computed(() => {
|
||||
const target = configOptions.value.find((item) => item.id === selectedConfigId.value);
|
||||
return target?.name || selectedConfigId.value || 'default';
|
||||
});
|
||||
|
||||
function openDialog() {
|
||||
tempSelectedConfig.value = selectedConfigId.value;
|
||||
dialog.value = true;
|
||||
}
|
||||
|
||||
function closeDialog() {
|
||||
dialog.value = false;
|
||||
}
|
||||
|
||||
async function fetchConfigList() {
|
||||
loadingConfigs.value = true;
|
||||
try {
|
||||
const res = await axios.get('/api/config/abconfs');
|
||||
configOptions.value = res.data.data?.info_list || [];
|
||||
} catch (error) {
|
||||
console.error('加载配置文件列表失败', error);
|
||||
configOptions.value = [];
|
||||
} finally {
|
||||
loadingConfigs.value = false;
|
||||
}
|
||||
}
|
||||
|
||||
async function fetchRoutingEntries() {
|
||||
try {
|
||||
const res = await axios.get('/api/config/umo_abconf_routes');
|
||||
const routing = res.data.data?.routing || {};
|
||||
routingEntries.value = Object.entries(routing).map(([pattern, confId]) => ({
|
||||
pattern,
|
||||
confId: confId as string
|
||||
}));
|
||||
} catch (error) {
|
||||
console.error('获取配置路由失败', error);
|
||||
routingEntries.value = [];
|
||||
}
|
||||
}
|
||||
|
||||
function matchesPattern(pattern: string, target: string): boolean {
|
||||
const parts = pattern.split(':');
|
||||
const targetParts = target.split(':');
|
||||
if (parts.length !== 3 || targetParts.length !== 3) {
|
||||
return false;
|
||||
}
|
||||
return parts.every((part, index) => part === '' || part === '*' || part === targetParts[index]);
|
||||
}
|
||||
|
||||
function resolveConfigId(umo: string | null): string {
|
||||
if (!umo) {
|
||||
return 'default';
|
||||
}
|
||||
for (const entry of routingEntries.value) {
|
||||
if (matchesPattern(entry.pattern, umo)) {
|
||||
return entry.confId;
|
||||
}
|
||||
}
|
||||
return 'default';
|
||||
}
|
||||
|
||||
async function getAgentRunnerType(confId: string): Promise<string> {
|
||||
if (configCache.value[confId]) {
|
||||
return configCache.value[confId];
|
||||
}
|
||||
try {
|
||||
const res = await axios.get('/api/config/abconf', {
|
||||
params: { id: confId }
|
||||
});
|
||||
const type = res.data.data?.config?.provider_settings?.agent_runner_type || 'local';
|
||||
configCache.value[confId] = type;
|
||||
return type;
|
||||
} catch (error) {
|
||||
console.error('获取配置文件详情失败', error);
|
||||
return 'local';
|
||||
}
|
||||
}
|
||||
|
||||
async function setSelection(confId: string) {
|
||||
const normalized = confId || 'default';
|
||||
selectedConfigId.value = normalized;
|
||||
const runnerType = await getAgentRunnerType(normalized);
|
||||
agentRunnerType.value = runnerType;
|
||||
emit('config-changed', {
|
||||
configId: normalized,
|
||||
agentRunnerType: runnerType
|
||||
});
|
||||
}
|
||||
|
||||
async function applySelectionToBackend(confId: string): Promise<boolean> {
|
||||
if (!targetUmo.value) {
|
||||
pendingSync.value = true;
|
||||
return true;
|
||||
}
|
||||
saving.value = true;
|
||||
try {
|
||||
await axios.post('/api/config/umo_abconf_route/update', {
|
||||
umo: targetUmo.value,
|
||||
conf_id: confId
|
||||
});
|
||||
const filtered = routingEntries.value.filter((entry) => entry.pattern !== targetUmo.value);
|
||||
filtered.push({ pattern: targetUmo.value, confId });
|
||||
routingEntries.value = filtered;
|
||||
return true;
|
||||
} catch (error) {
|
||||
const err = error as any;
|
||||
console.error('更新配置文件失败', err);
|
||||
toast.error(err?.response?.data?.message || '配置文件应用失败');
|
||||
return false;
|
||||
} finally {
|
||||
saving.value = false;
|
||||
}
|
||||
}
|
||||
|
||||
async function confirmSelection() {
|
||||
if (!tempSelectedConfig.value) {
|
||||
return;
|
||||
}
|
||||
const previousId = selectedConfigId.value;
|
||||
await setSelection(tempSelectedConfig.value);
|
||||
localStorage.setItem(STORAGE_KEY, tempSelectedConfig.value);
|
||||
const applied = await applySelectionToBackend(tempSelectedConfig.value);
|
||||
if (!applied) {
|
||||
localStorage.setItem(STORAGE_KEY, previousId);
|
||||
await setSelection(previousId);
|
||||
}
|
||||
dialog.value = false;
|
||||
}
|
||||
|
||||
async function syncSelectionForSession() {
|
||||
if (!targetUmo.value) {
|
||||
pendingSync.value = true;
|
||||
return;
|
||||
}
|
||||
if (pendingSync.value) {
|
||||
pendingSync.value = false;
|
||||
await applySelectionToBackend(selectedConfigId.value);
|
||||
return;
|
||||
}
|
||||
await fetchRoutingEntries();
|
||||
const resolved = resolveConfigId(targetUmo.value);
|
||||
await setSelection(resolved);
|
||||
localStorage.setItem(STORAGE_KEY, resolved);
|
||||
}
|
||||
|
||||
watch(
|
||||
() => [props.sessionId, props.platformId, props.isGroup],
|
||||
async () => {
|
||||
await syncSelectionForSession();
|
||||
}
|
||||
);
|
||||
|
||||
onMounted(async () => {
|
||||
await fetchConfigList();
|
||||
const stored = props.initialConfigId || localStorage.getItem(STORAGE_KEY) || 'default';
|
||||
selectedConfigId.value = stored;
|
||||
await setSelection(stored);
|
||||
await syncSelectionForSession();
|
||||
});
|
||||
</script>
|
||||
|
||||
<style scoped>
|
||||
.config-chip {
|
||||
cursor: pointer;
|
||||
justify-content: flex-start;
|
||||
}
|
||||
|
||||
.config-list {
|
||||
max-height: 360px;
|
||||
overflow-y: auto;
|
||||
}
|
||||
</style>
|
||||
@@ -64,7 +64,7 @@
|
||||
@click.stop="$emit('editTitle', item.session_id, item.display_name)" />
|
||||
<v-btn icon="mdi-delete" size="x-small" variant="text"
|
||||
class="delete-conversation-btn" color="error"
|
||||
@click.stop="handleDeleteConversation(item)" />
|
||||
@click.stop="$emit('deleteConversation', item.session_id)" />
|
||||
</div>
|
||||
</template>
|
||||
</v-list-item>
|
||||
@@ -85,7 +85,7 @@
|
||||
|
||||
<script setup lang="ts">
|
||||
import { ref } from 'vue';
|
||||
import { useModuleI18n } from '@/i18n/composables';
|
||||
import { useI18n, useModuleI18n } from '@/i18n/composables';
|
||||
import type { Session } from '@/composables/useSessions';
|
||||
|
||||
interface Props {
|
||||
@@ -109,6 +109,7 @@ const emit = defineEmits<{
|
||||
}>();
|
||||
|
||||
const { tm } = useModuleI18n('features/chat');
|
||||
const { t } = useI18n();
|
||||
|
||||
const sidebarCollapsed = ref(true);
|
||||
const sidebarHovered = ref(false);
|
||||
@@ -158,14 +159,6 @@ function handleSidebarMouseLeave() {
|
||||
}
|
||||
sidebarHoverExpanded.value = false;
|
||||
}
|
||||
|
||||
function handleDeleteConversation(session: Session) {
|
||||
const sessionTitle = session.display_name || tm('conversation.newConversation');
|
||||
const message = tm('conversation.confirmDelete', { name: sessionTitle });
|
||||
if (window.confirm(message)) {
|
||||
emit('deleteConversation', session.session_id);
|
||||
}
|
||||
}
|
||||
</script>
|
||||
|
||||
<style scoped>
|
||||
@@ -300,4 +293,3 @@ function handleDeleteConversation(session: Session) {
|
||||
}
|
||||
}
|
||||
</style>
|
||||
|
||||
|
||||
@@ -549,7 +549,7 @@ export default {
|
||||
}
|
||||
|
||||
.bot-embedded-image {
|
||||
max-width: 40%;
|
||||
max-width: 80%;
|
||||
width: auto;
|
||||
height: auto;
|
||||
border-radius: 8px;
|
||||
@@ -558,6 +558,10 @@ export default {
|
||||
transition: transform 0.2s ease;
|
||||
}
|
||||
|
||||
.bot-embedded-image:hover {
|
||||
transform: scale(1.02);
|
||||
}
|
||||
|
||||
.embedded-audio {
|
||||
width: 300px;
|
||||
margin-top: 8px;
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
<!-- 选择提供商和模型按钮 -->
|
||||
<v-chip class="text-none" variant="tonal" size="x-small"
|
||||
v-if="selectedProviderId && selectedModelName" @click="openDialog">
|
||||
<v-icon start size="14">mdi-creation</v-icon>
|
||||
{{ selectedProviderId }} / {{ selectedModelName }}
|
||||
</v-chip>
|
||||
<v-chip variant="tonal" rounded="xl" size="x-small" v-else @click="openDialog">
|
||||
|
||||
@@ -1,319 +0,0 @@
|
||||
<template>
|
||||
<v-card class="standalone-chat-card" elevation="0" rounded="0">
|
||||
<v-card-text class="standalone-chat-container">
|
||||
<div class="chat-layout">
|
||||
<!-- 聊天内容区域 -->
|
||||
<div class="chat-content-panel">
|
||||
<MessageList v-if="messages && messages.length > 0" :messages="messages" :isDark="isDark"
|
||||
:isStreaming="isStreaming || isConvRunning" @openImagePreview="openImagePreview"
|
||||
ref="messageList" />
|
||||
<div class="welcome-container fade-in" v-else>
|
||||
<div class="welcome-title">
|
||||
<span>Hello, I'm</span>
|
||||
<span class="bot-name">AstrBot ⭐</span>
|
||||
</div>
|
||||
<p class="text-caption text-medium-emphasis mt-2">
|
||||
测试配置: {{ configId || 'default' }}
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<!-- 输入区域 -->
|
||||
<ChatInput
|
||||
v-model:prompt="prompt"
|
||||
:stagedImagesUrl="stagedImagesUrl"
|
||||
:stagedAudioUrl="stagedAudioUrl"
|
||||
:disabled="isStreaming"
|
||||
:enableStreaming="enableStreaming"
|
||||
:isRecording="isRecording"
|
||||
:session-id="currSessionId || null"
|
||||
:current-session="getCurrentSession"
|
||||
:config-id="configId"
|
||||
@send="handleSendMessage"
|
||||
@toggleStreaming="toggleStreaming"
|
||||
@removeImage="removeImage"
|
||||
@removeAudio="removeAudio"
|
||||
@startRecording="handleStartRecording"
|
||||
@stopRecording="handleStopRecording"
|
||||
@pasteImage="handlePaste"
|
||||
@fileSelect="handleFileSelect"
|
||||
ref="chatInputRef"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</v-card-text>
|
||||
</v-card>
|
||||
|
||||
<!-- 图片预览对话框 -->
|
||||
<v-dialog v-model="imagePreviewDialog" max-width="90vw" max-height="90vh">
|
||||
<v-card class="image-preview-card" elevation="8">
|
||||
<v-card-title class="d-flex justify-space-between align-center pa-4">
|
||||
<span>{{ t('core.common.imagePreview') }}</span>
|
||||
<v-btn icon="mdi-close" variant="text" @click="imagePreviewDialog = false" />
|
||||
</v-card-title>
|
||||
<v-card-text class="text-center pa-4">
|
||||
<img :src="previewImageUrl" class="preview-image-large" />
|
||||
</v-card-text>
|
||||
</v-card>
|
||||
</v-dialog>
|
||||
</template>
|
||||
|
||||
<script setup lang="ts">
|
||||
import { ref, computed, onMounted, onBeforeUnmount, nextTick } from 'vue';
|
||||
import axios from 'axios';
|
||||
import { useCustomizerStore } from '@/stores/customizer';
|
||||
import { useI18n, useModuleI18n } from '@/i18n/composables';
|
||||
import { useTheme } from 'vuetify';
|
||||
import MessageList from '@/components/chat/MessageList.vue';
|
||||
import ChatInput from '@/components/chat/ChatInput.vue';
|
||||
import { useMessages } from '@/composables/useMessages';
|
||||
import { useMediaHandling } from '@/composables/useMediaHandling';
|
||||
import { useRecording } from '@/composables/useRecording';
|
||||
import { useToast } from '@/utils/toast';
|
||||
|
||||
interface Props {
|
||||
configId?: string | null;
|
||||
}
|
||||
|
||||
const props = withDefaults(defineProps<Props>(), {
|
||||
configId: null
|
||||
});
|
||||
|
||||
const { t } = useI18n();
|
||||
const { error: showError } = useToast();
|
||||
|
||||
// UI 状态
|
||||
const imagePreviewDialog = ref(false);
|
||||
const previewImageUrl = ref('');
|
||||
|
||||
// 会话管理(不使用 useSessions 避免路由跳转)
|
||||
const currSessionId = ref('');
|
||||
const getCurrentSession = computed(() => null); // 独立测试模式不需要会话信息
|
||||
|
||||
async function newSession() {
|
||||
try {
|
||||
const response = await axios.get('/api/chat/new_session');
|
||||
const sessionId = response.data.data.session_id;
|
||||
currSessionId.value = sessionId;
|
||||
return sessionId;
|
||||
} catch (err) {
|
||||
console.error(err);
|
||||
throw err;
|
||||
}
|
||||
}
|
||||
|
||||
function updateSessionTitle(sessionId: string, title: string) {
|
||||
// 独立模式不需要更新会话标题
|
||||
}
|
||||
|
||||
function getSessions() {
|
||||
// 独立模式不需要加载会话列表
|
||||
}
|
||||
|
||||
const {
|
||||
stagedImagesName,
|
||||
stagedImagesUrl,
|
||||
stagedAudioUrl,
|
||||
getMediaFile,
|
||||
processAndUploadImage,
|
||||
handlePaste,
|
||||
removeImage,
|
||||
removeAudio,
|
||||
clearStaged,
|
||||
cleanupMediaCache
|
||||
} = useMediaHandling();
|
||||
|
||||
const { isRecording, startRecording: startRec, stopRecording: stopRec } = useRecording();
|
||||
|
||||
const {
|
||||
messages,
|
||||
isStreaming,
|
||||
isConvRunning,
|
||||
enableStreaming,
|
||||
getSessionMessages: getSessionMsg,
|
||||
sendMessage: sendMsg,
|
||||
toggleStreaming
|
||||
} = useMessages(currSessionId, getMediaFile, updateSessionTitle, getSessions);
|
||||
|
||||
// 组件引用
|
||||
const messageList = ref<InstanceType<typeof MessageList> | null>(null);
|
||||
const chatInputRef = ref<InstanceType<typeof ChatInput> | null>(null);
|
||||
|
||||
// 输入状态
|
||||
const prompt = ref('');
|
||||
|
||||
const isDark = computed(() => useCustomizerStore().uiTheme === 'PurpleThemeDark');
|
||||
|
||||
function openImagePreview(imageUrl: string) {
|
||||
previewImageUrl.value = imageUrl;
|
||||
imagePreviewDialog.value = true;
|
||||
}
|
||||
|
||||
async function handleStartRecording() {
|
||||
await startRec();
|
||||
}
|
||||
|
||||
async function handleStopRecording() {
|
||||
const audioFilename = await stopRec();
|
||||
stagedAudioUrl.value = audioFilename;
|
||||
}
|
||||
|
||||
async function handleFileSelect(files: FileList) {
|
||||
for (const file of files) {
|
||||
await processAndUploadImage(file);
|
||||
}
|
||||
}
|
||||
|
||||
async function handleSendMessage() {
|
||||
if (!prompt.value.trim() && stagedImagesName.value.length === 0 && !stagedAudioUrl.value) {
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
if (!currSessionId.value) {
|
||||
await newSession();
|
||||
}
|
||||
|
||||
const promptToSend = prompt.value.trim();
|
||||
const imageNamesToSend = [...stagedImagesName.value];
|
||||
const audioNameToSend = stagedAudioUrl.value;
|
||||
|
||||
// 清空输入和附件
|
||||
prompt.value = '';
|
||||
clearStaged();
|
||||
|
||||
// 获取选择的提供商和模型
|
||||
const selection = chatInputRef.value?.getCurrentSelection();
|
||||
const selectedProviderId = selection?.providerId || '';
|
||||
const selectedModelName = selection?.modelName || '';
|
||||
|
||||
await sendMsg(
|
||||
promptToSend,
|
||||
imageNamesToSend,
|
||||
audioNameToSend,
|
||||
selectedProviderId,
|
||||
selectedModelName
|
||||
);
|
||||
|
||||
// 滚动到底部
|
||||
nextTick(() => {
|
||||
messageList.value?.scrollToBottom();
|
||||
});
|
||||
} catch (err) {
|
||||
console.error('Failed to send message:', err);
|
||||
showError(t('features.chat.errors.sendMessageFailed'));
|
||||
// 恢复输入内容,让用户可以重试
|
||||
// 注意:附件已经上传到服务器,所以不恢复附件
|
||||
}
|
||||
}
|
||||
|
||||
onMounted(async () => {
|
||||
// 独立模式在挂载时创建新会话
|
||||
try {
|
||||
await newSession();
|
||||
} catch (err) {
|
||||
console.error('Failed to create initial session:', err);
|
||||
showError(t('features.chat.errors.createSessionFailed'));
|
||||
}
|
||||
});
|
||||
|
||||
onBeforeUnmount(() => {
|
||||
cleanupMediaCache();
|
||||
});
|
||||
</script>
|
||||
|
||||
<style scoped>
|
||||
/* 基础动画 */
|
||||
@keyframes fadeIn {
|
||||
from {
|
||||
opacity: 0;
|
||||
transform: translateY(10px);
|
||||
}
|
||||
to {
|
||||
opacity: 1;
|
||||
transform: translateY(0);
|
||||
}
|
||||
}
|
||||
|
||||
.standalone-chat-card {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
max-height: 100%;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.standalone-chat-container {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
max-height: 100%;
|
||||
padding: 0;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.chat-layout {
|
||||
height: 100%;
|
||||
max-height: 100%;
|
||||
display: flex;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.chat-content-panel {
|
||||
height: 100%;
|
||||
max-height: 100%;
|
||||
width: 100%;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.conversation-header {
|
||||
display: flex;
|
||||
justify-content: space-between;
|
||||
align-items: center;
|
||||
padding: 8px;
|
||||
padding-left: 16px;
|
||||
border-bottom: 1px solid var(--v-theme-border);
|
||||
width: 100%;
|
||||
padding-right: 32px;
|
||||
flex-shrink: 0;
|
||||
}
|
||||
|
||||
.conversation-header-info h4 {
|
||||
margin: 0;
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.conversation-header-actions {
|
||||
display: flex;
|
||||
gap: 8px;
|
||||
align-items: center;
|
||||
}
|
||||
|
||||
.welcome-container {
|
||||
height: 100%;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
flex-direction: column;
|
||||
}
|
||||
|
||||
.welcome-title {
|
||||
font-size: 28px;
|
||||
margin-bottom: 8px;
|
||||
}
|
||||
|
||||
.bot-name {
|
||||
font-weight: 700;
|
||||
margin-left: 8px;
|
||||
color: var(--v-theme-secondary);
|
||||
}
|
||||
|
||||
.fade-in {
|
||||
animation: fadeIn 0.3s ease-in-out;
|
||||
}
|
||||
|
||||
.preview-image-large {
|
||||
max-width: 100%;
|
||||
max-height: 70vh;
|
||||
object-fit: contain;
|
||||
}
|
||||
</style>
|
||||
@@ -4,7 +4,7 @@
|
||||
:align-tabs="$vuetify.display.mobile ? 'left' : 'start'" color="deep-purple-accent-4" class="config-tabs">
|
||||
<v-tab v-for="(val, key, index) in metadata" :key="index" :value="index"
|
||||
style="font-weight: 1000; font-size: 15px">
|
||||
{{ tm(metadata[key]['name']) }}
|
||||
{{ metadata[key]['name'] }}
|
||||
</v-tab>
|
||||
</v-tabs>
|
||||
<v-tabs-window v-model="tab" class="config-tabs-window" :style="readonly ? 'pointer-events: none; opacity: 0.6;' : ''">
|
||||
@@ -59,17 +59,7 @@ export default {
|
||||
}
|
||||
},
|
||||
setup() {
|
||||
const { tm: tmConfig } = useModuleI18n('features/config');
|
||||
const { tm: tmMetadata } = useModuleI18n('features/config-metadata');
|
||||
|
||||
const tm = (key) => {
|
||||
const metadataResult = tmMetadata(key);
|
||||
if (!metadataResult.startsWith('[MISSING:') && !metadataResult.startsWith('[INVALID:')) {
|
||||
return metadataResult;
|
||||
}
|
||||
return tmConfig(key);
|
||||
};
|
||||
|
||||
const { tm } = useModuleI18n('features/config');
|
||||
return {
|
||||
tm
|
||||
};
|
||||
|
||||
@@ -7,10 +7,6 @@
|
||||
<v-icon start>mdi-message-text</v-icon>
|
||||
{{ tm('dialogs.addProvider.tabs.basic') }}
|
||||
</v-tab>
|
||||
<v-tab value="agent_runner" class="font-weight-medium px-3">
|
||||
<v-icon start>mdi-cogs</v-icon>
|
||||
{{ tm('dialogs.addProvider.tabs.agentRunner') }}
|
||||
</v-tab>
|
||||
<v-tab value="speech_to_text" class="font-weight-medium px-3">
|
||||
<v-icon start>mdi-microphone-message</v-icon>
|
||||
{{ tm('dialogs.addProvider.tabs.speechToText') }}
|
||||
@@ -31,7 +27,7 @@
|
||||
|
||||
<v-window v-model="activeProviderTab" class="mt-4">
|
||||
<v-window-item
|
||||
v-for="tabType in ['chat_completion', 'agent_runner', 'speech_to_text', 'text_to_speech', 'embedding', 'rerank']"
|
||||
v-for="tabType in ['chat_completion', 'speech_to_text', 'text_to_speech', 'embedding', 'rerank']"
|
||||
:key="tabType" :value="tabType">
|
||||
<v-row class="mt-1">
|
||||
<v-col v-for="(template, name) in getTemplatesByType(tabType)" :key="name" cols="12" sm="6"
|
||||
@@ -40,7 +36,7 @@
|
||||
@click="selectProviderTemplate(name)">
|
||||
<div class="provider-card-content">
|
||||
<div class="provider-card-text">
|
||||
<v-card-title class="provider-card-title">{{ name }}</v-card-title>
|
||||
<v-card-title class="provider-card-title">接入 {{ name }}</v-card-title>
|
||||
<v-card-text
|
||||
class="text-caption text-medium-emphasis provider-card-description">
|
||||
{{ getProviderDescription(template, name) }}
|
||||
@@ -58,7 +54,7 @@
|
||||
</v-col>
|
||||
<v-col v-if="Object.keys(getTemplatesByType(tabType)).length === 0" cols="12">
|
||||
<v-alert type="info" variant="tonal">
|
||||
{{ tm('dialogs.addProvider.noTemplates') }}
|
||||
{{ tm('dialogs.addProvider.noTemplates', { type: getTabTypeName(tabType) }) }}
|
||||
</v-alert>
|
||||
</v-col>
|
||||
</v-row>
|
||||
@@ -108,6 +104,19 @@ export default {
|
||||
this.$emit('update:show', value);
|
||||
}
|
||||
},
|
||||
|
||||
// 翻译消息的计算属性
|
||||
messages() {
|
||||
return {
|
||||
tabTypes: {
|
||||
'chat_completion': this.tm('providers.tabs.chatCompletion'),
|
||||
'speech_to_text': this.tm('providers.tabs.speechToText'),
|
||||
'text_to_speech': this.tm('providers.tabs.textToSpeech'),
|
||||
'embedding': this.tm('providers.tabs.embedding'),
|
||||
'rerank': this.tm('providers.tabs.rerank')
|
||||
}
|
||||
};
|
||||
}
|
||||
},
|
||||
methods: {
|
||||
closeDialog() {
|
||||
@@ -131,6 +140,11 @@ export default {
|
||||
// 从工具函数导入
|
||||
getProviderIcon,
|
||||
|
||||
// 获取Tab类型的中文名称
|
||||
getTabTypeName(tabType) {
|
||||
return this.messages.tabTypes[tabType] || tabType;
|
||||
},
|
||||
|
||||
// 获取提供商简介
|
||||
getProviderDescription(template, name) {
|
||||
return getProviderDescription(template, name, this.tm);
|
||||
|
||||
@@ -8,7 +8,7 @@ import PersonaSelector from './PersonaSelector.vue'
|
||||
import KnowledgeBaseSelector from './KnowledgeBaseSelector.vue'
|
||||
import PluginSetSelector from './PluginSetSelector.vue'
|
||||
import T2ITemplateEditor from './T2ITemplateEditor.vue'
|
||||
import { useI18n, useModuleI18n } from '@/i18n/composables'
|
||||
import { useI18n } from '@/i18n/composables'
|
||||
|
||||
|
||||
const props = defineProps({
|
||||
@@ -27,34 +27,6 @@ const props = defineProps({
|
||||
})
|
||||
|
||||
const { t } = useI18n()
|
||||
const { tm } = useModuleI18n('features/config-metadata')
|
||||
|
||||
// 翻译器函数 - 如果是国际化键则翻译,否则原样返回
|
||||
const translateIfKey = (value) => {
|
||||
if (!value || typeof value !== 'string') return value
|
||||
return tm(value)
|
||||
}
|
||||
|
||||
// 处理labels翻译 - labels可以是数组或国际化键
|
||||
const getTranslatedLabels = (itemMeta) => {
|
||||
if (!itemMeta?.labels) return null
|
||||
|
||||
// 如果labels是字符串(国际化键)
|
||||
if (typeof itemMeta.labels === 'string') {
|
||||
const translatedLabels = tm(itemMeta.labels)
|
||||
// 如果翻译成功且是数组,返回翻译结果
|
||||
if (Array.isArray(translatedLabels)) {
|
||||
return translatedLabels
|
||||
}
|
||||
}
|
||||
|
||||
// 如果labels是数组,直接返回
|
||||
if (Array.isArray(itemMeta.labels)) {
|
||||
return itemMeta.labels
|
||||
}
|
||||
|
||||
return null
|
||||
}
|
||||
|
||||
const dialog = ref(false)
|
||||
const currentEditingKey = ref('')
|
||||
@@ -129,21 +101,6 @@ function shouldShowItem(itemMeta, itemKey) {
|
||||
return true
|
||||
}
|
||||
|
||||
// 检查最外层的 object 是否应该显示
|
||||
function shouldShowSection() {
|
||||
const sectionMeta = props.metadata[props.metadataKey]
|
||||
if (!sectionMeta?.condition) {
|
||||
return true
|
||||
}
|
||||
for (const [conditionKey, expectedValue] of Object.entries(sectionMeta.condition)) {
|
||||
const actualValue = getValueBySelector(props.iterable, conditionKey)
|
||||
if (actualValue !== expectedValue) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
function hasVisibleItemsAfter(items, currentIndex) {
|
||||
const itemEntries = Object.entries(items)
|
||||
|
||||
@@ -157,40 +114,19 @@ function hasVisibleItemsAfter(items, currentIndex) {
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
function parseSpecialValue(value) {
|
||||
if (!value || typeof value !== 'string') {
|
||||
return { name: '', subtype: '' }
|
||||
}
|
||||
const [name, ...rest] = value.split(':')
|
||||
return {
|
||||
name,
|
||||
subtype: rest.join(':') || ''
|
||||
}
|
||||
}
|
||||
|
||||
function getSpecialName(value) {
|
||||
return parseSpecialValue(value).name
|
||||
}
|
||||
|
||||
function getSpecialSubtype(value) {
|
||||
return parseSpecialValue(value).subtype
|
||||
}
|
||||
|
||||
</script>
|
||||
|
||||
<template>
|
||||
|
||||
|
||||
<v-card v-if="shouldShowSection()" style="margin-bottom: 16px; padding-bottom: 8px; background-color: rgb(var(--v-theme-background));"
|
||||
rounded="md" variant="outlined">
|
||||
<v-card style="margin-bottom: 16px; padding-bottom: 8px; background-color: rgb(var(--v-theme-background));" rounded="md" variant="outlined">
|
||||
<v-card-text class="config-section" v-if="metadata[metadataKey]?.type === 'object'" style="padding-bottom: 8px;">
|
||||
<v-list-item-title class="config-title">
|
||||
{{ translateIfKey(metadata[metadataKey]?.description) }}
|
||||
{{ metadata[metadataKey]?.description }}
|
||||
</v-list-item-title>
|
||||
<v-list-item-subtitle class="config-hint">
|
||||
<span v-if="metadata[metadataKey]?.obvious_hint && metadata[metadataKey]?.hint" class="important-hint">‼️</span>
|
||||
{{ translateIfKey(metadata[metadataKey]?.hint) }}
|
||||
{{ metadata[metadataKey]?.hint }}
|
||||
</v-list-item-subtitle>
|
||||
</v-card-text>
|
||||
|
||||
@@ -204,13 +140,13 @@ function getSpecialSubtype(value) {
|
||||
<v-col cols="12" sm="6" class="property-info">
|
||||
<v-list-item density="compact">
|
||||
<v-list-item-title class="property-name">
|
||||
{{ translateIfKey(itemMeta?.description) || itemKey }}
|
||||
{{ itemMeta?.description || itemKey }}
|
||||
<span class="property-key">({{ itemKey }})</span>
|
||||
</v-list-item-title>
|
||||
|
||||
<v-list-item-subtitle class="property-hint">
|
||||
<span v-if="itemMeta?.obvious_hint && itemMeta?.hint" class="important-hint">‼️</span>
|
||||
{{ translateIfKey(itemMeta?.hint) }}
|
||||
{{ itemMeta?.hint }}
|
||||
</v-list-item-subtitle>
|
||||
</v-list-item>
|
||||
</v-col>
|
||||
@@ -218,12 +154,7 @@ function getSpecialSubtype(value) {
|
||||
<div class="w-100" v-if="!itemMeta?._special">
|
||||
<!-- Select input for JSON selector -->
|
||||
<v-select v-if="itemMeta?.options" v-model="createSelectorModel(itemKey).value"
|
||||
:items="(() => {
|
||||
const labels = getTranslatedLabels(itemMeta);
|
||||
return labels
|
||||
? itemMeta.options.map((value, index) => ({ title: labels[index] || value, value: value }))
|
||||
: itemMeta.options;
|
||||
})()"
|
||||
:items="itemMeta?.labels ? itemMeta.options.map((value, index) => ({ title: itemMeta.labels[index] || value, value: value })) : itemMeta.options"
|
||||
:disabled="itemMeta?.readonly" density="compact" variant="outlined"
|
||||
class="config-field" hide-details></v-select>
|
||||
|
||||
@@ -256,16 +187,22 @@ function getSpecialSubtype(value) {
|
||||
|
||||
<!-- Boolean switch for JSON selector -->
|
||||
<v-switch v-else-if="itemMeta?.type === 'bool'" v-model="createSelectorModel(itemKey).value"
|
||||
color="primary" inset density="compact" hide-details
|
||||
style="display: flex; justify-content: end;"></v-switch>
|
||||
color="primary" inset density="compact" hide-details style="display: flex; justify-content: end;"></v-switch>
|
||||
|
||||
<!-- List item for JSON selector -->
|
||||
<ListConfigItem v-else-if="itemMeta?.type === 'list'" v-model="createSelectorModel(itemKey).value"
|
||||
button-text="修改" class="config-field" />
|
||||
<ListConfigItem
|
||||
v-else-if="itemMeta?.type === 'list'"
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
button-text="修改"
|
||||
class="config-field"
|
||||
/>
|
||||
|
||||
<!-- Object editor for JSON selector -->
|
||||
<ObjectEditor v-else-if="itemMeta?.type === 'dict'" v-model="createSelectorModel(itemKey).value"
|
||||
class="config-field" />
|
||||
<ObjectEditor
|
||||
v-else-if="itemMeta?.type === 'dict'"
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
class="config-field"
|
||||
/>
|
||||
|
||||
<!-- Fallback for JSON selector -->
|
||||
<v-text-field v-else v-model="createSelectorModel(itemKey).value" density="compact" variant="outlined"
|
||||
@@ -274,36 +211,50 @@ function getSpecialSubtype(value) {
|
||||
|
||||
<!-- Special handling for specific metadata types -->
|
||||
<div v-else-if="itemMeta?._special === 'select_provider'">
|
||||
<ProviderSelector v-model="createSelectorModel(itemKey).value" :provider-type="'chat_completion'" />
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_provider_stt'">
|
||||
<ProviderSelector v-model="createSelectorModel(itemKey).value" :provider-type="'speech_to_text'" />
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_provider_tts'">
|
||||
<ProviderSelector v-model="createSelectorModel(itemKey).value" :provider-type="'text_to_speech'" />
|
||||
</div>
|
||||
<div v-else-if="getSpecialName(itemMeta?._special) === 'select_agent_runner_provider'">
|
||||
<ProviderSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
:provider-type="'agent_runner'"
|
||||
:provider-subtype="getSpecialSubtype(itemMeta?._special)"
|
||||
:provider-type="'chat_completion'"
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_provider_stt'">
|
||||
<ProviderSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
:provider-type="'speech_to_text'"
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_provider_tts'">
|
||||
<ProviderSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
:provider-type="'text_to_speech'"
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'provider_pool'">
|
||||
<ProviderSelector v-model="createSelectorModel(itemKey).value" :provider-type="'chat_completion'"
|
||||
button-text="选择提供商池..." />
|
||||
<ProviderSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
:provider-type="'chat_completion'"
|
||||
button-text="选择提供商池..."
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_persona'">
|
||||
<PersonaSelector v-model="createSelectorModel(itemKey).value" />
|
||||
<PersonaSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'persona_pool'">
|
||||
<PersonaSelector v-model="createSelectorModel(itemKey).value" button-text="选择人格池..." />
|
||||
<PersonaSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
button-text="选择人格池..."
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_knowledgebase'">
|
||||
<KnowledgeBaseSelector v-model="createSelectorModel(itemKey).value" />
|
||||
<KnowledgeBaseSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 'select_plugin_set'">
|
||||
<PluginSetSelector v-model="createSelectorModel(itemKey).value" />
|
||||
<PluginSetSelector
|
||||
v-model="createSelectorModel(itemKey).value"
|
||||
/>
|
||||
</div>
|
||||
<div v-else-if="itemMeta?._special === 't2i_template'">
|
||||
<T2ITemplateEditor />
|
||||
@@ -312,17 +263,21 @@ function getSpecialSubtype(value) {
|
||||
</v-row>
|
||||
|
||||
<!-- Plugin Set Selector 全宽显示区域 -->
|
||||
<v-row v-if="!itemMeta?.invisible && itemMeta?._special === 'select_plugin_set'"
|
||||
class="plugin-set-display-row">
|
||||
<v-row v-if="!itemMeta?.invisible && itemMeta?._special === 'select_plugin_set'" class="plugin-set-display-row">
|
||||
<v-col cols="12" class="plugin-set-display">
|
||||
<div v-if="createSelectorModel(itemKey).value && createSelectorModel(itemKey).value.length > 0"
|
||||
class="selected-plugins-full-width">
|
||||
<div v-if="createSelectorModel(itemKey).value && createSelectorModel(itemKey).value.length > 0" class="selected-plugins-full-width">
|
||||
<div class="plugins-header">
|
||||
<small class="text-grey">已选择的插件:</small>
|
||||
</div>
|
||||
<div class="d-flex flex-wrap ga-2 mt-2">
|
||||
<v-chip v-for="plugin in (createSelectorModel(itemKey).value || [])" :key="plugin" size="small" label
|
||||
color="primary" variant="outlined">
|
||||
<v-chip
|
||||
v-for="plugin in (createSelectorModel(itemKey).value || [])"
|
||||
:key="plugin"
|
||||
size="small"
|
||||
label
|
||||
color="primary"
|
||||
variant="outlined"
|
||||
>
|
||||
{{ plugin === '*' ? '所有插件' : plugin }}
|
||||
</v-chip>
|
||||
</div>
|
||||
@@ -330,8 +285,7 @@ function getSpecialSubtype(value) {
|
||||
</v-col>
|
||||
</v-row>
|
||||
</template>
|
||||
<v-divider class="config-divider"
|
||||
v-if="shouldShowItem(itemMeta, itemKey) && hasVisibleItemsAfter(metadata[metadataKey].items, index)"></v-divider>
|
||||
<v-divider class="config-divider" v-if="shouldShowItem(itemMeta, itemKey) && hasVisibleItemsAfter(metadata[metadataKey].items, index)"></v-divider>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
@@ -7,8 +7,8 @@ import { useCommonStore } from '@/stores/common';
|
||||
<!-- 添加筛选级别控件 -->
|
||||
<div class="filter-controls mb-2" v-if="showLevelBtns">
|
||||
<v-chip-group v-model="selectedLevels" column multiple>
|
||||
<v-chip v-for="level in logLevels" :key="level" :color="getLevelColor(level)" filter variant="flat" size="small"
|
||||
:text-color="level === 'DEBUG' || level === 'INFO' ? 'black' : 'white'" class="font-weight-medium">
|
||||
<v-chip v-for="level in logLevels" :key="level" :color="getLevelColor(level)" filter
|
||||
:text-color="level === 'DEBUG' || level === 'INFO' ? 'black' : 'white'">
|
||||
{{ level }}
|
||||
</v-chip>
|
||||
</v-chip-group>
|
||||
@@ -168,7 +168,6 @@ export default {
|
||||
flex-wrap: wrap;
|
||||
gap: 8px;
|
||||
margin-bottom: 8px;
|
||||
margin-left: 20px;
|
||||
}
|
||||
|
||||
.fade-in {
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
<div style="flex: 1; min-width: 0; overflow: hidden;">
|
||||
<span v-if="!modelValue || (Array.isArray(modelValue) && modelValue.length === 0)"
|
||||
style="color: rgb(var(--v-theme-primaryText));">
|
||||
{{ tm('knowledgeBaseSelector.notSelected') }}
|
||||
未选择
|
||||
</span>
|
||||
<div v-else class="d-flex flex-wrap gap-1">
|
||||
<v-chip
|
||||
@@ -28,7 +28,7 @@
|
||||
<v-dialog v-model="dialog" max-width="600px">
|
||||
<v-card>
|
||||
<v-card-title class="text-h3 py-4" style="font-weight: normal;">
|
||||
{{ tm('knowledgeBaseSelector.dialogTitle') }}
|
||||
选择知识库
|
||||
</v-card-title>
|
||||
|
||||
<v-card-text class="pa-0" style="max-height: 400px; overflow-y: auto;">
|
||||
@@ -50,9 +50,9 @@
|
||||
</template>
|
||||
<v-list-item-title>{{ kb.kb_name }}</v-list-item-title>
|
||||
<v-list-item-subtitle>
|
||||
{{ kb.description || tm('knowledgeBaseSelector.noDescription') }}
|
||||
<span v-if="kb.doc_count !== undefined"> - {{ tm('knowledgeBaseSelector.documentCount', { count: kb.doc_count }) }}</span>
|
||||
<span v-if="kb.chunk_count !== undefined"> - {{ tm('knowledgeBaseSelector.chunkCount', { count: kb.chunk_count }) }}</span>
|
||||
{{ kb.description || '无描述' }}
|
||||
<span v-if="kb.doc_count !== undefined"> - {{ kb.doc_count }} 个文档</span>
|
||||
<span v-if="kb.chunk_count !== undefined"> - {{ kb.chunk_count }} 个块</span>
|
||||
</v-list-item-subtitle>
|
||||
|
||||
<template v-slot:append>
|
||||
@@ -68,9 +68,9 @@
|
||||
<!-- 当没有知识库时显示创建提示 -->
|
||||
<div v-if="knowledgeBaseList.length === 0" class="text-center py-8">
|
||||
<v-icon size="64" color="grey-lighten-1">mdi-database-off</v-icon>
|
||||
<p class="text-grey mt-4 mb-4">{{ tm('knowledgeBaseSelector.noKnowledgeBases') }}</p>
|
||||
<p class="text-grey mt-4 mb-4">暂无知识库</p>
|
||||
<v-btn color="primary" variant="tonal" @click="goToKnowledgeBasePage">
|
||||
{{ tm('knowledgeBaseSelector.createKnowledgeBase') }}
|
||||
创建知识库
|
||||
</v-btn>
|
||||
</div>
|
||||
</v-list>
|
||||
@@ -78,14 +78,14 @@
|
||||
|
||||
<v-card-actions class="pa-4">
|
||||
<div v-if="selectedKnowledgeBases.length > 0" class="text-caption text-grey">
|
||||
{{ tm('knowledgeBaseSelector.selectedCount', { count: selectedKnowledgeBases.length }) }}
|
||||
已选择 {{ selectedKnowledgeBases.length }} 个知识库
|
||||
</div>
|
||||
<v-spacer></v-spacer>
|
||||
<v-btn variant="text" @click="cancelSelection">{{ tm('knowledgeBaseSelector.cancelSelection') }}</v-btn>
|
||||
<v-btn variant="text" @click="cancelSelection">取消</v-btn>
|
||||
<v-btn
|
||||
color="primary"
|
||||
@click="confirmSelection">
|
||||
{{ tm('knowledgeBaseSelector.confirmSelection') }}
|
||||
确认选择
|
||||
</v-btn>
|
||||
</v-card-actions>
|
||||
</v-card>
|
||||
@@ -96,7 +96,6 @@
|
||||
import { ref, watch } from 'vue'
|
||||
import axios from 'axios'
|
||||
import { useRouter } from 'vue-router'
|
||||
import { useModuleI18n } from '@/i18n/composables'
|
||||
|
||||
const props = defineProps({
|
||||
modelValue: {
|
||||
@@ -111,7 +110,6 @@ const props = defineProps({
|
||||
|
||||
const emit = defineEmits(['update:modelValue'])
|
||||
const router = useRouter()
|
||||
const { tm } = useModuleI18n('core.shared')
|
||||
|
||||
const dialog = ref(false)
|
||||
const knowledgeBaseList = ref([])
|
||||
|
||||
@@ -4,13 +4,13 @@
|
||||
<div class="d-flex align-center justify-space-between mb-2">
|
||||
<div class="flex-grow-1">
|
||||
<span v-if="!modelValue || modelValue.length === 0" style="color: rgb(var(--v-theme-primaryText));">
|
||||
{{ tm('pluginSetSelector.notSelected') }}
|
||||
未启用任何插件
|
||||
</span>
|
||||
<span v-else-if="isAllPlugins" style="color: rgb(var(--v-theme-primaryText));">
|
||||
{{ tm('pluginSetSelector.allPlugins') }}
|
||||
启用所有插件 (*)
|
||||
</span>
|
||||
<span v-else style="color: rgb(var(--v-theme-primaryText));">
|
||||
{{ tm('pluginSetSelector.selectedCount', { count: modelValue.length }) }}
|
||||
已选择 {{ modelValue.length }} 个插件
|
||||
</span>
|
||||
</div>
|
||||
<v-btn size="small" color="primary" variant="tonal" @click="openDialog">
|
||||
@@ -23,7 +23,7 @@
|
||||
<v-dialog v-model="dialog" max-width="700px">
|
||||
<v-card>
|
||||
<v-card-title class="text-h3 py-4" style="font-weight: normal;">
|
||||
{{ tm('pluginSetSelector.dialogTitle') }}
|
||||
选择插件集合
|
||||
</v-card-title>
|
||||
|
||||
<v-card-text class="pa-4">
|
||||
@@ -34,17 +34,17 @@
|
||||
<v-radio-group v-model="selectionMode" class="mb-4" hide-details>
|
||||
<v-radio
|
||||
value="all"
|
||||
:label="tm('pluginSetSelector.enableAll')"
|
||||
label="启用所有插件"
|
||||
color="primary"
|
||||
></v-radio>
|
||||
<v-radio
|
||||
value="none"
|
||||
:label="tm('pluginSetSelector.enableNone')"
|
||||
label="不启用任何插件"
|
||||
color="primary"
|
||||
></v-radio>
|
||||
<v-radio
|
||||
value="custom"
|
||||
:label="tm('pluginSetSelector.customSelect')"
|
||||
label="自定义选择"
|
||||
color="primary"
|
||||
></v-radio>
|
||||
</v-radio-group>
|
||||
@@ -68,21 +68,21 @@
|
||||
|
||||
<v-list-item-title>{{ plugin.name }}</v-list-item-title>
|
||||
<v-list-item-subtitle>
|
||||
{{ plugin.desc || tm('pluginSetSelector.noDescription') }}
|
||||
{{ plugin.desc || '无描述' }}
|
||||
<v-chip v-if="!plugin.activated" size="x-small" color="grey" class="ml-1">
|
||||
{{ tm('pluginSetSelector.notActivated') }}
|
||||
未激活
|
||||
</v-chip>
|
||||
</v-list-item-subtitle>
|
||||
</v-list-item>
|
||||
|
||||
<div class="pl-8 pt-2">
|
||||
<small>{{ tm('pluginSetSelector.note') }}</small>
|
||||
<small>*不显示系统插件和已经在插件页禁用的插件。</small>
|
||||
</div>
|
||||
</v-list>
|
||||
|
||||
<div v-else class="text-center py-8">
|
||||
<v-icon size="64" color="grey-lighten-1">mdi-puzzle-outline</v-icon>
|
||||
<p class="text-grey mt-4">{{ tm('pluginSetSelector.noPlugins') }}</p>
|
||||
<p class="text-grey mt-4">暂无可用的插件</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
@@ -90,11 +90,11 @@
|
||||
|
||||
<v-card-actions class="pa-4">
|
||||
<v-spacer></v-spacer>
|
||||
<v-btn variant="text" @click="cancelSelection">{{ tm('pluginSetSelector.cancelSelection') }}</v-btn>
|
||||
<v-btn variant="text" @click="cancelSelection">取消</v-btn>
|
||||
<v-btn
|
||||
color="primary"
|
||||
@click="confirmSelection">
|
||||
{{ tm('pluginSetSelector.confirmSelection') }}
|
||||
确认选择
|
||||
</v-btn>
|
||||
</v-card-actions>
|
||||
</v-card>
|
||||
@@ -104,7 +104,6 @@
|
||||
<script setup>
|
||||
import { ref, computed, watch } from 'vue'
|
||||
import axios from 'axios'
|
||||
import { useModuleI18n } from '@/i18n/composables'
|
||||
|
||||
const props = defineProps({
|
||||
modelValue: {
|
||||
@@ -122,7 +121,6 @@ const props = defineProps({
|
||||
})
|
||||
|
||||
const emit = defineEmits(['update:modelValue'])
|
||||
const { tm } = useModuleI18n('core.shared')
|
||||
|
||||
const dialog = ref(false)
|
||||
const pluginList = ref([])
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
<template>
|
||||
<div class="d-flex align-center justify-space-between">
|
||||
<span v-if="!modelValue" style="color: rgb(var(--v-theme-primaryText));">
|
||||
{{ tm('providerSelector.notSelected') }}
|
||||
未选择
|
||||
</span>
|
||||
<span v-else>
|
||||
{{ modelValue }}
|
||||
@@ -15,7 +15,7 @@
|
||||
<v-dialog v-model="dialog" max-width="600px">
|
||||
<v-card>
|
||||
<v-card-title class="text-h3 py-4" style="font-weight: normal;">
|
||||
{{ tm('providerSelector.dialogTitle') }}
|
||||
选择提供商
|
||||
</v-card-title>
|
||||
|
||||
<v-card-text class="pa-0" style="max-height: 400px; overflow-y: auto;">
|
||||
@@ -30,8 +30,8 @@
|
||||
:active="selectedProvider === ''"
|
||||
rounded="md"
|
||||
class="ma-1">
|
||||
<v-list-item-title>{{ tm('providerSelector.clearSelection') }}</v-list-item-title>
|
||||
<v-list-item-subtitle>{{ tm('providerSelector.clearSelectionSubtitle') }}</v-list-item-subtitle>
|
||||
<v-list-item-title>不选择</v-list-item-title>
|
||||
<v-list-item-subtitle>清除当前选择</v-list-item-subtitle>
|
||||
|
||||
<template v-slot:append>
|
||||
<v-icon v-if="selectedProvider === ''" color="primary">mdi-check-circle</v-icon>
|
||||
@@ -50,7 +50,7 @@
|
||||
class="ma-1">
|
||||
<v-list-item-title>{{ provider.id }}</v-list-item-title>
|
||||
<v-list-item-subtitle>
|
||||
{{ provider.type || provider.provider_type || tm('providerSelector.unknownType') }}
|
||||
{{ provider.type || provider.provider_type || '未知类型' }}
|
||||
<span v-if="provider.model_config?.model">- {{ provider.model_config.model }}</span>
|
||||
</v-list-item-subtitle>
|
||||
|
||||
@@ -62,7 +62,7 @@
|
||||
|
||||
<div v-else-if="!loading && providerList.length === 0" class="text-center py-8">
|
||||
<v-icon size="64" color="grey-lighten-1">mdi-api-off</v-icon>
|
||||
<p class="text-grey mt-4">{{ tm('providerSelector.noProviders') }}</p>
|
||||
<p class="text-grey mt-4">暂无可用的提供商</p>
|
||||
</div>
|
||||
</v-card-text>
|
||||
|
||||
@@ -70,11 +70,11 @@
|
||||
|
||||
<v-card-actions class="pa-4">
|
||||
<v-spacer></v-spacer>
|
||||
<v-btn variant="text" @click="cancelSelection">{{ tm('providerSelector.cancelSelection') }}</v-btn>
|
||||
<v-btn variant="text" @click="cancelSelection">取消</v-btn>
|
||||
<v-btn
|
||||
color="primary"
|
||||
@click="confirmSelection">
|
||||
{{ tm('providerSelector.confirmSelection') }}
|
||||
确认选择
|
||||
</v-btn>
|
||||
</v-card-actions>
|
||||
</v-card>
|
||||
@@ -84,7 +84,6 @@
|
||||
<script setup>
|
||||
import { ref, watch } from 'vue'
|
||||
import axios from 'axios'
|
||||
import { useModuleI18n } from '@/i18n/composables'
|
||||
|
||||
const props = defineProps({
|
||||
modelValue: {
|
||||
@@ -95,10 +94,6 @@ const props = defineProps({
|
||||
type: String,
|
||||
default: 'chat_completion'
|
||||
},
|
||||
providerSubtype: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
buttonText: {
|
||||
type: String,
|
||||
default: '选择提供商...'
|
||||
@@ -106,7 +101,6 @@ const props = defineProps({
|
||||
})
|
||||
|
||||
const emit = defineEmits(['update:modelValue'])
|
||||
const { tm } = useModuleI18n('core.shared')
|
||||
|
||||
const dialog = ref(false)
|
||||
const providerList = ref([])
|
||||
@@ -133,10 +127,7 @@ async function loadProviders() {
|
||||
}
|
||||
})
|
||||
if (response.data.status === 'ok') {
|
||||
const providers = response.data.data || []
|
||||
providerList.value = props.providerSubtype
|
||||
? providers.filter((provider) => matchesProviderSubtype(provider, props.providerSubtype))
|
||||
: providers
|
||||
providerList.value = response.data.data || []
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('加载提供商列表失败:', error)
|
||||
@@ -146,17 +137,6 @@ async function loadProviders() {
|
||||
}
|
||||
}
|
||||
|
||||
function matchesProviderSubtype(provider, subtype) {
|
||||
if (!subtype) {
|
||||
return true
|
||||
}
|
||||
const normalized = String(subtype).toLowerCase()
|
||||
const candidates = [provider.type, provider.provider, provider.id]
|
||||
.filter(Boolean)
|
||||
.map((value) => String(value).toLowerCase())
|
||||
return candidates.includes(normalized)
|
||||
}
|
||||
|
||||
function selectProvider(provider) {
|
||||
selectedProvider.value = provider.id
|
||||
}
|
||||
|
||||
@@ -301,4 +301,3 @@ export function useMessages(
|
||||
toggleStreaming
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
@@ -4,12 +4,8 @@ import { useRouter } from 'vue-router';
|
||||
|
||||
export interface Session {
|
||||
session_id: string;
|
||||
display_name: string | null;
|
||||
display_name: string;
|
||||
updated_at: string;
|
||||
platform_id: string;
|
||||
creator: string;
|
||||
is_group: number;
|
||||
created_at: string;
|
||||
}
|
||||
|
||||
export function useSessions(chatboxMode: boolean = false) {
|
||||
|
||||
@@ -33,7 +33,6 @@ export class I18nLoader {
|
||||
{ name: 'core/status', path: 'core/status.json' },
|
||||
{ name: 'core/navigation', path: 'core/navigation.json' },
|
||||
{ name: 'core/header', path: 'core/header.json' },
|
||||
{ name: 'core/shared', path: 'core/shared.json' },
|
||||
|
||||
// 功能模块
|
||||
{ name: 'features/chat', path: 'features/chat.json' },
|
||||
@@ -44,7 +43,6 @@ export class I18nLoader {
|
||||
{ name: 'features/provider', path: 'features/provider.json' },
|
||||
{ name: 'features/platform', path: 'features/platform.json' },
|
||||
{ name: 'features/config', path: 'features/config.json' },
|
||||
{ name: 'features/config-metadata', path: 'features/config-metadata.json' },
|
||||
{ name: 'features/console', path: 'features/console.json' },
|
||||
{ name: 'features/about', path: 'features/about.json' },
|
||||
{ name: 'features/settings', path: 'features/settings.json' },
|
||||
|
||||
@@ -74,7 +74,6 @@
|
||||
"delete": "Delete",
|
||||
"copy": "Copy",
|
||||
"edit": "Edit",
|
||||
"copy": "Copy",
|
||||
"noData": "No data available"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,10 +8,11 @@
|
||||
"chat": "Chat",
|
||||
"extension": "Extensions",
|
||||
"conversation": "Conversations",
|
||||
"sessionManagement": "Custom Rules",
|
||||
"sessionManagement": "Session Management",
|
||||
"console": "Console",
|
||||
"alkaid": "Alkaid Lab",
|
||||
"knowledgeBase": "Knowledge Base",
|
||||
"memory": "Long-term Memory",
|
||||
"about": "About",
|
||||
"settings": "Settings",
|
||||
"documentation": "Documentation",
|
||||
|
||||
@@ -1,45 +0,0 @@
|
||||
{
|
||||
"knowledgeBaseSelector": {
|
||||
"notSelected": "Not selected",
|
||||
"buttonText": "Select Knowledge Base...",
|
||||
"dialogTitle": "Select Knowledge Base",
|
||||
"loading": "Loading...",
|
||||
"noKnowledgeBases": "No knowledge bases available",
|
||||
"createKnowledgeBase": "Create Knowledge Base",
|
||||
"selectedCount": "{count} knowledge base(s) selected",
|
||||
"confirmSelection": "Confirm Selection",
|
||||
"cancelSelection": "Cancel",
|
||||
"noDescription": "No description",
|
||||
"documentCount": "{count} document(s)",
|
||||
"chunkCount": "{count} chunk(s)"
|
||||
},
|
||||
"pluginSetSelector": {
|
||||
"notSelected": "No plugins enabled",
|
||||
"allPlugins": "All plugins enabled (*)",
|
||||
"selectedCount": "{count} plugin(s) selected",
|
||||
"buttonText": "Select Plugin Set...",
|
||||
"dialogTitle": "Select Plugin Set",
|
||||
"loading": "Loading...",
|
||||
"enableAll": "Enable all plugins",
|
||||
"enableNone": "Disable all plugins",
|
||||
"customSelect": "Custom selection",
|
||||
"noPlugins": "No plugins available",
|
||||
"confirmSelection": "Confirm Selection",
|
||||
"cancelSelection": "Cancel",
|
||||
"noDescription": "No description",
|
||||
"notActivated": "Not activated",
|
||||
"note": "*System plugins and disabled plugins are not shown."
|
||||
},
|
||||
"providerSelector": {
|
||||
"notSelected": "Not selected",
|
||||
"buttonText": "Select Provider...",
|
||||
"dialogTitle": "Select Provider",
|
||||
"loading": "Loading...",
|
||||
"noProviders": "No providers available",
|
||||
"confirmSelection": "Confirm Selection",
|
||||
"cancelSelection": "Cancel",
|
||||
"clearSelection": "None",
|
||||
"clearSelectionSubtitle": "Clear current selection",
|
||||
"unknownType": "Unknown type"
|
||||
}
|
||||
}
|
||||
@@ -51,8 +51,7 @@
|
||||
"editDisplayName": "Edit Session Name",
|
||||
"displayName": "Session Name",
|
||||
"displayNameUpdated": "Session name updated",
|
||||
"displayNameUpdateFailed": "Failed to update session name",
|
||||
"confirmDelete": "Are you sure you want to delete \"{name}\"? This action cannot be undone."
|
||||
"displayNameUpdateFailed": "Failed to update session name"
|
||||
},
|
||||
"modes": {
|
||||
"darkMode": "Switch to Dark Mode",
|
||||
@@ -85,9 +84,5 @@
|
||||
"reconnected": "Chat connection re-established",
|
||||
"failed": "Connection failed, please refresh the page"
|
||||
}
|
||||
},
|
||||
"errors": {
|
||||
"sendMessageFailed": "Failed to send message, please try again",
|
||||
"createSessionFailed": "Failed to create session, please refresh the page"
|
||||
}
|
||||
}
|
||||
@@ -1,476 +0,0 @@
|
||||
{
|
||||
"ai_group": {
|
||||
"name": "AI",
|
||||
"agent_runner": {
|
||||
"description": "Agent Runner",
|
||||
"hint": "Select the runner for AI conversations. Defaults to AstrBot's built-in Agent runner, which supports knowledge base, persona, and tool calling features. You don't need to modify this section unless you plan to integrate third-party Agent runners like Dify or Coze.",
|
||||
"provider_settings": {
|
||||
"enable": {
|
||||
"description": "Enable",
|
||||
"hint": "Master switch for AI conversations"
|
||||
},
|
||||
"agent_runner_type": {
|
||||
"description": "Runner",
|
||||
"labels": ["Built-in Agent", "Dify", "Coze", "Alibaba Cloud Bailian Application"]
|
||||
},
|
||||
"coze_agent_runner_provider_id": {
|
||||
"description": "Coze Agent Runner Provider ID"
|
||||
},
|
||||
"dify_agent_runner_provider_id": {
|
||||
"description": "Dify Agent Runner Provider ID"
|
||||
},
|
||||
"dashscope_agent_runner_provider_id": {
|
||||
"description": "Alibaba Cloud Bailian Application Agent Runner Provider ID"
|
||||
}
|
||||
}
|
||||
},
|
||||
"ai": {
|
||||
"description": "Model",
|
||||
"hint": "When using non-built-in Agent runners, the default chat model and default image caption model may not take effect, but some plugins rely on these settings to invoke AI capabilities.",
|
||||
"provider_settings": {
|
||||
"default_provider_id": {
|
||||
"description": "Default Chat Model",
|
||||
"hint": "Uses the first model when left empty"
|
||||
},
|
||||
"default_image_caption_provider_id": {
|
||||
"description": "Default Image Caption Model",
|
||||
"hint": "Leave empty to disable; useful for non-multimodal models"
|
||||
},
|
||||
"image_caption_prompt": {
|
||||
"description": "Image Caption Prompt"
|
||||
}
|
||||
},
|
||||
"provider_stt_settings": {
|
||||
"enable": {
|
||||
"description": "Enable Speech-to-Text",
|
||||
"hint": "Master switch for STT"
|
||||
},
|
||||
"provider_id": {
|
||||
"description": "Default Speech-to-Text Model",
|
||||
"hint": "Users can also select session-specific STT models using the /provider command."
|
||||
}
|
||||
},
|
||||
"provider_tts_settings": {
|
||||
"enable": {
|
||||
"description": "Enable Text-to-Speech",
|
||||
"hint": "Master switch for TTS"
|
||||
},
|
||||
"provider_id": {
|
||||
"description": "Default Text-to-Speech Model"
|
||||
}
|
||||
}
|
||||
},
|
||||
"persona": {
|
||||
"description": "Persona",
|
||||
"provider_settings": {
|
||||
"default_personality": {
|
||||
"description": "Default Persona"
|
||||
}
|
||||
}
|
||||
},
|
||||
"knowledgebase": {
|
||||
"description": "Knowledge Base",
|
||||
"kb_names": {
|
||||
"description": "Knowledge Base List",
|
||||
"hint": "Supports multiple selections"
|
||||
},
|
||||
"kb_fusion_top_k": {
|
||||
"description": "Fusion Search Results Count",
|
||||
"hint": "Number of results returned after fusing search results from multiple knowledge bases"
|
||||
},
|
||||
"kb_final_top_k": {
|
||||
"description": "Final Results Count",
|
||||
"hint": "Number of results retrieved from the knowledge base. Higher values may provide more relevant information but could also introduce noise. Adjust based on actual needs"
|
||||
},
|
||||
"kb_agentic_mode": {
|
||||
"description": "Agentic Knowledge Base Retrieval",
|
||||
"hint": "When enabled, knowledge base retrieval becomes an LLM Tool, allowing the model to autonomously decide when to query the knowledge base. Requires the model to support function calling."
|
||||
}
|
||||
},
|
||||
"websearch": {
|
||||
"description": "Web Search",
|
||||
"provider_settings": {
|
||||
"web_search": {
|
||||
"description": "Enable Web Search"
|
||||
},
|
||||
"websearch_provider": {
|
||||
"description": "Web Search Provider"
|
||||
},
|
||||
"websearch_tavily_key": {
|
||||
"description": "Tavily API Key",
|
||||
"hint": "Multiple keys can be added for rotation."
|
||||
},
|
||||
"websearch_baidu_app_builder_key": {
|
||||
"description": "Baidu Qianfan Smart Cloud APP Builder API Key",
|
||||
"hint": "Reference: https://console.bce.baidu.com/iam/#/iam/apikey/list"
|
||||
},
|
||||
"web_search_link": {
|
||||
"description": "Display Source Citations"
|
||||
}
|
||||
}
|
||||
},
|
||||
"file_extract": {
|
||||
"description": "File Extract",
|
||||
"provider_settings": {
|
||||
"file_extract": {
|
||||
"enable": {
|
||||
"description": "Enable File Extract"
|
||||
},
|
||||
"provider": {
|
||||
"description": "File Extract Provider"
|
||||
},
|
||||
"moonshotai_api_key": {
|
||||
"description": "Moonshot AI API Key"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"others": {
|
||||
"description": "Other Settings",
|
||||
"provider_settings": {
|
||||
"display_reasoning_text": {
|
||||
"description": "Display Reasoning Content"
|
||||
},
|
||||
"identifier": {
|
||||
"description": "User Identification",
|
||||
"hint": "When enabled, user ID information will be included in the prompt."
|
||||
},
|
||||
"group_name_display": {
|
||||
"description": "Display Group Name",
|
||||
"hint": "When enabled, group name information will be included in the prompt on supported platforms (OneBot v11)."
|
||||
},
|
||||
"datetime_system_prompt": {
|
||||
"description": "Real-world Time Awareness",
|
||||
"hint": "When enabled, current time information will be appended to the system prompt."
|
||||
},
|
||||
"show_tool_use_status": {
|
||||
"description": "Output Function Call Status"
|
||||
},
|
||||
"max_agent_step": {
|
||||
"description": "Maximum Tool Call Rounds"
|
||||
},
|
||||
"tool_call_timeout": {
|
||||
"description": "Tool Call Timeout (seconds)"
|
||||
},
|
||||
"streaming_response": {
|
||||
"description": "Streaming Output"
|
||||
},
|
||||
"unsupported_streaming_strategy": {
|
||||
"description": "Platforms Without Streaming Support",
|
||||
"hint": "Select the handling method for platforms that don't support streaming responses. Real-time segmented reply sends content immediately when the system detects segment points like punctuation during streaming reception",
|
||||
"labels": ["Real-time Segmented Reply", "Disable Streaming Response"]
|
||||
},
|
||||
"max_context_length": {
|
||||
"description": "Maximum Conversation Rounds",
|
||||
"hint": "Discards the oldest parts when this count is exceeded. One conversation round counts as 1, -1 means unlimited"
|
||||
},
|
||||
"dequeue_context_length": {
|
||||
"description": "Dequeue Conversation Rounds",
|
||||
"hint": "Number of conversation rounds to discard at once when maximum context length is exceeded"
|
||||
},
|
||||
"wake_prefix": {
|
||||
"description": "Additional LLM Chat Wake Prefix",
|
||||
"hint": "If the wake prefix is / and the additional chat wake prefix is chat, then /chat is required to trigger LLM requests"
|
||||
},
|
||||
"prompt_prefix": {
|
||||
"description": "User Prompt",
|
||||
"hint": "You can use {{prompt}} as a placeholder for user input. If no placeholder is provided, it will be added before the user input."
|
||||
},
|
||||
"reachability_check": {
|
||||
"description": "Provider Reachability Check",
|
||||
"hint": "When running the /provider command, test provider connectivity in parallel. This actively pings models and may consume extra tokens."
|
||||
}
|
||||
},
|
||||
"provider_tts_settings": {
|
||||
"dual_output": {
|
||||
"description": "Output Both Voice and Text When TTS is Enabled"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"platform_group": {
|
||||
"name": "Platform",
|
||||
"general": {
|
||||
"description": "General",
|
||||
"admins_id": {
|
||||
"description": "Administrator IDs"
|
||||
},
|
||||
"platform_settings": {
|
||||
"unique_session": {
|
||||
"description": "Isolate Sessions",
|
||||
"hint": "When enabled, group members have independent contexts."
|
||||
},
|
||||
"friend_message_needs_wake_prefix": {
|
||||
"description": "Private Messages Require Wake Word"
|
||||
},
|
||||
"reply_prefix": {
|
||||
"description": "Reply Text Prefix"
|
||||
},
|
||||
"reply_with_mention": {
|
||||
"description": "Mention Sender in Reply"
|
||||
},
|
||||
"reply_with_quote": {
|
||||
"description": "Quote Sender's Message in Reply"
|
||||
},
|
||||
"forward_threshold": {
|
||||
"description": "Forward Message Word Count Threshold"
|
||||
},
|
||||
"empty_mention_waiting": {
|
||||
"description": "Trigger Waiting on Mention-only Messages"
|
||||
}
|
||||
},
|
||||
"wake_prefix": {
|
||||
"description": "Wake Word"
|
||||
}
|
||||
},
|
||||
"whitelist": {
|
||||
"description": "Whitelist",
|
||||
"platform_settings": {
|
||||
"enable_id_white_list": {
|
||||
"description": "Enable Whitelist",
|
||||
"hint": "When enabled, only sessions in the whitelist will be responded to."
|
||||
},
|
||||
"id_whitelist": {
|
||||
"description": "Whitelist ID List",
|
||||
"hint": "Use /sid to get IDs."
|
||||
},
|
||||
"id_whitelist_log": {
|
||||
"description": "Output Logs",
|
||||
"hint": "When enabled, INFO level logs will be output when a message doesn't pass the whitelist."
|
||||
},
|
||||
"wl_ignore_admin_on_group": {
|
||||
"description": "Administrator Group Messages Bypass ID Whitelist"
|
||||
},
|
||||
"wl_ignore_admin_on_friend": {
|
||||
"description": "Administrator Private Messages Bypass ID Whitelist"
|
||||
}
|
||||
}
|
||||
},
|
||||
"rate_limit": {
|
||||
"description": "Rate Limiting",
|
||||
"platform_settings": {
|
||||
"rate_limit": {
|
||||
"time": {
|
||||
"description": "Message Rate Limit Time (seconds)"
|
||||
},
|
||||
"count": {
|
||||
"description": "Message Rate Limit Count"
|
||||
},
|
||||
"strategy": {
|
||||
"description": "Rate Limit Strategy"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"content_safety": {
|
||||
"description": "Content Safety",
|
||||
"content_safety": {
|
||||
"also_use_in_response": {
|
||||
"description": "Also Check Model Response Content"
|
||||
},
|
||||
"baidu_aip": {
|
||||
"enable": {
|
||||
"description": "Use Baidu Content Safety Moderation",
|
||||
"hint": "You need to manually install the baidu-aip library."
|
||||
},
|
||||
"app_id": {
|
||||
"description": "App ID"
|
||||
},
|
||||
"api_key": {
|
||||
"description": "API Key"
|
||||
},
|
||||
"secret_key": {
|
||||
"description": "Secret Key"
|
||||
}
|
||||
},
|
||||
"internal_keywords": {
|
||||
"enable": {
|
||||
"description": "Keyword Check"
|
||||
},
|
||||
"extra_keywords": {
|
||||
"description": "Additional Keywords",
|
||||
"hint": "Additional keyword blocklist, supports regular expressions."
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"t2i": {
|
||||
"description": "Text-to-Image",
|
||||
"t2i": {
|
||||
"description": "Text-to-Image Output"
|
||||
},
|
||||
"t2i_word_threshold": {
|
||||
"description": "Text-to-Image Word Count Threshold"
|
||||
}
|
||||
},
|
||||
"others": {
|
||||
"description": "Other Settings",
|
||||
"platform_settings": {
|
||||
"ignore_bot_self_message": {
|
||||
"description": "Ignore Bot's Own Messages"
|
||||
},
|
||||
"ignore_at_all": {
|
||||
"description": "Ignore @All Events"
|
||||
},
|
||||
"no_permission_reply": {
|
||||
"description": "Reply When User Has Insufficient Permissions"
|
||||
}
|
||||
},
|
||||
"platform_specific": {
|
||||
"lark": {
|
||||
"pre_ack_emoji": {
|
||||
"enable": {
|
||||
"description": "[Lark] Enable Pre-acknowledgment Emoji"
|
||||
},
|
||||
"emojis": {
|
||||
"description": "Emoji List (Lark Emoji Enum Names)",
|
||||
"hint": "Emoji enum names reference: https://open.feishu.cn/document/server-docs/im-v1/message-reaction/emojis-introduce"
|
||||
}
|
||||
}
|
||||
},
|
||||
"telegram": {
|
||||
"pre_ack_emoji": {
|
||||
"enable": {
|
||||
"description": "[Telegram] Enable Pre-acknowledgment Emoji"
|
||||
},
|
||||
"emojis": {
|
||||
"description": "Emoji List (Unicode)",
|
||||
"hint": "Telegram only supports a fixed reaction set, reference: https://gist.github.com/Soulter/3f22c8e5f9c7e152e967e8bc28c97fc9"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"plugin_group": {
|
||||
"name": "Plugin",
|
||||
"plugin": {
|
||||
"description": "Plugins",
|
||||
"plugin_set": {
|
||||
"description": "Available Plugins",
|
||||
"hint": "All non-disabled plugins are enabled by default. If a plugin is disabled on the plugins page, selections here will not take effect."
|
||||
}
|
||||
}
|
||||
},
|
||||
"ext_group": {
|
||||
"name": "Ext.",
|
||||
"segmented_reply": {
|
||||
"description": "Segmented Reply",
|
||||
"platform_settings": {
|
||||
"segmented_reply": {
|
||||
"enable": {
|
||||
"description": "Enable Segmented Reply"
|
||||
},
|
||||
"only_llm_result": {
|
||||
"description": "Segment Only LLM Results"
|
||||
},
|
||||
"interval_method": {
|
||||
"description": "Interval Method"
|
||||
},
|
||||
"interval": {
|
||||
"description": "Random Interval Time",
|
||||
"hint": "Format: minimum,maximum (e.g., 1.5,3.5)"
|
||||
},
|
||||
"log_base": {
|
||||
"description": "Logarithm Base",
|
||||
"hint": "Base for logarithmic intervals, defaults to 2.0. Value range: 1.0-10.0."
|
||||
},
|
||||
"words_count_threshold": {
|
||||
"description": "Segmented Reply Word Count Threshold"
|
||||
},
|
||||
"regex": {
|
||||
"description": "Segmentation Regular Expression"
|
||||
},
|
||||
"content_cleanup_rule": {
|
||||
"description": "Content Filtering Regular Expression",
|
||||
"hint": "Remove specified content from segmented content. For example, `[。?!]` will remove all periods, question marks, and exclamation marks."
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"ltm": {
|
||||
"description": "Group Chat Context Awareness (formerly Chat Memory Enhancement)",
|
||||
"provider_ltm_settings": {
|
||||
"group_icl_enable": {
|
||||
"description": "Enable Group Chat Context Awareness"
|
||||
},
|
||||
"group_message_max_cnt": {
|
||||
"description": "Maximum Message Count"
|
||||
},
|
||||
"image_caption": {
|
||||
"description": "Auto-understand Images",
|
||||
"hint": "Requires setting a group chat image caption model."
|
||||
},
|
||||
"image_caption_provider_id": {
|
||||
"description": "Group Chat Image Caption Model",
|
||||
"hint": "Used for image understanding in group chat context awareness, configured separately from the default image caption model."
|
||||
},
|
||||
"active_reply": {
|
||||
"enable": {
|
||||
"description": "Active Reply"
|
||||
},
|
||||
"method": {
|
||||
"description": "Active Reply Method"
|
||||
},
|
||||
"possibility_reply": {
|
||||
"description": "Reply Probability",
|
||||
"hint": "Value between 0.0-1.0"
|
||||
},
|
||||
"whitelist": {
|
||||
"description": "Active Reply Whitelist",
|
||||
"hint": "Whitelist filtering is disabled when empty. Use /sid to get IDs."
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"system_group": {
|
||||
"name": "System",
|
||||
"system": {
|
||||
"description": "System Settings",
|
||||
"t2i_strategy": {
|
||||
"description": "Text-to-Image Strategy",
|
||||
"hint": "Text-to-image strategy. `remote` uses a remote HTML-based rendering service, `local` uses PIL for local rendering. When using local, place a TTF font named 'font.ttf' in the data/ directory to customize the font."
|
||||
},
|
||||
"t2i_endpoint": {
|
||||
"description": "Text-to-Image Service API Endpoint",
|
||||
"hint": "Uses AstrBot API service when empty"
|
||||
},
|
||||
"t2i_template": {
|
||||
"description": "Text-to-Image Custom Template",
|
||||
"hint": "When enabled, you can customize HTML templates for text-to-image rendering."
|
||||
},
|
||||
"t2i_active_template": {
|
||||
"description": "Currently Active Text-to-Image Rendering Template",
|
||||
"hint": "This value is maintained by the text-to-image template management page."
|
||||
},
|
||||
"log_level": {
|
||||
"description": "Console Log Level",
|
||||
"hint": "Log level for console output."
|
||||
},
|
||||
"pip_install_arg": {
|
||||
"description": "Additional pip Installation Arguments",
|
||||
"hint": "When installing plugin dependencies, Python's pip tool will be used. Additional arguments can be provided here, such as `--break-system-package`."
|
||||
},
|
||||
"pypi_index_url": {
|
||||
"description": "PyPI Repository URL",
|
||||
"hint": "PyPI repository URL for installing Python dependencies. Defaults to https://mirrors.aliyun.com/pypi/simple/"
|
||||
},
|
||||
"callback_api_base": {
|
||||
"description": "Externally Accessible Callback API Address",
|
||||
"hint": "External services may access AstrBot's backend through callback links generated by AstrBot (such as file download links). Since AstrBot cannot automatically determine the externally accessible host address in the deployment environment, this configuration item is needed to explicitly specify how external services should access AstrBot's address. Examples: http://localhost:6185, https://example.com, etc."
|
||||
},
|
||||
"timezone": {
|
||||
"description": "Timezone",
|
||||
"hint": "Timezone setting. Please enter an IANA timezone name, such as Asia/Shanghai. Uses system default timezone when empty. For all timezones, see: https://data.iana.org/time-zones/tzdb-2021a/zone1970.tab"
|
||||
},
|
||||
"http_proxy": {
|
||||
"description": "HTTP Proxy",
|
||||
"hint": "When enabled, proxy will be set by adding environment variables. Format: `http://ip:port`"
|
||||
},
|
||||
"no_proxy": {
|
||||
"description": "Direct Connection Address List"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -62,33 +62,5 @@
|
||||
"allowedHosts": "Allowed Hosts",
|
||||
"rateLimit": "Rate Limit",
|
||||
"encryption": "Encryption Settings"
|
||||
},
|
||||
"configSelection": {
|
||||
"selectConfig": "Select Configuration",
|
||||
"normalConfig": "Basic",
|
||||
"systemConfig": "System"
|
||||
},
|
||||
"configManagement": {
|
||||
"title": "Configuration Management",
|
||||
"description": "AstrBot supports separate configuration files for different bots. The `default` configuration is used by default.",
|
||||
"newConfig": "New Configuration",
|
||||
"editConfig": "Edit Configuration",
|
||||
"manageConfigs": "Manage Configurations...",
|
||||
"configName": "Name",
|
||||
"fillConfigName": "Enter configuration name",
|
||||
"confirmDelete": "Are you sure you want to delete the configuration \"{name}\"? This action cannot be undone.",
|
||||
"pleaseEnterName": "Please enter a configuration name",
|
||||
"createFailed": "Failed to create new configuration",
|
||||
"deleteFailed": "Failed to delete configuration",
|
||||
"updateFailed": "Failed to update configuration"
|
||||
},
|
||||
"buttons": {
|
||||
"cancel": "Cancel",
|
||||
"create": "Create",
|
||||
"update": "Update"
|
||||
},
|
||||
"codeEditor": {
|
||||
"title": "Edit Configuration File"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -32,8 +32,7 @@
|
||||
"actions": "Actions",
|
||||
"back": "Back",
|
||||
"selectFile": "Select File",
|
||||
"refresh": "Refresh",
|
||||
"updateAll": "Update All"
|
||||
"refresh": "Refresh"
|
||||
},
|
||||
"status": {
|
||||
"enabled": "Enabled",
|
||||
@@ -142,9 +141,7 @@
|
||||
"confirmDelete": "Are you sure you want to delete this extension?",
|
||||
"fillUrlOrFile": "Please fill in extension URL or upload extension file",
|
||||
"dontFillBoth": "Please don't fill in both extension URL and upload file",
|
||||
"supportedFormats": "Supports .zip extension files",
|
||||
"updateAllSuccess": "All upgradable extensions have been updated!",
|
||||
"updateAllFailed": "{failed} of {total} extensions failed to update:"
|
||||
"supportedFormats": "Supports .zip extension files"
|
||||
},
|
||||
"upload": {
|
||||
"fromFile": "Install from File",
|
||||
|
||||
@@ -9,7 +9,6 @@
|
||||
"tabs": {
|
||||
"all": "All",
|
||||
"chatCompletion": "Chat Completion",
|
||||
"agentRunner": "Agent Runner",
|
||||
"speechToText": "Speech to Text",
|
||||
"textToSpeech": "Text to Speech",
|
||||
"embedding": "Embedding",
|
||||
@@ -45,13 +44,12 @@
|
||||
"title": "Service Provider",
|
||||
"tabs": {
|
||||
"basic": "Basic",
|
||||
"agentRunner": "Agent Runner",
|
||||
"speechToText": "Speech to Text",
|
||||
"textToSpeech": "Text to Speech",
|
||||
"embedding": "Embedding",
|
||||
"rerank": "Rerank"
|
||||
},
|
||||
"noTemplates": "No this type provider templates available"
|
||||
"noTemplates": "No {type} type provider templates available"
|
||||
},
|
||||
"config": {
|
||||
"addTitle": "Add",
|
||||
|
||||
@@ -1,110 +1,124 @@
|
||||
{
|
||||
"title": "Custom Rules",
|
||||
"subtitle": "Set custom rules for specific sessions, which take priority over global settings",
|
||||
"title": "Session Management",
|
||||
"subtitle": "Manage active sessions and configurations",
|
||||
"buttons": {
|
||||
"refresh": "Refresh",
|
||||
"edit": "Edit",
|
||||
"editRule": "Edit Rules",
|
||||
"deleteAllRules": "Delete All Rules",
|
||||
"addRule": "Add Rule",
|
||||
"apply": "Apply Batch Settings",
|
||||
"editName": "Edit Session Name",
|
||||
"save": "Save",
|
||||
"cancel": "Cancel",
|
||||
"delete": "Delete",
|
||||
"clear": "Clear",
|
||||
"next": "Next",
|
||||
"editCustomName": "Edit Note",
|
||||
"batchDelete": "Batch Delete"
|
||||
"delete": "Delete"
|
||||
},
|
||||
"customRules": {
|
||||
"title": "Custom Rules",
|
||||
"rulesCount": "rules",
|
||||
"hasRules": "Configured",
|
||||
"noRules": "No Custom Rules",
|
||||
"noRulesDesc": "Click 'Add Rule' to configure custom rules for specific sessions",
|
||||
"serviceConfig": "Service Config",
|
||||
"pluginConfig": "Plugin Config",
|
||||
"kbConfig": "Knowledge Base",
|
||||
"providerConfig": "Provider Config",
|
||||
"configured": "Configured",
|
||||
"noCustomName": "No note set"
|
||||
},
|
||||
"quickEditName": {
|
||||
"title": "Edit Note"
|
||||
"sessions": {
|
||||
"activeSessions": "Active Sessions",
|
||||
"sessionCount": "sessions",
|
||||
"noActiveSessions": "No active sessions",
|
||||
"noActiveSessionsDesc": "Sessions will appear here when users interact with the bot"
|
||||
},
|
||||
"search": {
|
||||
"placeholder": "Search sessions..."
|
||||
"placeholder": "Search sessions...",
|
||||
"platformFilter": "Platform Filter"
|
||||
},
|
||||
"table": {
|
||||
"headers": {
|
||||
"umoInfo": "Unified Message Origin",
|
||||
"rulesOverview": "Rules Overview",
|
||||
"sessionStatus": "Session Status",
|
||||
"sessionInfo": "Session Info",
|
||||
"persona": "Persona",
|
||||
"chatProvider": "Chat Provider",
|
||||
"sttProvider": "STT Provider",
|
||||
"ttsProvider": "TTS Provider",
|
||||
"llmStatus": "LLM Status",
|
||||
"ttsStatus": "TTS Status",
|
||||
"knowledgeBase": "Knowledge Base",
|
||||
"pluginManagement": "Plugin Management",
|
||||
"actions": "Actions"
|
||||
}
|
||||
},
|
||||
"status": {
|
||||
"enabled": "Enabled",
|
||||
"disabled": "Disabled"
|
||||
},
|
||||
"persona": {
|
||||
"none": "Follow Config"
|
||||
"none": "No Persona"
|
||||
},
|
||||
"provider": {
|
||||
"followConfig": "Follow Config"
|
||||
"batchOperations": {
|
||||
"title": "Batch Operations",
|
||||
"setPersona": "Batch Set Persona",
|
||||
"setChatProvider": "Batch Set Chat Provider",
|
||||
"setSttProvider": "Batch Set STT Provider",
|
||||
"setTtsProvider": "Batch Set TTS Provider",
|
||||
"setLlmStatus": "Batch Set LLM Status",
|
||||
"setTtsStatus": "Batch Set TTS Status",
|
||||
"noSttProvider": "No STT Provider Available",
|
||||
"noTtsProvider": "No TTS Provider Available"
|
||||
},
|
||||
"addRule": {
|
||||
"title": "Add Custom Rule",
|
||||
"description": "Select a session (UMO) to configure custom rules. Custom rules take priority over global settings.",
|
||||
"selectUmo": "Select Session",
|
||||
"noUmos": "No sessions available"
|
||||
"pluginManagement": {
|
||||
"title": "Plugin Management",
|
||||
"noPlugins": "No available plugins",
|
||||
"noPluginsDesc": "Currently no active plugins",
|
||||
"loading": "Loading plugin list...",
|
||||
"author": "Author"
|
||||
},
|
||||
"ruleEditor": {
|
||||
"title": "Edit Custom Rules",
|
||||
"description": "Configure custom rules for this session. These rules take priority over global settings.",
|
||||
"serviceConfig": {
|
||||
"title": "Service Configuration",
|
||||
"sessionEnabled": "Enable Session",
|
||||
"llmEnabled": "Enable LLM",
|
||||
"ttsEnabled": "Enable TTS",
|
||||
"customName": "Custom Name"
|
||||
},
|
||||
"providerConfig": {
|
||||
"title": "Provider Configuration",
|
||||
"chatProvider": "Chat Provider",
|
||||
"sttProvider": "STT Provider",
|
||||
"ttsProvider": "TTS Provider"
|
||||
},
|
||||
"personaConfig": {
|
||||
"title": "Persona Configuration",
|
||||
"selectPersona": "Select Persona",
|
||||
"hint": "Persona settings affect the conversation style and behavior of the LLM"
|
||||
},
|
||||
"pluginConfig": {
|
||||
"title": "Plugin Configuration",
|
||||
"disabledPlugins": "Disabled Plugins",
|
||||
"hint": "Select plugins to disable for this session. Unselected plugins will remain enabled."
|
||||
},
|
||||
"kbConfig": {
|
||||
"title": "Knowledge Base Configuration",
|
||||
"selectKbs": "Select Knowledge Bases",
|
||||
"topK": "Top K Results",
|
||||
"enableRerank": "Enable Reranking"
|
||||
}
|
||||
"nameEditor": {
|
||||
"title": "Edit Session Name",
|
||||
"customName": "Custom Name",
|
||||
"placeholder": "Enter custom session name (leave empty to use original name)",
|
||||
"originalName": "Original Name",
|
||||
"fullSessionId": "Full Session ID",
|
||||
"hint": "Custom names help you easily identify sessions. The small information icon (!) will show the actual UMO when hovering."
|
||||
},
|
||||
"knowledgeBase": {
|
||||
"title": "Knowledge Base Configuration",
|
||||
"configure": "Configure",
|
||||
"selectKB": "Select Knowledge Bases",
|
||||
"selectMultiple": "You can select multiple knowledge bases",
|
||||
"noKBAvailable": "No knowledge bases available",
|
||||
"noKBDesc": "No knowledge bases have been created yet",
|
||||
"createKB": "Create Knowledge Base",
|
||||
"advancedSettings": "Advanced Settings",
|
||||
"topK": "Result Count",
|
||||
"topKHint": "Number of results to retrieve from knowledge base",
|
||||
"enableRerank": "Enable Reranking",
|
||||
"enableRerankHint": "Use reranking model to improve retrieval quality",
|
||||
"clearConfig": "Clear Configuration",
|
||||
"save": "Save",
|
||||
"cancel": "Cancel",
|
||||
"loading": "Loading knowledge base configuration...",
|
||||
"description": "Configure knowledge bases for this session. The session will use configured knowledge bases to enhance conversation context.",
|
||||
"saveSuccess": "Knowledge base configuration saved successfully",
|
||||
"saveFailed": "Failed to save knowledge base configuration",
|
||||
"loadFailed": "Failed to load knowledge base configuration",
|
||||
"clearSuccess": "Knowledge base configuration cleared",
|
||||
"clearFailed": "Failed to clear knowledge base configuration",
|
||||
"clearConfirm": "Are you sure you want to clear the knowledge base configuration for this session?"
|
||||
},
|
||||
"list": {
|
||||
"documents": "documents"
|
||||
},
|
||||
"deleteConfirm": {
|
||||
"title": "Confirm Delete",
|
||||
"message": "Are you sure you want to delete all custom rules for this session? Global settings will be used after deletion."
|
||||
},
|
||||
"batchDeleteConfirm": {
|
||||
"title": "Confirm Batch Delete",
|
||||
"message": "Are you sure you want to delete {count} selected rules? Global settings will be used after deletion."
|
||||
"message": "Are you sure you want to delete session {sessionName}?",
|
||||
"warning": "This action will permanently delete all chat history and preference settings for this session (except for data linked via plugins), and this cannot be undone. Continue?"
|
||||
},
|
||||
"messages": {
|
||||
"refreshSuccess": "Data refreshed",
|
||||
"loadError": "Failed to load data",
|
||||
"saveSuccess": "Saved successfully",
|
||||
"saveError": "Failed to save",
|
||||
"clearSuccess": "Cleared successfully",
|
||||
"clearError": "Failed to clear",
|
||||
"deleteSuccess": "Deleted successfully",
|
||||
"deleteError": "Failed to delete",
|
||||
"noChanges": "No changes to save",
|
||||
"batchDeleteSuccess": "Batch delete successful",
|
||||
"batchDeleteError": "Batch delete failed"
|
||||
"refreshSuccess": "Session list refreshed",
|
||||
"personaUpdateSuccess": "Persona updated successfully",
|
||||
"personaUpdateError": "Failed to update persona",
|
||||
"providerUpdateSuccess": "Provider updated successfully",
|
||||
"providerUpdateError": "Failed to update provider",
|
||||
"sessionStatusSuccess": "Session {status}",
|
||||
"llmStatusSuccess": "LLM {status}",
|
||||
"ttsStatusSuccess": "TTS {status}",
|
||||
"statusUpdateError": "Failed to update status",
|
||||
"loadSessionsError": "Failed to load session list",
|
||||
"batchUpdateSuccess": "Successfully batch updated {count} settings",
|
||||
"batchUpdatePartial": "Batch update completed, {success} successful, {error} failed",
|
||||
"loadPluginsError": "Failed to load plugin list",
|
||||
"pluginStatusSuccess": "Plugin {name} {status}",
|
||||
"pluginStatusError": "Failed to update plugin status",
|
||||
"nameUpdateSuccess": "Session name updated successfully",
|
||||
"nameUpdateError": "Failed to update session name",
|
||||
"deleteSuccess": "Session deleted successfully",
|
||||
"deleteError": "Failed to delete session"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,10 +8,11 @@
|
||||
"config": "配置文件",
|
||||
"chat": "聊天",
|
||||
"conversation": "对话数据",
|
||||
"sessionManagement": "自定义规则",
|
||||
"sessionManagement": "会话管理",
|
||||
"console": "控制台",
|
||||
"alkaid": "Alkaid",
|
||||
"knowledgeBase": "知识库",
|
||||
"memory": "长期记忆",
|
||||
"about": "关于",
|
||||
"settings": "设置",
|
||||
"documentation": "官方文档",
|
||||
|
||||
@@ -1,45 +0,0 @@
|
||||
{
|
||||
"knowledgeBaseSelector": {
|
||||
"notSelected": "未选择",
|
||||
"buttonText": "选择知识库...",
|
||||
"dialogTitle": "选择知识库",
|
||||
"loading": "加载中...",
|
||||
"noKnowledgeBases": "暂无知识库",
|
||||
"createKnowledgeBase": "创建知识库",
|
||||
"selectedCount": "已选择 {count} 个知识库",
|
||||
"confirmSelection": "确认选择",
|
||||
"cancelSelection": "取消",
|
||||
"noDescription": "无描述",
|
||||
"documentCount": "{count} 个文档",
|
||||
"chunkCount": "{count} 个块"
|
||||
},
|
||||
"pluginSetSelector": {
|
||||
"notSelected": "未启用任何插件",
|
||||
"allPlugins": "启用所有插件 (*)",
|
||||
"selectedCount": "已选择 {count} 个插件",
|
||||
"buttonText": "选择插件集合...",
|
||||
"dialogTitle": "选择插件集合",
|
||||
"loading": "加载中...",
|
||||
"enableAll": "启用所有插件",
|
||||
"enableNone": "不启用任何插件",
|
||||
"customSelect": "自定义选择",
|
||||
"noPlugins": "暂无可用的插件",
|
||||
"confirmSelection": "确认选择",
|
||||
"cancelSelection": "取消",
|
||||
"noDescription": "无描述",
|
||||
"notActivated": "未激活",
|
||||
"note": "*不显示系统插件和已经在插件页禁用的插件。"
|
||||
},
|
||||
"providerSelector": {
|
||||
"notSelected": "未选择",
|
||||
"buttonText": "选择提供商...",
|
||||
"dialogTitle": "选择提供商",
|
||||
"loading": "加载中...",
|
||||
"noProviders": "暂无可用的提供商",
|
||||
"confirmSelection": "确认选择",
|
||||
"cancelSelection": "取消",
|
||||
"clearSelection": "不选择",
|
||||
"clearSelectionSubtitle": "清除当前选择",
|
||||
"unknownType": "未知类型"
|
||||
}
|
||||
}
|
||||
@@ -51,8 +51,7 @@
|
||||
"editDisplayName": "编辑会话名称",
|
||||
"displayName": "会话名称",
|
||||
"displayNameUpdated": "会话名称已更新",
|
||||
"displayNameUpdateFailed": "更新会话名称失败",
|
||||
"confirmDelete": "确定要删除“{name}”吗?此操作无法撤销。"
|
||||
"displayNameUpdateFailed": "更新会话名称失败"
|
||||
},
|
||||
"modes": {
|
||||
"darkMode": "切换到夜间模式",
|
||||
@@ -85,9 +84,5 @@
|
||||
"reconnected": "聊天连接已重新建立",
|
||||
"failed": "连接失败,请刷新页面重试"
|
||||
}
|
||||
},
|
||||
"errors": {
|
||||
"sendMessageFailed": "发送消息失败,请重试",
|
||||
"createSessionFailed": "创建会话失败,请刷新页面重试"
|
||||
}
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user